
A BOUND ON ATTACKS ON
AUTHENTICATION PROTOCOLS

Scott D. Stoller*
Computer Science Dept., SUNY at Stony Brook, Stony Brook, NY 11794-4400 USA

Abstract Authentication protocols are designed to work correctly in the presence
of an adversary that can prompt honest principals to engage in an un­
bounded number of concurrent executions of the protocol. This paper
establishes a bound on the number of protocol executions that could be
useful in attacks. The bound applies to a large class of protocols, which
contains versions of some well-known authentication protocols, includ­
ing the Yahalom, Otway-Rees, and Needham-Schroeder-Lowe protocols.

1. Introduction
Many protocols are designed to work correctly in the presence of an adversary­

hereafter called a penetrator~that can prompt honest principals to engage in
an unbounded number of concurrent executions of the protocol. This paper
focuses on authentication (including key establishment). Authentication pro­
tocols should satisfy at least two kinds of correctness requirements: secrecy,
which states that certain values are not obtained by the penetrator, and agree­
ment, which states, e.g., that a principal's conclusion about the identity of a
principal with whom it is communicating is never incorrect. Authentication
protocols are short and look deceptively simple, but numerous flawed or weak
protocols have been published. This attests to the importance of rigorous ver­
ification.

Allowing an unbounded number of concurrent protocol executions makes the
number of reachable states unbounded, so automated verification using state­
space exploration is not directly applicable. State-space exploration is feasible
when small upper bounds are imposed on the size of messages and the number
of protocol executions. Therefore, reduction theorems are needed, which show

*The author gratefully acknowledges the support of NSF under Grant CCR-9876058
and the support of ONR under Grants N00014-99-1-0358 and N00014-0l-1-0109. This
work was started while the author was at Indiana University in Bloomington. Email:
stoller@cs.sunysb.edu

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

A Bound on Attacks onAuthentication Protocols 589

that if a protocol is correct in a system with certain bounds on these parameters,
then the protocol is correct in the unbounded system as well.

Our reduction is formulated in the strand space model [13] but is relatively
model-independent. A regular strand can be regarded as a thread that runs the
program corresponding to one role (e.g., initiator or responder) of the protocol
and then terminates; thus, a regular strand corresponds to one execution of
one role. Our reduction imposes three significant restrictions on protocols.

Shallow ciphertext restriction: the protocol does not use nested cipher-
texts. This is easily checked by static analysis of the program, so we call
it a static restriction. (This restriction can be relaxed; see Section 5.)

Bounded Support Restriction (BSR): in every history (i.e., every possi­
ble behavior) of the system, each regular strand depends on at most a
given number of regular strands. Correct authentication protocols are
designed to involve only a small number of participants and hence typi­
cally satisfy BSR.

Revealed Genval Restriction (RGR): every genval revealed to the pene­
trator is revealed "directly", i.e., the penetrator needs to perform at most
one decryption on an intercepted message to obtain each genval.

The notion of dependence underlying BSR is a variant of Lamport's happened­
before relation [5], modified to treat nonces and session keys-collectively called
generated values, or genvals for short-appropriately. For example, if a genval
g generated on strand s1 appears in messages received by strand s2 but only in
contexts in which it could be replaced with a value generated by the penetrator,
then g's presence in those messages does not cause s2 to depend on s1•

It seems difficult to develop static analyses to check BSR and RGR, so we
call them dynamic restrictions and propose to check them during state-space
exploration. Thus, we need reductions for them as well as for the correctness
requirements. We prove: if a protocol satisfies the dynamic restrictions and
correctness requirements when appropriate bounds are imposed on the number
of regular strands in a history, then the protocol also satisfies the dynamic
restrictions and correctness requirements without those bounds.

2. Related Work
Most existing techniques for automated verification of systems with un­

bounded numbers of processes, such as [3], are not applicable to authentication
protocols, because they assume the set of values (equivalently, the set of lo­
cal states of each process) is independent of the number of processes, whereas
authentication protocols generate fresh nonces and session keys, so the set of
values grows as the number of processes (strands) increases.

Roscoe and Broadfoot use data independence to bound the number of nonces
that could be useful in attacks [10), assuming each honest principal participates
in at most a given number of protocol executions at a time. Our reduction does
not require such assumptions.

