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In this paper we present a case study of component based automation system 
design using IEC61499 accompanied by subsequent application of the formal 
modeling methods and the corresponding verification tools. 
Our approach to validation is based on the results of formerly conducted 
research and development works on formal modeling of distributed control 
systems. The validation tool VEDA (Verification Environment for Distributed 
Applications) is intended on integration with IEC61499 engineering tools by 
means of using standardized source-code syntax and XML-based document 
types. 

1. INTRODUCTION 

The new developing international standard IEC61499 [1,2] provides an architectural 
framework for development and deployment of scalable flexible automation systems 
powered by distributed intelligence. 

In this paper we attempt to illustrate the component based automation system 
design using IEC61499. The component is understood as a container that 
encapsulates heterogeneous properties of real industrial objects, such as dynamic 
models, the intelligence needed to control the underlying equipment in order to 
solve the predestined tasks, and the interfaces to process and to other objects 
constituting industrial systems. In this sense, the concept of component is somewhat 
complementary to the mechatronic approach e.g. [3], which serves as a framework 
to combine mechanical and electronic circuitry elements and properties of the 
equipment. 

The goal of the component-based design is to facilitate development, deployment 
and, particularly re-engineering of automation systems. The key goal is to optimize 
testing of the modified configurations by application of automated validation 
methods. Testing of the resultant system, if it is done according to state-of-the-art 
simulation methods, could nullify such gains of the component-oriented design as 
fast re-configuration. 
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However, along with new challenges, IEC61499 has created new opportunities 
of formal methods application in order to improve reliability of flexible automation 
systems. Thus, the formal verification tools can be easier applied for automated 
check of the validity of a pre-given set of safety properties for the modified system 
architectures, finding erroneous situations arising from the integration of different 
objects. In this paper we present a case study of component based automation 
system design using IEC61499 accompanied by subsequent application of the 
formal modeling methods and the corresponding verification tools. 

2. COMPONENTS 

We will illustrate the component structure on the drilling station represented in the 
following Figure 1 with the functionality as follows: 

Figure 1. A drilling Station. 

The spin motor MJ rotates the bore of the drill. The step motor M2 moves the head of 
the drill in vertical direction. The motor is controlled by two Boolean level signals: 
lift and sink. These signals are connected in parallel to the spin motor: thus the drill 
rotates always when the step motor moves the head. Position of the head is detected 
by two logic sensors: up and down 

The corresponding component is presented in Figure 2. It serves to encapsulate 
heterogeneous control-related properties and functions of the object. The interface of 
the component is unified with the interface of IEC61499 function blocks. There are 
pre-defined classes of inputs/outputs, e.g. Input Commands, uniting the pulse 
signals, representing the commands from operator, or from the other components; or 
State Information, representing the parameters of the object or of the environment. 

The cornerstone of the component is one or several sub-applications, defining as 
the structure, as well functionality of the object. The sub-application is an 
architectural unit defined in IEC61499 for distributable compositions of function 
blocks. Several sub-applications may be necessary for different configurations such 
as a pure run-time configuration, or a configuration with real object substituted by 
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its simulation model, or combination of those allowing comparison of the outputs of 
the real process with the simulated ones. 
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Figure 2. Interface and Constituent Elements of the Component "SIMPLE DRILL". 

All these configurations may share common control and visualization functions. 
The corresponding simulation function blocks may be generated from the formal 
models of the object's behavior. The models and repositories cannot be encapsulated 
directly in the framework of IEC61499, so the component serves as a container for 
all these loosely connected elements. The common XML-based presentation will 
facilitate integration of elements with the component. 

The formal models of the whole sub-applications contained in the component are 
intended for the use in the automated validation of applications, generated as a result 
of several components interconnection. These models can be generated from the 
sub-application descriptions. For the blocks, representing the models of objects 
within the sub-applications the corresponding "verification-oriented" models can be 
generated more efficiently with the help of the formal models of objects. 

