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Abstract Authentication protocols are designed to work correctly in the presence 
of an adversary that can prompt honest principals to engage in an un­
bounded number of concurrent executions of the protocol. This paper 
establishes a bound on the number of protocol executions that could be 
useful in attacks. The bound applies to a large class of protocols, which 
contains versions of some well-known authentication protocols, includ­
ing the Yahalom, Otway-Rees, and Needham-Schroeder-Lowe protocols. 

1. Introduction 
Many protocols are designed to work correctly in the presence of an adversary­

hereafter called a penetrator~that can prompt honest principals to engage in 
an unbounded number of concurrent executions of the protocol. This paper 
focuses on authentication (including key establishment). Authentication pro­
tocols should satisfy at least two kinds of correctness requirements: secrecy, 
which states that certain values are not obtained by the penetrator, and agree­
ment, which states, e.g., that a principal's conclusion about the identity of a 
principal with whom it is communicating is never incorrect. Authentication 
protocols are short and look deceptively simple, but numerous flawed or weak 
protocols have been published. This attests to the importance of rigorous ver­
ification. 

Allowing an unbounded number of concurrent protocol executions makes the 
number of reachable states unbounded, so automated verification using state­
space exploration is not directly applicable. State-space exploration is feasible 
when small upper bounds are imposed on the size of messages and the number 
of protocol executions. Therefore, reduction theorems are needed, which show 

*The author gratefully acknowledges the support of NSF under Grant CCR-9876058 
and the support of ONR under Grants N00014-99-1-0358 and N00014-0l-1-0109. This 
work was started while the author was at Indiana University in Bloomington. Email: 
stoller@cs.sunysb.edu 

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002



A Bound on Attacks onAuthentication Protocols 589 

that if a protocol is correct in a system with certain bounds on these parameters, 
then the protocol is correct in the unbounded system as well. 

Our reduction is formulated in the strand space model [13] but is relatively 
model-independent. A regular strand can be regarded as a thread that runs the 
program corresponding to one role (e.g., initiator or responder) of the protocol 
and then terminates; thus, a regular strand corresponds to one execution of 
one role. Our reduction imposes three significant restrictions on protocols. 

Shallow ciphertext restriction: the protocol does not use nested cipher-
texts. This is easily checked by static analysis of the program, so we call 
it a static restriction. (This restriction can be relaxed; see Section 5.) 

Bounded Support Restriction (BSR): in every history (i.e., every possi­
ble behavior) of the system, each regular strand depends on at most a 
given number of regular strands. Correct authentication protocols are 
designed to involve only a small number of participants and hence typi­
cally satisfy BSR. 

Revealed Genval Restriction (RGR): every genval revealed to the pene­
trator is revealed "directly", i.e., the penetrator needs to perform at most 
one decryption on an intercepted message to obtain each genval. 

The notion of dependence underlying BSR is a variant of Lamport's happened­
before relation [5], modified to treat nonces and session keys-collectively called 
generated values, or genvals for short-appropriately. For example, if a genval 
g generated on strand s1 appears in messages received by strand s2 but only in 
contexts in which it could be replaced with a value generated by the penetrator, 
then g's presence in those messages does not cause s2 to depend on s1• 

It seems difficult to develop static analyses to check BSR and RGR, so we 
call them dynamic restrictions and propose to check them during state-space 
exploration. Thus, we need reductions for them as well as for the correctness 
requirements. We prove: if a protocol satisfies the dynamic restrictions and 
correctness requirements when appropriate bounds are imposed on the number 
of regular strands in a history, then the protocol also satisfies the dynamic 
restrictions and correctness requirements without those bounds. 

2. Related Work 
Most existing techniques for automated verification of systems with un­

bounded numbers of processes, such as [3], are not applicable to authentication 
protocols, because they assume the set of values (equivalently, the set of lo­
cal states of each process) is independent of the number of processes, whereas 
authentication protocols generate fresh nonces and session keys, so the set of 
values grows as the number of processes (strands) increases. 

