
COMPONENT DESIGN AND FORMAL
VALIDATION OF SFA SYSTEMS:

A CASE STUDY

Valeriy Vyatkin, Hans-Michael Hanisch
Martin Luther University of Halle- Wittenberg

Valeriy. Vyatkin@iw.uni-halle.de
Hans-Michael.Hanisch@iw.uni-halle.de

In this paper we present a case study of component based automation system
design using IEC61499 accompanied by subsequent application of the formal
modeling methods and the corresponding verification tools.
Our approach to validation is based on the results of formerly conducted
research and development works on formal modeling of distributed control
systems. The validation tool VEDA (Verification Environment for Distributed
Applications) is intended on integration with IEC61499 engineering tools by
means of using standardized source-code syntax and XML-based document
types.

1. INTRODUCTION

The new developing international standard IEC61499 [1,2] provides an architectural
framework for development and deployment of scalable flexible automation systems
powered by distributed intelligence.

In this paper we attempt to illustrate the component based automation system
design using IEC61499. The component is understood as a container that
encapsulates heterogeneous properties of real industrial objects, such as dynamic
models, the intelligence needed to control the underlying equipment in order to
solve the predestined tasks, and the interfaces to process and to other objects
constituting industrial systems. In this sense, the concept of component is somewhat
complementary to the mechatronic approach e.g. [3], which serves as a framework
to combine mechanical and electronic circuitry elements and properties of the
equipment.

The goal of the component-based design is to facilitate development, deployment
and, particularly re-engineering of automation systems. The key goal is to optimize
testing of the modified configurations by application of automated validation
methods. Testing of the resultant system, if it is done according to state-of-the-art
simulation methods, could nullify such gains of the component-oriented design as
fast re-configuration.

© Springer Science+Business Media New York 2002
V. Mařík et al. (eds.), Knowledge and Technology Integration in Production and Services

314 Balancing Knowledge and Technology in Manufacturing and Services

However, along with new challenges, IEC61499 has created new opportunities
of formal methods application in order to improve reliability of flexible automation
systems. Thus, the formal verification tools can be easier applied for automated
check of the validity of a pre-given set of safety properties for the modified system
architectures, finding erroneous situations arising from the integration of different
objects. In this paper we present a case study of component based automation
system design using IEC61499 accompanied by subsequent application of the
formal modeling methods and the corresponding verification tools.

2. COMPONENTS

We will illustrate the component structure on the drilling station represented in the
following Figure 1 with the functionality as follows:

Figure 1. A drilling Station.

The spin motor MJ rotates the bore of the drill. The step motor M2 moves the head of
the drill in vertical direction. The motor is controlled by two Boolean level signals:
lift and sink. These signals are connected in parallel to the spin motor: thus the drill
rotates always when the step motor moves the head. Position of the head is detected
by two logic sensors: up and down

The corresponding component is presented in Figure 2. It serves to encapsulate
heterogeneous control-related properties and functions of the object. The interface of
the component is unified with the interface of IEC61499 function blocks. There are
pre-defined classes of inputs/outputs, e.g. Input Commands, uniting the pulse
signals, representing the commands from operator, or from the other components; or
State Information, representing the parameters of the object or of the environment.

The cornerstone of the component is one or several sub-applications, defining as
the structure, as well functionality of the object. The sub-application is an
architectural unit defined in IEC61499 for distributable compositions of function
blocks. Several sub-applications may be necessary for different configurations such
as a pure run-time configuration, or a configuration with real object substituted by

Component Design and Formal Validation of SF A Systems: A Case Study 315

its simulation model, or combination of those allowing comparison of the outputs of
the real process with the simulated ones.

<> M·,Ct.!!.,

<> """"'_$lt(j(

~' fODI!! Servicn

liIOI>&:

I!IF

?'U .. =LE
o PR£U~T

W~KPO$,

Component Content
;_nIControliers I
I i I Visualization I-i
I I
I I

! i Dynamic Models (Dynamic State Charts) -1
I I I

: : Linearly moving part :
: : Rotating part :
I I I : : .-----------, i

I

~~--~--~----~

Input/Output layout

Control devices

Figure 2. Interface and Constituent Elements of the Component "SIMPLE DRILL".