590

Lowe's reduction for authentication protocols (7] does not handle agreement
requirements or known-key attacks and does not apply to the Otway-Rees [8],
Yahalom [1], and Needham-Schroeder-Lowe (abbreviated NSL) [6] protocols,
due to various restrictions.

Our reduction handles secrecy and agreement requirements, allows known­
key attacks, and applies to some well-known protocols, including the Otway­
Rees, Yahalom, and NSL protocols, after the Otway-Rees and Yahalom proto­
cols have been modified slightly (in an obviously correctness-preserving way)
to eliminate forwarding of ciphertexts, as in [7, 10].

Heather and Schneider's method [4] can efficiently (compared to state-space
exploration) verify protocols for which a rank function exists. Currently, our
method, unlike theirs, can verify secrecy properties for protocols that use tem­
porary secrets, while their method, unlike ours, accommodates forwarded ci­
phertexts. In the absence of completeness results, it is unclear whether requir­
ing BSR or requiring existence of a rank function is more restrictive.

The reduction in [12] is more general in some ways than this one, but it
does not handle session keys, so it does not apply to most authentication pro­
tocols, especially if session keys are used to encrypt protocol messages, as in
the Needham-Schroeder shared-key (1), Yahalom, and Kerberos protocols.

3. Model of Authentication Protocols
We adopt the strand space model [13], with minor modifications. We in­

troduce simple languages for authentication protocols and correctness require­
ments, similar to the languages in [2] and [14], respectively.

3.1. Term, Directed Term, and Trace
The set of primitive terms is the union of the following five disjoint sets. (1)

Text is a set of arbitrary non-cryptographic values, with a distinguished subset
Name containing names of principals. (2) Nonce is a set of nonces. (3) Keysess
is a set of session keys. (4) Key 811m = {key(x,y) I x,y E Name} is a set of
long-term symmetric keys; informally, key(x,y) is intended to be shared by x
andy. (5) Keyasym = {pubkey(x) I x E Name} U {pvtkey(x) I x E Name} is a
set of long-term asymmetric keys; pubkey(x) and pvtkey(x) represent x's public
and private keys, respectively.

The set Term of terms is defined inductively as follows, where Key =
Keysym U Keyasym U Keysess· (1) All primitive terms are terms. (2) If t and t'
are terms and k E Key, then encr(t, k) (encryption oft with k, usually written
{ t}k) and pair(t, t') (pairing oft and t', usually written t·t') are terms.

The function inv E Key -t Key maps each key to its inverse: decrypting
{t}k with inv(k) yields t. For a symmetric key k, inv(k) = k. We usually write
inv(k) as k- 1 • We assume perfect encryption.

Elements of NonceUKey 8088 are called generated values, or genvals for short.
Let genvals(t) be the set of genvals that occur in a term t. For S <; Term, let
genvals(S) = UtES genvals(t).

A Bound on Attacks onAuthentication Protocols 591

A ciphertext is a term whose outermost operator is encr. A term t' occurs
in the clear in a term t if there is an occurrence of t' in t that is not in the
scope of encr.

Let lSI denote the size of a set S. Let dom(f) denote the domain of a
function f. A sequence is a function from a finite prefix of the natural numbers
to elements. Let len(u) denote the length of a sequence CT. ((a, b, .. .)) denotes
a sequence u with u(O) = a, a(l) = b, and so on.

A directed term is +t or -t, where t is a term. Positive and negative terms
represent sending and receiving messages, respectively. Let ±Term denote the
set of directed terms. For a directed term t, the absolute value of t, denoted
abs(t), is t without its direction; for example, abs(- A) = A. For S <; ±Term,
let abs(S) = {abs(t) It E S}. We often refer to directed terms as terms.

A trace is a finite sequence of directed terms. Let (±Term)* denote the set
of traces.

3.2. Strand Space
A strand space is a function tr E dom(tr) -t (±Term)*, where dom(tr) is

an arbitrary set whose elements are called strands (think of them as "strand
identifiers").

A node of tr is a pair (s,i) with s E dom(tr) and 0 ~ i < len(tr(s)). Let
Ntr denote the set of nodes of tr. We say that node (s,i) is on strands. Let
nodestr(s) denote the set of nodes on strands in tr. Let strand((s,i)) = s,
index((s,i)) = i, and termtr((s,i)) = tr(s)(i). For S <; Ntr. let strand(S) =
{strand(n) I n E S} and termtr(S) = {termtr(n) I n E S}. If termtr(n) is
positive (or negative), we say that n is positive (or negative).