Roscoe and Broadfoot use data independence to bound the number of nonces 
that could be useful in attacks [10), assuming each honest principal participates 
in at most a given number of protocol executions at a time. Our reduction does 
not require such assumptions. 



590 

Lowe's reduction for authentication protocols (7] does not handle agreement 
requirements or known-key attacks and does not apply to the Otway-Rees [8], 
Yahalom [1], and Needham-Schroeder-Lowe (abbreviated NSL) [6] protocols, 
due to various restrictions. 

Our reduction handles secrecy and agreement requirements, allows known­
key attacks, and applies to some well-known protocols, including the Otway­
Rees, Yahalom, and NSL protocols, after the Otway-Rees and Yahalom proto­
cols have been modified slightly (in an obviously correctness-preserving way) 
to eliminate forwarding of ciphertexts, as in [7, 10]. 

Heather and Schneider's method [4] can efficiently (compared to state-space 
exploration) verify protocols for which a rank function exists. Currently, our 
method, unlike theirs, can verify secrecy properties for protocols that use tem­
porary secrets, while their method, unlike ours, accommodates forwarded ci­
phertexts. In the absence of completeness results, it is unclear whether requir­
ing BSR or requiring existence of a rank function is more restrictive. 

The reduction in [12] is more general in some ways than this one, but it 
does not handle session keys, so it does not apply to most authentication pro­
tocols, especially if session keys are used to encrypt protocol messages, as in 
the Needham-Schroeder shared-key (1), Yahalom, and Kerberos protocols. 

3. Model of Authentication Protocols 
We adopt the strand space model [13], with minor modifications. We in­

troduce simple languages for authentication protocols and correctness require­
ments, similar to the languages in [2] and [14], respectively. 

3.1. Term, Directed Term, and Trace 
The set of primitive terms is the union of the following five disjoint sets. (1) 

Text is a set of arbitrary non-cryptographic values, with a distinguished subset 
Name containing names of principals. (2) Nonce is a set of nonces. (3) Keysess 
is a set of session keys. (4) Key 811m = {key(x,y) I x,y E Name} is a set of 
long-term symmetric keys; informally, key(x,y) is intended to be shared by x 
andy. (5) Keyasym = {pubkey(x) I x E Name} U {pvtkey(x) I x E Name} is a 
set of long-term asymmetric keys; pubkey(x) and pvtkey(x) represent x's public 
and private keys, respectively. 

The set Term of terms is defined inductively as follows, where Key = 
Keysym U Keyasym U Keysess· (1) All primitive terms are terms. (2) If t and t' 
are terms and k E Key, then encr(t, k) (encryption oft with k, usually written 
{ t}k) and pair(t, t') (pairing oft and t', usually written t·t') are terms. 

The function inv E Key -t Key maps each key to its inverse: decrypting 
{t}k with inv(k) yields t. For a symmetric key k, inv(k) = k. We usually write 
inv(k) as k- 1 • We assume perfect encryption. 

Elements of NonceUKey 8088 are called generated values, or genvals for short. 
Let genvals(t) be the set of genvals that occur in a term t. For S <; Term, let 
genvals(S) = UtES genvals(t). 
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A ciphertext is a term whose outermost operator is encr. A term t' occurs 
in the clear in a term t if there is an occurrence of t' in t that is not in the 
scope of encr. 

Let lSI denote the size of a set S. Let dom(f) denote the domain of a 
function f. A sequence is a function from a finite prefix of the natural numbers 
to elements. Let len(u) denote the length of a sequence CT. ((a, b, .. . )) denotes 
a sequence u with u(O) = a, a(l) = b, and so on. 

A directed term is +t or -t, where t is a term. Positive and negative terms 
represent sending and receiving messages, respectively. Let ±Term denote the 
set of directed terms. For a directed term t, the absolute value of t, denoted 
abs(t), is t without its direction; for example, abs(- A) = A. For S <; ±Term, 
let abs(S) = {abs(t) It E S}. We often refer to directed terms as terms. 

A trace is a finite sequence of directed terms. Let (±Term)* denote the set 
of traces. 