All these configurations may share common control and visualization functions.
The corresponding simulation function blocks may be generated from the formal
models of the object's behavior. The models and repositories cannot be encapsulated
directly in the framework of IEC61499, so the component serves as a container for
all these loosely connected elements. The common XML-based presentation will
facilitate integration of elements with the component.

The formal models of the whole sub-applications contained in the component are
intended for the use in the automated validation of applications, generated as a result
of several components interconnection. These models can be generated from the
sub-application descriptions. For the blocks, representing the models of objects
within the sub-applications the corresponding "verification-oriented" models can be
generated more efficiently with the help of the formal models of objects.

The contained sub-applications are built according to the MVC
(Model/View/Control) methodology suggested in [4]. The Figure 3 shows the
hierarchical structure sub-application combining the simulation and interaction with
the real object. The upper level of the hierarchy is represented by the DM_MVC
sub-application. The interface of the component is mapped onto the interface of the
contained sub-applications.
ModellView/Controller
The sub-application is constituted from the blocks OBJECT and CONTROLLER
interconnected in closed loop to each other, and also connected to the inputs and
outputs of the component.
The block OBJECT of type DM_MV (Drill with MotQr Model and View) represents
the functionality of the equipment, while the block CONTROLLER stands for the
control logic. The execution modes include the MANUAL and the AUTOMATIC
mode, determined by the AUTO_MAN qualifier. If the qualifier is TRUE
(automatic mode) then the OBJECT block receives the control commands (LIFT,

316 Balancing Knowledge and Technology in Manufacturing and Services

SINK, TURN) from the CONTROLLER. Otherwise these signals are taken from the
inputs of the block itself, which can be connected to manual control buttons.

ModelNiew/Controller Controller

ModelNiew
Io'IOOI L.

""n' ,tUT

HMI Screen
,NH O 1--------- ..

I e up I
I

• ready

I
I---+-i:·llo ", ...

()
1r,I'0 1 0111

~:)I StU1

II'J

Structural Model

Dynamic Model and Sensors

rr-
I....,.;==+---H~

II
I
I

... _--------" t,:'; home

1000ded

Single Unit

Process Interface

.­.OOL

Figure 3. Hierarchical Structure of the MVC Sub-Application.

Component Design and Formal Validation of SF A Systems: A Case Study 317

ModellView
The block VIEW is responsible for displaying of the image of drill on the operator
station screen. At every event CHGI the outlined part of the HMI display as shown
in the Figure 3, is refreshed given the values obtained from the OBJECT block.
Location of the drill's head is displayed according to the coordinate POS.
The block OBJECT of type DM (stands for Drill with Motor) represents the drill
itself. Its interface almost copies the interface of DM_MV: all commands and data
coming from the controller are directly transferred to DM.
Controller
The sequential control of the drill is defined in the form of sequential function chart.
A repository of controllers may be necessary to implement several behavior
scenarios of the object.
Structural Model
This level represents the structure of the object. Thus, the OM block represents the
model of drill composed from two components: a model of the head as a vertically
moving object, and a model of spindle's rotation.
The model reflects the fact of relative independence of the components: axis
position of the head has no influence on its rotation, however the rotation status of
the motor influences the results of drilling. For this reason the ROT (rotation) output
of the ROT A TION (Motor) block is connected to the ROTATES input of the model
of the head. The blocks LINEAR (of type DRILL_MR_O) and ROTATION
encapsulate the functionality of real component units of the object: they receive
control inputs and generate the output parameters such as axis position of the head
and turning speed of the spin of the motor. They also produce the values of Boolean
and analog sensors, e.g. the position sensors UP and DOWN.
Model of a single unit
Next level of the component hierarchy is represented by single functional units of
the equipment, such as vertically moving head and rotation motor of the drill. These
components can be either further defined by means of dynamic models and models
of the corresponding sensors, or can be substituted by direct interfaces to real
devices.
The model and the interface to the real process are combined within one function
block DRILL_MR (Model + Real object). The event input SIMUL with qualifier SQ
controls the way of the outputs assignment: if SQ=TRUE then the SWITCH relays
outputs of the simulation model (SIMMOD). Otherwise, if SQ=FALSE, the outputs
are taken from the block REALOBJ serving as an interface to the actual DRILL.
Dynamic model
The block MOD (of type LINEAR) encapsulates discrete implementation of the
dynamic model of the vertically moving head driven by the motor M2. State of the
model is re-evaluated at every event TIMER. These events are generated by the
block PERIODIC with frequency defined by the time discretization parameter DT as
long as the simulation qualifier SQ is TRUE. The model produces the numeric
parameter POS (in the interval from 0 to 100) indicating vertical position of the
head. Blocks SHIGH, SLOW of type SENS represent the discrete sensors, that
indicate correspondingly up and the low positions of the head. The LOW and HIGH
parameters of the SENS block represent the interval in which must fall the numeric
input value VALin order to the logic output RES to be produced.