The contained sub-applications are built according to the MVC 
(Model/View/Control) methodology suggested in [4]. The Figure 3 shows the 
hierarchical structure sub-application combining the simulation and interaction with 
the real object. The upper level of the hierarchy is represented by the DM_MVC 
sub-application. The interface of the component is mapped onto the interface of the 
contained sub-applications. 
ModellView/Controller 
The sub-application is constituted from the blocks OBJECT and CONTROLLER 
interconnected in closed loop to each other, and also connected to the inputs and 
outputs of the component. 
The block OBJECT of type DM_MV (Drill with MotQr Model and View) represents 
the functionality of the equipment, while the block CONTROLLER stands for the 
control logic. The execution modes include the MANUAL and the AUTOMATIC 
mode, determined by the AUTO_MAN qualifier. If the qualifier is TRUE 
(automatic mode) then the OBJECT block receives the control commands (LIFT, 
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SINK, TURN) from the CONTROLLER. Otherwise these signals are taken from the 
inputs of the block itself, which can be connected to manual control buttons. 
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Figure 3. Hierarchical Structure of the MVC Sub-Application. 
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ModellView 
The block VIEW is responsible for displaying of the image of drill on the operator 
station screen. At every event CHGI the outlined part of the HMI display as shown 
in the Figure 3, is refreshed given the values obtained from the OBJECT block. 
Location of the drill's head is displayed according to the coordinate POS. 
The block OBJECT of type DM (stands for Drill with Motor) represents the drill 
itself. Its interface almost copies the interface of DM_MV: all commands and data 
coming from the controller are directly transferred to DM. 
Controller 
The sequential control of the drill is defined in the form of sequential function chart. 
A repository of controllers may be necessary to implement several behavior 
scenarios of the object. 
Structural Model 
This level represents the structure of the object. Thus, the OM block represents the 
model of drill composed from two components: a model of the head as a vertically 
moving object, and a model of spindle's rotation. 
The model reflects the fact of relative independence of the components: axis 
position of the head has no influence on its rotation, however the rotation status of 
the motor influences the results of drilling. For this reason the ROT (rotation) output 
of the ROT A TION (Motor) block is connected to the ROTATES input of the model 
of the head. The blocks LINEAR (of type DRILL_MR_O) and ROTATION 
encapsulate the functionality of real component units of the object: they receive 
control inputs and generate the output parameters such as axis position of the head 
and turning speed of the spin of the motor. They also produce the values of Boolean 
and analog sensors, e.g. the position sensors UP and DOWN. 
Model of a single unit 
Next level of the component hierarchy is represented by single functional units of 
the equipment, such as vertically moving head and rotation motor of the drill. These 
components can be either further defined by means of dynamic models and models 
of the corresponding sensors, or can be substituted by direct interfaces to real 
devices. 
The model and the interface to the real process are combined within one function 
block DRILL_MR (Model + Real object). The event input SIMUL with qualifier SQ 
controls the way of the outputs assignment: if SQ=TRUE then the SWITCH relays 
outputs of the simulation model (SIMMOD). Otherwise, if SQ=FALSE, the outputs 
are taken from the block REALOBJ serving as an interface to the actual DRILL. 
Dynamic model 
The block MOD (of type LINEAR) encapsulates discrete implementation of the 
dynamic model of the vertically moving head driven by the motor M2. State of the 
model is re-evaluated at every event TIMER. These events are generated by the 
block PERIODIC with frequency defined by the time discretization parameter DT as 
long as the simulation qualifier SQ is TRUE. The model produces the numeric 
parameter POS (in the interval from 0 to 100) indicating vertical position of the 
head. Blocks SHIGH, SLOW of type SENS represent the discrete sensors, that 
indicate correspondingly up and the low positions of the head. The LOW and HIGH 
parameters of the SENS block represent the interval in which must fall the numeric 
input value VALin order to the logic output RES to be produced. 
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3. BUILDING SYSTEMS 

3.1 Integration 

We illustrate the component-based system design on the following prototype of an 
automated manufacturing cell, consisting of 3 units as shown in the Figure 4. 
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Figure 4. A Prototype of a Modular Manufacturing Cell. 

These are the boring machine (drill), carriage, which delivers workpieces to the 
home position of the drill, and the loader that loads/unloads the carriage in the 
loading position that is opposite to the home position. 

The appearance of the workpiece on the carriage is detected by an embedded 
sensor, so no particular communication between carriage and loader is necessary. 
Arrival of a new workpiece may serve as a signal to the carriage to approach the 
drill and request the processing service from it. 

This object can be built using constituents from different vendors, having diverse 
dynamic characteristics, sizes, layouts of sensors/actuators, and other differences. In 
our case-study we have considered 3 models of drills, and 2 models of loaders and 
carriages. All the differences between the equipment units are encapsulated within 
the component descriptions. 