3.2. Strand Space 
A strand space is a function tr E dom(tr) -t (±Term)*, where dom(tr) is 

an arbitrary set whose elements are called strands (think of them as "strand 
identifiers"). 

A node of tr is a pair (s,i) with s E dom(tr) and 0 ~ i < len(tr(s)). Let 
Ntr denote the set of nodes of tr. We say that node (s,i) is on strands. Let 
nodestr(s) denote the set of nodes on strands in tr. Let strand((s,i)) = s, 
index((s,i)) = i, and termtr((s,i)) = tr(s)(i). For S <; Ntr. let strand(S) = 
{strand(n) I n E S} and termtr(S) = {termtr(n) I n E S}. If termtr(n) is 
positive (or negative), we say that n is positive (or negative). 

The local dependence relation on nodes is defined by: n1 !.:4 n2 iff strand( n1) = 
strand(n2) and index(n2) = index(n1) + 1. 

A term t originates from a node (s, i) in tr iff (s, i) is positive, tis a subterm 
of termtr( (s, i) ), and t is not a subterm of termtr( (s, 0) ), termtr( (s, 1) ), ... , or 
termtr((s,i -1)). 

A term t uniquely originates from a node n in tr iff t originates from n in tr 
and not from any other node in tr. This is the strand space way of expressing 
freshness of genvals. 

For symbols subscripted by a strand space, we elide the subscript when the 
strand space is evident from context. 

3.3. Role and Protocol 
Let Param be a set of parameters. The set of parameterized terms is defined 

like Term except with parameters as an additional base case. 
A role r is a sequence of directed parameterized terms, with a type-i.e., 

a set of allowed values-associated with each parameter, and with a subset 
of the parameters designated as uniquely-originated. Informally, parameters 
that represent genvals generated by r (and hence that first occur in r in a 
positive term) are so designated, to indicate that values of those parameters 
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must be uniquely-originated. In examples, uniquely-originated parameters are 
underlined in the parameter list. Roles must also satisfy some well-formedness 
conditions, detailed in (11], notably that types may not contain ciphertexts. 
Let r.x denote parameter x of role r. For example, the roles for the initiator 
and responder in the NSL protocol (6] are 

InitNsL(i :Name\ {P}, r: Name, 
ni: Nonce, nr: Nonce)= 

(( +{ ni-i}pubkey(r)' 
- { ni ·nr ·r }pubkey(i)' 
+{nr}pubkey(rJ}} 

RespNsL(i: Name, r: Name\ {P}, 
ni: Nonce, nr: Nonce)= 

(( -{ ni ·i}vubkey(r)> 
+{ ni·nr·r }pubkey(i), 
- { nr }vubkey( r) }} · 

In both roles, parameters i and r hold the names of the initiator and responder, 
respectively. We exclude P from the type oflnitNSL·i and RespNSL·r, because 
we interpret Pas the name of a dishonest principal (the penetrator), and we in­
terpret InitNs£.i and RespNSL·r as the name of the principal executing the role, 
and all actions of the penetrator are represented by traces for penetrator roles, 
described in Section 3.4. lnitNSL·ni and RespNSL·nr are uniquely-originated, 
because they represent nonces generated by their respective roles. 

A genval parameter is a parameter with type Keysess or Nonce. 
A trace for role r is a prefix of a trace obtained by substituting for each 

parameter x of r a term in the type of x. 
A role rand a trace a for r uniquely determine a mapping, denoted args(r, a), 

from the parameters of r that appear in r(O), r(1), ... , r(len(a) - 1) to Term. 
For example, dom(args(InitNsL, aa)) = {i, r, ni} and args(InitNsL, aa)(i) =B. 

A protocol is a set of roles. For example, the NSL protocol is IINsL = 
{InitNsL, RespNsd· 

3.4. Penetrator 
The penetrator model is parameterized by a set pik ~ Term, called the 

penetrator's initial knowledge. Typically, we assume there is a single dishon­
est principal, named P, and take pik 2 pika, where pika = {pvtkey(P)} U 
{pubkey(x) I x E Name} U {key(P,x), key(x,P) I x E Name\ {P}}. 