318 Balancing Knowledge and Technology in Manufacturing and Services

3. BUILDING SYSTEMS

3.1 Integration

We illustrate the component-based system design on the following prototype of an
automated manufacturing cell, consisting of 3 units as shown in the Figure 4.

'----Orlll---':
, , ,
I
I
I
I
I
I
I
I
I I ,, - ---- ----~--- --- -------~--, I , ,

I , , ,
I
I
I

I I
I I
I I
I I
I I
I I

: '
~ Transporting Carriage 1
------------ ~-------------- ~ ---------~

Figure 4. A Prototype of a Modular Manufacturing Cell.

These are the boring machine (drill), carriage, which delivers workpieces to the
home position of the drill, and the loader that loads/unloads the carriage in the
loading position that is opposite to the home position.

The appearance of the workpiece on the carriage is detected by an embedded
sensor, so no particular communication between carriage and loader is necessary.
Arrival of a new workpiece may serve as a signal to the carriage to approach the
drill and request the processing service from it.

This object can be built using constituents from different vendors, having diverse
dynamic characteristics, sizes, layouts of sensors/actuators, and other differences. In
our case-study we have considered 3 models of drills, and 2 models of loaders and
carriages. All the differences between the equipment units are encapsulated within
the component descriptions.

Visual tools can facilitate the design process, reducing it to interconnection of
components as shown in the following Figure 5. The resultant application is built
automatically from the corresponding sub-applications contained in the given
components.

The application is appended by the HMI panel, that can be designed with the
help of a visual editor and placed into repository is as a component.

In our example, the panel has one button to control switching the simulation
mode, and two LEDs indicating failures in drill and in the carriage.

The panel is selected from the repository and added to the Design Screen, that
implies the appearance of the corresponding component in the Application window.

This description is enough to generate the application. In this stage the
application is independent from the architecture of hardware, where it will be
executed.

Component Design and Formal Validation of SF A Systems: A Case Study 319

Com nenls

• c".ni,j,51 1t
I

Smo'.
Lsop ,oca, ...

l oade r
SlIr'Iple

L Extended

.... MMI Pant"
I ···r_

Ap lication

Desi n Screen

r- --, r.:-:
I I
I I

I • I I
I I

l() !
I
I

I I)
-------- ~---------------:~~~~~---,

I
I

Figure 5. Application Design in a Visual Tool by Plug-And-Play of Components.

3.2 Distribution

Next step of system's implementation is the planning of the architecture. Some
possible architectures can be considered with respect to our example. In the
architecture, presented in Figure 6 the control is distributed over the constituent
parts of the system, while the simulation is conducted on the PC-based station.

Ethernet
Engineering a nd
Simulation

Figure 6. Distributed Control System Architecture.

320 Balancing Knowledge and Technology in Manufacturing and Services

System configuration in IEC61499 consists of the description of the set of
container devices and their resources, and of the mapping of the application's parts
onto the containers.

4. MODELING AND VALIDATION

Testing of scalable, flexible automation (SFA) systems having distributed
architecture of control is complicated by the following reasons:

Asynchronous event-driven logic of execution, statically unpredictable
combinations of concurrent processes in plant and dynamic scheduling of
algorithms in controllers;
Communication phenomena: use of different protocols, influence of delays, etc.
Reconfiguration phenomena: the same application could be executed on
different architectures;

Dynamic models of controlled equipment are indispensable for simulation,
verification, and for interpretation of the verification results by simulation. It is
important to unify the modeling process by using a standard self-explanatory
problem-oriented visual modeling language.