Visual tools can facilitate the design process, reducing it to interconnection of 
components as shown in the following Figure 5. The resultant application is built 
automatically from the corresponding sub-applications contained in the given 
components. 

The application is appended by the HMI panel, that can be designed with the 
help of a visual editor and placed into repository is as a component. 

In our example, the panel has one button to control switching the simulation 
mode, and two LEDs indicating failures in drill and in the carriage. 

The panel is selected from the repository and added to the Design Screen, that 
implies the appearance of the corresponding component in the Application window. 

This description is enough to generate the application. In this stage the 
application is independent from the architecture of hardware, where it will be 
executed. 
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Figure 5. Application Design in a Visual Tool by Plug-And-Play of Components. 

3.2 Distribution 

Next step of system's implementation is the planning of the architecture. Some 
possible architectures can be considered with respect to our example. In the 
architecture, presented in Figure 6 the control is distributed over the constituent 
parts of the system, while the simulation is conducted on the PC-based station. 

Ethernet 
Engineering a nd 
Simulation 

Figure 6. Distributed Control System Architecture. 
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System configuration in IEC61499 consists of the description of the set of 
container devices and their resources, and of the mapping of the application's parts 
onto the containers. 

4. MODELING AND VALIDATION 

Testing of scalable, flexible automation (SFA) systems having distributed 
architecture of control is complicated by the following reasons: 

Asynchronous event-driven logic of execution, statically unpredictable 
combinations of concurrent processes in plant and dynamic scheduling of 
algorithms in controllers; 
Communication phenomena: use of different protocols, influence of delays, etc. 
Reconfiguration phenomena: the same application could be executed on 
different architectures; 

Dynamic models of controlled equipment are indispensable for simulation, 
verification, and for interpretation of the verification results by simulation. It is 
important to unify the modeling process by using a standard self-explanatory 
problem-oriented visual modeling language. 

[ 
C,=DESC&(nol PRESENT or rot WPOS) 

C,=DESC&PRESENT&WPOS&not ROTATES 
C.=DESC&PRESENT&ROTATES&V'v?OS 
C,=LlFT&(not PRESENT or not WPOS) 

C.=LIFT&PRESENT &WPOS&not ROTATES 
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Figure 7. Modular Dynamic State Chart Model of the Linearly Moving Part of the 
Drill. 

We apply for this purpose a customized form of State Charts (the same as used in 
UML). The customizations concern the set of state shapes, corresponding to 
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particular dynamic properties of parameters, and modular interface, compatible with 
interface of IEC 61499 function blocks. 

The modular interface is unified also with the interface of hybrid and discrete 
state modeling formalisms, such as: Condition! Event Automata [5] and Net 
ConditionlEvent Systems [6], that simplifies the transformation of state-chart 
models to these formalisms. The dynamic state chart is built from states (rectangular 
shapes) and state transitions (arcs) marked with Boolean conditions. 

In the chart in the Figure 7 there are two types of states: fixed position states 
UP _POS, MID_POS, DOWN_POS and dynamic states with linear change of 
parameter POS as POS=POSolatkdt, where the coefficient k is the speed of moving, 
dt - time increment. 

The model describes the following behavior. The head moves free in the upper 
part of the axis, no matter present the workpiece or not. When the middle position is 
reached and the control signal DESC remains ON, the head continues its moving 
downwards. Should the workpiece be in the home position, and the bore spins, then 
normal drilling goes on. If the drill does not rotate, then it just hits the blank 
workpiece and a failure occurs. If no workpiece is present, then the drill moves 
down idle, with the speed higher than that of drilling. The same applies to the 
moving upwards. Thus the presented model defines uncontrolled behavior of the 
drill (its vertically moving part). 
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Figure 8. Net ConditionlEvent Model of the Linearly Moving Part of the Drill. 

Note, that the presented model generates the numerical value POS and can be re­
used as a core of models for several types of drills with different number of logic 
position sensors. 

The State Chart model can be used to generate discrete state model in Net 
ConditionlEvent Systems as presented in Figure 8. The latter is required for 
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conducting the formal validation procedure using the tool VEDA, as it is described 
in [7]. 

The module modeling the drill is incorporated into the modularly built NCES 
model of the application, substituting the block DRILL_M in Figure 3. 

The tool VEDA inputs the applications, generates the NeES models for the 
remaining blocks (not explicitly presented in NCES) and verifies the compliance of 
the models behavior with the set of pre-given specifications of permitted/forbidden 
behavior. 
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