Known-key attacks are modeled by including in pik the absolute values of 
terms appearing in some executions of the protocol and the genvals generated 
during those executions. 

Ilp(pik), the set of penetrator roles for initial knowledge pik, contains 

Msg(x: Text U Nonce U KeYsess U pik) = ((+x}} 
Pair(x1 : Term,x2: Term)= ((-x1, -x2, +x1·x2}} 
Enc(k: Key,x: Term)= ((-k, -x, +{x}k)) 
Sep;(x1 : Term,x2 : Term)= ((-x1·x2, +xi}} fori E {1,2} 
Dec(k: Key,x: Term)= ((-k-1, -{x}k, +x)} 

A trace a for a role r is compromised if it is running the protocol with the 
penetrator as a partner, specifically, if args(r,u)(x) = P for some parameter x 
of r with type Name. 
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3.5. System and History 
A system is a pair (TI,pik). For example, MNsL = (TINsL,pikNs£), where 

pik NSL is a superset of pik0 that also contains terms and genvals from one 
execution of IINSL· 

A history of a system (TI,pik) is a tuple h = (tr, ~'role), where tr is a 
strand space,~ is a binary relation on Ntr (read n1 ~ n2 as "n1 is the send­
ing of a message received at n2"), and role is a function from strands to roles 
(i.e., role E dom(tr)--+ (TIUilp(pik))) such that: (1) for each negative node n2 , 

there exists a unique positive node n1 such that n1 ~9 n2 and abs(term(nl)) = 
abs(term(n2 )); (2) the happened-before [5] (also called causal dependence) re-

lation ~h, defined to be the reflexive and transitive closure of ~9 U ~' is 
well-founded and acyclic; (3) for all s E dom(tr), tr(s) is a trace for role(s); 
(4) for all s E dom(tr), for all x E dom(args(role(s), tr(s))), if parameter xis 
uniquely-originated and tr(s) is uncompromised, then args(role(s), tr(s))(x) is 
not in genvals(pik) and uniquely originates from (s,i), where i is the index of 
the first term in r that contains x. 

If role(s) = r, then sis called a strand for r. If role(s) E II, then sis called a 
regular strand; otherwise, sis called a penetrator strand. Nodes on regular and 
penetrator strands are called regular nodes and penetrator nodes, respectively. 

A system satisfies a predicate ¢> on histories iff all of its histories satisfy ¢>. 
We sometimes use a history instead of a strand space as a subscript. For 

example, if h = (tr, ~'role), we sometimes write Nh instead of Ntr· 
The set of predecessors of a node n in a history h is predsh(n) = {n1 E 

Nh I n1 ~h n 1\ n1 f. n}. 
A set S of nodes is backwards-closed with respect to a binary relation R iff, 

for all nodes n1 and n2, if n2 E Sand n1 R n2, then n1 E S. Given a history 
h = (tr, ~,role) of a system M, a setS of nodes that is backward-closed with 
respect to ~h can be regarded as a history of M, denoted nodesToHisttt(S), 
in a natural way. 

3.6. Derivability 
A term t is derivable (by the penetrator) from a set S of nodes of a history 

h of a system M = (II,pik), denoted S r-tt t, if the penetrator can compute 
t from termh(S) U pik, by performing encryption, decryption, pairing, and 
separation (i.e., projection) operations, and by generating genvals that are not 
in uniqOrigRqrdtt(S), where uniqOrigRqrdtt(S) is the set of genvals g that 
originate from a node in S and are required to be uniquely originated in h (by 
item (4) in the definition of history). Similar derivability relations or functions 
have been considered by several researchers, e.g., [9]. The new twist here is in 
the treatment of genvals. 
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3. 7. Correctness Requirements 
Genval Secrecy. Informally, genval secrecy says: the values of speci­
fied genval parameters are not revealed to the penetrator. Formally, a genval 
secrecy requirement for a system (TI, pik) is specified by a set of uniquely­
originated genval parameters of TI. A history h = (tr, ":!!,role) of a system 
M satisfies a genval secrecy requirement G iff, for every r.x E G, for every 
uncompromised regular strand 8 for r, if x E dom(arg8(role(8), tr(8))), then 
Ntr ~~~ args(role(8), tr(s))(x). For example, MNsL satisfies the genval se­
crecy requirement {InitNs£.ni, InitNSL·nr, RespNSL·ni, RespNSL·nr }. 