[
C,=DESC&(nol PRESENT or rot WPOS)

C,=DESC&PRESENT&WPOS¬ ROTATES
C.=DESC&PRESENT&ROTATES&V'v?OS
C,=LlFT&(not PRESENT or not WPOS)

C.=LIFT&PRESENT &WPOS¬ ROTATES
C.=LlFT&PRESENT&V'v?OS&ROTATES J

Figure 7. Modular Dynamic State Chart Model of the Linearly Moving Part of the
Drill.

We apply for this purpose a customized form of State Charts (the same as used in
UML). The customizations concern the set of state shapes, corresponding to

Component Design and Formal Validation of SF A Systems: A Case Study 321

particular dynamic properties of parameters, and modular interface, compatible with
interface of IEC 61499 function blocks.

The modular interface is unified also with the interface of hybrid and discrete
state modeling formalisms, such as: Condition! Event Automata [5] and Net
ConditionlEvent Systems [6], that simplifies the transformation of state-chart
models to these formalisms. The dynamic state chart is built from states (rectangular
shapes) and state transitions (arcs) marked with Boolean conditions.

In the chart in the Figure 7 there are two types of states: fixed position states
UP _POS, MID_POS, DOWN_POS and dynamic states with linear change of
parameter POS as POS=POSolatkdt, where the coefficient k is the speed of moving,
dt - time increment.

The model describes the following behavior. The head moves free in the upper
part of the axis, no matter present the workpiece or not. When the middle position is
reached and the control signal DESC remains ON, the head continues its moving
downwards. Should the workpiece be in the home position, and the bore spins, then
normal drilling goes on. If the drill does not rotate, then it just hits the blank
workpiece and a failure occurs. If no workpiece is present, then the drill moves
down idle, with the speed higher than that of drilling. The same applies to the
moving upwards. Thus the presented model defines uncontrolled behavior of the
drill (its vertically moving part).

.,

...1 n'

•• ,1 -'1 ...
,,~~, : -"
"'.,

... t "

Figure 8. Net ConditionlEvent Model of the Linearly Moving Part of the Drill.

Note, that the presented model generates the numerical value POS and can be re­
used as a core of models for several types of drills with different number of logic
position sensors.

The State Chart model can be used to generate discrete state model in Net
ConditionlEvent Systems as presented in Figure 8. The latter is required for

322 Balancing Knowledge and Technology in Manufacturing and Services

conducting the formal validation procedure using the tool VEDA, as it is described
in [7].

The module modeling the drill is incorporated into the modularly built NCES
model of the application, substituting the block DRILL_M in Figure 3.

The tool VEDA inputs the applications, generates the NeES models for the
remaining blocks (not explicitly presented in NCES) and verifies the compliance of
the models behavior with the set of pre-given specifications of permitted/forbidden
behavior.

6. REFERENCES

1. Function Blocks for Industrial Process Measurement and Control Systems. Publicly Available
Specification, International Electrotechnical Commission, Tech. Comm. 65, Working group 6,
Geneva, 1998.

2. R. Lewis: Modeling Control Systems using IEC 61499, IEE, London, 2001
3. M. Bonte. C. Fantuzzi: Mechatronic Objects encapsulation in IEC /131-3 Norm, intI. Conf. on

Control Applications, Anchorage, 2002
4. lH. Christensen: Design patterns for system engineering with IEC 61459. Proc. Of Conference

"Verteile Automatisierung" (Distributed Automation), pages 63--71, Magdeburg, Germany, 2000
5. S.Kowalewski, P.Hemnann, S.Engell, R.Huuk, H.Krumm, Y.Lakbnech, B.Lukoschus, and

H.Treseler: Approaches to the formal verification of hybrid systems. Automatisierungstechnik, 2:66-
-73,2001.

6. Rausch, M., H.-M. Hanisch. Net condition/event systems with multiple condition outputs. In:
Symposium on Emerging Technologies and Factory Automation, 1995. VoU., INRlAIIEEE. Paris,
France. pp.592--600.

7. Vyatkin V., Hanisch H.-M.: Verification of Distributed Control Systems in Intelligent
Manufacturing, 10urnal of Intelligent Manufacturing, special issue on Internet Based modeling in
Intelligent Manufacturing, to appear as No.1, 2003