Agreement. Informally, agreement says: if some uncompromised strand 
executes a certain role to a certain point with certain arguments, then some 
strand must have executed a certain role to a certain point with certain argu­
ments. An agreement requirement for a protocol n has the form "(rt, lent, XSt) 
precedes (r2, len2, XS2)", where Tt E fi, r2 E fi, and XSt and XS2 are Sequences 
of parameters of rt and r2, respectively, such that len(xs1) = len(xs2) and 
for j E {1,2}, every parameter in xs; occurs in r;(O),r;(1), ... ,r;(len3 -1). 
A history ( tr, ":!/, role) of a system (TI, pik) satisfies that agreement require­
ment iff, if tr contains an uncompromised strand 82 such that role(82 ) = r2 
and len(tr(s2)) ~ len2 , then tr contains a strand 8t such that role(8t) = rt 
and len(tr(st)) ~ lent and the sequence of arguments of s2 corresponding 
to parameters xs2 equals the sequence of arguments of Bt corresponding to 
parameters XSt· For example, MNsL satisfies the agreement requirement 
(RespNSL• 1, ((i,r,ni,nr))) precedes (InitNsL, 1, ((i,r,ni,nr))). 

4. Restrictions 
Hereafter, we consider only systems (TI, pik) that satisfy the following static 

restrictions. 

Shallow Ciphertext Restriction. In every term in every role in TI 
and in every term in pik, encr does not occur in the scope of encr. 

Unsent Long-Term Keys Restriction. In every parameterized term 
in every role of TI and in every term in pik \ (Keysym U Keyasym), the operators 
key, pubkey, and pvtkey occur only in the second argument of encr. This implies 
that long-term keys not in pik are not sent in messages. 

4.1. Support 
Informally, a set S' of nodes supports a set S of nodes if S' contains all of 

the nodes in S and all of the regular nodes on which nodes in S depend. Let 
N~eg denote the set of regular nodes in history h of system M. For a genval 
g that uniquely originates in a history h, let originh(g) denote the node from 
which g originates in h. 
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A set S' of nodes is a support for a set S of nodes in a history h of a system 
Mif 

Sul. S ~ S' ~ Nh, and S' is backwards-closed with respect to ~. 
Su2. Every received term is derivable from preceding terms, i.e., for all neg­

ative nodes n inS', predsh(n) n S' n.Af!.eg f-~ termh(n). 

Su3. ForgE genvals(termh(S'))n(uniqOrigRqrd~(Nh)\uniqOrigRqrd~(S')), 
g occurs in the clear in termh(originh(g)). (Su3 is needed for Lemma 2.) 

If S' is a support for S, we say that S' supports S. For a strands, if S' supports 
nodes(s), we say that S' supports s. An algorithm for computing supports is 
in [11]. 

To illustrate the treatment of unique origination, consider the following his­
tory of a generic server-based authentication protocol that reveals at least one 
genval that originates from the initiator role; the Yahalom and Otway-Rees pro­
tocols are specific examples of this kind. Suppose SJ, SR, and ss are initiator, 
responder, and server strands, respectively, that interact without interference 
from the penetrator. Let n be a nonce that uniquely originates on SJ. The 
penetrator then behaves as an initiator, interacting with a responder strand sR 
and a server strand s$, except that the penetrator uses n instead of a fresh 
nonce. A support for sR or s$ need not contain nodes on s1 . In that sense, sR 
and s$ do not depend on SJ, even though the chain of messages that conveys 
n means that there is causal dependence between those nodes in the classical 
sense of Lamport [5]. Informally, that classical dependence can be ignored here 
because the penetrator could generate a nonce n' and replace n with n' in the 
terms of nodes on sR and s$. The careful treatment of unique origination in 
the definition of derivability allows such inessential classical dependencies to be 
ignored. If they were not ignored, few interesting protocols would satisfy BSR, 
defined in Section 4.2. The next lemma says that a support can be transformed 
into a history by adding only penetrator nodes. 

Given a strand space tr, a strand s E dom(tr), and a set S of nodes of tr 

that is backwards-closed with respect to ~. S contains nodes on a prefix of 
tr(s); let prefixtr(s, S) denote that prefix. 

Lemma 1 If S' is a support for Sin a history h = (tr, ~9 , role) of a system 

M = (TI, pik), then there exists a history h' = ( tr', ":!/, role') of M such that 

('<Is E strand(S'): s E dom(tr') A tr'(s) = prefixtr(s,S') A role'(s) = role(s)) 
A (Vs E dom(tr') \ strand(S'): role'(s) E llp(pik)) 

Proof: h' is constructed by combining nodes in S with histories that witness 
the derivability of terms, as required by Su2. Details are in [ll]. I 

Lemma 2 Supports are compositional, i.e., if Sb and Sf support So and S1, 

respectively, in a history h of a system M, then Sb U Sf supports So U S1 in 
history h of M. 



596 

System Strand count f for BSR(f) DWR Total strands 
/(lnit) /(Resp) /(Srvr) Init Resp Srvr 

NSL 1 1 none 2 3 3 none 
Yahalom 1 2 1 2 3 6 3 
Otway-Rees 1 1 1 2 3 3 3 

Figure 1. Results for some well-known authentication protocols. DWR is defined 
in Section 5. The right part of the table gives the total number of strands for each 
role that need to be considered in a history to verify correctness requirements and 
dynamic restrictions ( cf. Section 8). 

Proof: The proof is straightforward. Details are in [11]. I 

4.2. Bounded Support Restriction 
A strand count for a protocol IT is a function from IT to the natural numbers. 

A set S of nodes has strand count f iff, for each role r, S contains nodes from 
exactly /(r) strands for r. If .Nh has strand count /,then we say that history 
h has strand count f. We define a partial ordering -jsc on strand counts for a 
protocol: -jsc is the pointwise extension of the usual ordering on numbers. 

A history h satisfies the bounded support restriction for strand count f, ab­
breviated BSR(f), iff for each regular strand 8 in h, there exists a support for 
8 in h with strand count at most f. 

Figure 1 lists some systems and, for each system, a strand count f for which 
the system satisfies BSR(f). By Theorem 2 in Section 6, these results can be 
verified automatically through state-space exploration of histories with strand 
counts bounded by the values in the right part of the table. Our method is 
not currently implemented, so these results were proven by hand, which is not 
difficult. The proof for the NSL protocol appears in [11]; the other proofs 
are similar. Although we do not have formal guidelines for choosing a strand 
count f for verifying a given system, in practice, it appears that all correct and 
un-contrived authentication protocols satisfy BSR(/2). 

4.3. Revealed Genval Restriction 
A node n directly reveals a term t in a history h of a system M iff n is a 

positive regular node and { n} f--~ t. A history h of a system M satisfies the re­
vealed genval restriction (RGR) if, for every genval g E uniqOrigRqrd~ (Ntr ), 
if the penetrator learns g (i.e., .Nh r-f! g), then h contains a node that di­
rectly reveals g. RGR prevents genvals from being revealed to the penetrator 
indirectly, e.g., by encrypting one genval with another and then revealing the 
latter genval. RGR helps us obtain a static bound on the dependence width 
(see Section 5). The NSL, Yahalom, and Otway-Rees protocols satisfy RGR. 
By Theorem 2 in Section 6, this can be verified automatically through state-
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space exploration of histories with the strand counts given in the right part of 
Figure 1. Currently. we proved these results by hand. 

5. Dependence Width 
Let r be a role of a system M, and let i be the index of a negative parame­

terized term in r. An instance of (r, i) in a history his a node (s, i) on a strand 
s for r. A revealing set for a term tat a node nina history h of a system M 
is a set R of positive regular nodes of tr such that R n preds,.(n) f-~ t. 

The dependence width of (r, i) in M is the maximum, over all histories h 
of M and all instances n of (r, i) in h, of IR \ nodes,.(strand(n))l, where R is 
a minimum-size revealing set for term,.(n) at n in h. For example, suppose h 
contains an instance (s,i) of (r,i) with term,.((s,i)) = g1·{g2h· Suppose g1 
and g2 were sent in the clear at positive regular nodes n1 and n2 not on s, 
respectively, and k E pik, and no other regular nodes send or receive g1 and 
g2 • Then n1 and n2 together reveal t, and no single node reveals t, so the 
dependence width of (r, i) in h is at least 2. If we suppose instead that n1 is on 
s, then we would not count n1 in the dependence width. Note that a support 
for { n} would (in general) include nodes that n 1 and n2 causally depend on; a 
revealing set for n does not. Dependence width is used in the proof of Theorem 
2 (in Section 6) to bound the number of strands involved in a violation of BSR. 

Nodes on strand(n) are not counted in the dependence width, because de­
pendence width is designed to bound the size of the index set of the rightmost 
union in equation (3), and those nodes appear in support~(so) and hence are 
excluded from that index set. 

The dependence width of a system M is the maximum, over all roles r of M 
and all negative parameterized terms r(i) in r, of DW((r, i), M). 

The proof of Theorem 2 relies on an upper bound on the dependence width 
of a system. It is convenient to base this bound on the syntactic structure 
of the protocol. This is difficult if a protocol sends terms of the forms {g hn 
{kt}k2 , {k2}k3 , ••• , {k;-th., k;; in this case, a minimum-size revealing set for 
g might contain i + 1 nodes. RGR prohibits such behavior. 

The RGR dependence width of (r,i) in M, denoted DWR((r,i),M), is de­
fined like DW((r,i),M), except ignoring histories that do not satisfy RGR. 
The RGR dependence width of M, denoted DWR(M), is defined analogously. 

Let genvalPar(r, i) be the set of genval parameters of role r that occur in the 
term r( i). Let genva!ParClr(r, i) = { x E genva!Par(r, i) I x occurs in the clear 
in r(i) }. Let genva!ParClrBefore(r, i) be the set of genval parameters of r that 
occur in the clear in some r(j) with j < i. 

Theorem 1 Let M = (II,pik) be a system satisfying the shallow ciphertext 
and unsent long-term keys restrictions. Let r E II. If r(i) is negative and 
contains at most one occurrence of encr, then 

DWR((r, i), M) :5 max(lgenva!Par(r, i) \ genvalParClrBefore(r, i)l, 
lgenvalParClr(r, i) \ genva!ParClrBefore(r, i)l + 1) 

{1} 
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Proof: Consider how the penetrator learns each ciphertext and genval in 
term( (8, i) ), where 8 is a strand for r, and sum the number of nodes involved in 
revealing each of them. Let t = term( (8, i) ). The shallow ciphertext restriction 
ensures that each ciphertext is directly revealed by some node. RGR implies 
that each genval is directly revealed by some node. The first argument of max 
in ( 1) corresponds to the case in which the penetrator learns all of the genvals in 
t and then performs an encryption to compute the ciphertext (if any) in t; the 
second argument of max corresponds to the case in which the penetrator learns 
the genvals that occur in the clear in t and the ciphertext in t. A genval that 
occurs in the clear in a term before (8, i) on 8 does not contribute to the RGR 
dependence width oft, because nodes on 8 are not counted in the dependence 
width. This justifies subtracting genvalParC!rBefore(r, i) in (1). I 

Theorem 1 yields the bounds on RGR dependence width in Figure 1. A 
simple correctness-preserving transformation was applied to some of the pro­
tocols to satisfy the "at most one ciphertext" hypothesis; specifically, each 
parameterized term of the form -{t}k·{t'}k, was replaced with the sequence 
-{t}k, -{t'}k,. 

Generalizing Theorem 1 to apply to terms containing multiple shallow ci­
phertexts is not difficult. Generalizing it to eliminate the shallow ciphertext 
restriction is also possible, thereby completely eliminating the need for this 
restriction. This requires extending the proof of Theorem 1 to consider values 
that are revealed by sequences of decryptions applied to nested ciphertexts. 

6. Reduction for Dynamic Restrictions 
For a strand count f and a system M, define a strand count {3(!, M) by 

{3(!, M)(r) =max( {DWR(M) + 1, 3} )f(r). (2) 

Theorem 2 Let M = (IT, pik) be a system satisfying the shallow ciphertext 
and unsent long-term keys restrictions. Let f be a strand count for IT. M 
satisfies BSR(f) and RGR iff all histories of M with strand count {3(!, M) do. 

Proof: (A more detailed proof is in [11].) The forward direction(=>) of the 
"iff" follows immediately from the definitions. For the reverse direction ( <= ), 
we prove the contrapositive, i.e., we suppose there exists a history h of M that 
violates BSR(f) or RGR, and we construct a history of M with strand count 
at most {3(!, M) that violates the same property. 

BSR(f) and RGR are safety properties satisfied by histories with zero nodes, 
so there exists a ~h-minimal node n0 such that (1) nodesToHist~(predsh(no)) 
satisfies BSR(f) and RGR, and (2) nodesToHist~ (predsh (no) U {no}) violates 
BSR(f) or RGR. 
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Let h0 = nodesToHist;;t (predsh (no)). Let so = strand(no) and io = index( no). 
Note that n0 f/. .Nho· For a history h' of M that satisfies BSR(f), for a regular 
strand s of h', let support~ ( s) denote a support for s in h' that has strand 
count at most f and contains no penetrator nodes. Consider cases based on 
the sign of no. 

Suppose n0 is negative. no cannot cause a violation of RGR, so no causes 
a violation of BSR(f). Suppose i0 > 0 (the proof for io = 0 is similar). no 
directly depends on (so, i0 - 1) and on a revealing set R for term(no) at no. 
Let 

sl ={no} u supportt'(so) u u supportt'(strand(n)). (3) 
nER\nodesh0 (so) 

h0 satisfies RGR, so Theorem 1 implies IR \ nodesh0 (so)l ~ DWa(M). ho 
satisfies BSR(f), so each support in (3) has strand count at most f. n0 is on 
s0 , so it does not increase the strand count of S1• Thus, S1 has strand count at 
most (3(f,M). It is easy to show that S1 supports {no} in h. Lemma 1 implies 
that S1 can be transformed into a history h1 of M by adding penetrator nodes. 
It is easy to show that h1 violates BSR(f). 

Suppose no is positive. n0 cannot cause a violation of BSR(f), so no causes 
a violation of RGR in h. Let g0 be a genval that is "indirectly" revealed jointly 
by no and other nodes, causing a violation of RGR. Now perform a series of 
case analyses based on the decryption keys that the penetrator uses to obtain 
g0 • In each case, one can identify a set S1 of nodes such that S1 has strand 
count at most (3(!, M) and S1 f-~ go and originh(go) E S1• Using Lemmas 
1 and 2, one can show that S1 can be transformed into a history h1 of M by 
adding penetrator nodes. Furthermore, h1 violates RGR. I 

7. Reduction for Correctness Requirements 
Given a strand count f for a protocol 11, define a strand count dbl(f) for 11 

by: dbl(f)(r) = 2f(r). 

Theorem 3 Let M = (Il,pik) be a system satisfying the shallow ciphertext 
and unsent long-term keys restrictions. Let f be a strand count for IT. Let ¢> 
be a genval secrecy or agreement requirement. Suppose all histories of M with 
strand count (3(!, M) satisfy BSR(f) and RGR. M satisfies ¢> iff all histories 
of M with strand count dbl(f) do. 

Proof: The proof is in [11]. It is similar in strategy to the proof of Theorem 
2, but simpler. I 

8. Bounds for Sample Protocols 
The right part of Figure 1 contains the maximum of the bounds obtained 

from Theorems 2 and 3, i.e., max((3(f, M), dbl(f)). 
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