The local dependence relation on nodes is defined by: n1 !.:4 n2 iff strand(n1) =
strand(n2) and index(n2) = index(n1) + 1.

A term t originates from a node (s, i) in tr iff (s, i) is positive, tis a subterm
of termtr((s, i)), and t is not a subterm of termtr((s, 0)), termtr((s, 1)), ... , or
termtr((s,i -1)).

A term t uniquely originates from a node n in tr iff t originates from n in tr
and not from any other node in tr. This is the strand space way of expressing
freshness of genvals.

For symbols subscripted by a strand space, we elide the subscript when the
strand space is evident from context.

3.3. Role and Protocol
Let Param be a set of parameters. The set of parameterized terms is defined

like Term except with parameters as an additional base case.
A role r is a sequence of directed parameterized terms, with a type-i.e.,

a set of allowed values-associated with each parameter, and with a subset
of the parameters designated as uniquely-originated. Informally, parameters
that represent genvals generated by r (and hence that first occur in r in a
positive term) are so designated, to indicate that values of those parameters

592

must be uniquely-originated. In examples, uniquely-originated parameters are
underlined in the parameter list. Roles must also satisfy some well-formedness
conditions, detailed in (11], notably that types may not contain ciphertexts.
Let r.x denote parameter x of role r. For example, the roles for the initiator
and responder in the NSL protocol (6] are

InitNsL(i :Name\ {P}, r: Name,
ni: Nonce, nr: Nonce)=

((+{ ni-i}pubkey(r)'
- { ni ·nr ·r }pubkey(i)'
+{nr}pubkey(rJ}}

RespNsL(i: Name, r: Name\ {P},
ni: Nonce, nr: Nonce)=

((-{ ni ·i}vubkey(r)>
+{ ni·nr·r }pubkey(i),
- { nr }vubkey(r) }} ·

In both roles, parameters i and r hold the names of the initiator and responder,
respectively. We exclude P from the type oflnitNSL·i and RespNSL·r, because
we interpret Pas the name of a dishonest principal (the penetrator), and we in­
terpret InitNs£.i and RespNSL·r as the name of the principal executing the role,
and all actions of the penetrator are represented by traces for penetrator roles,
described in Section 3.4. lnitNSL·ni and RespNSL·nr are uniquely-originated,
because they represent nonces generated by their respective roles.

A genval parameter is a parameter with type Keysess or Nonce.
A trace for role r is a prefix of a trace obtained by substituting for each

parameter x of r a term in the type of x.
A role rand a trace a for r uniquely determine a mapping, denoted args(r, a),

from the parameters of r that appear in r(O), r(1), ... , r(len(a) - 1) to Term.
For example, dom(args(InitNsL, aa)) = {i, r, ni} and args(InitNsL, aa)(i) =B.

A protocol is a set of roles. For example, the NSL protocol is IINsL =
{InitNsL, RespNsd·

3.4. Penetrator
The penetrator model is parameterized by a set pik ~ Term, called the

penetrator's initial knowledge. Typically, we assume there is a single dishon­
est principal, named P, and take pik 2 pika, where pika = {pvtkey(P)} U
{pubkey(x) I x E Name} U {key(P,x), key(x,P) I x E Name\ {P}}.

Known-key attacks are modeled by including in pik the absolute values of
terms appearing in some executions of the protocol and the genvals generated
during those executions.

Ilp(pik), the set of penetrator roles for initial knowledge pik, contains

Msg(x: Text U Nonce U KeYsess U pik) = ((+x}}
Pair(x1 : Term,x2: Term)= ((-x1, -x2, +x1·x2}}
Enc(k: Key,x: Term)= ((-k, -x, +{x}k))
Sep;(x1 : Term,x2 : Term)= ((-x1·x2, +xi}} fori E {1,2}
Dec(k: Key,x: Term)= ((-k-1, -{x}k, +x)}

A trace a for a role r is compromised if it is running the protocol with the
penetrator as a partner, specifically, if args(r,u)(x) = P for some parameter x
of r with type Name.

A Bound on Attacks onAuthentication Protocols 593

3.5. System and History
A system is a pair (TI,pik). For example, MNsL = (TINsL,pikNs£), where

pik NSL is a superset of pik0 that also contains terms and genvals from one
execution of IINSL·

A history of a system (TI,pik) is a tuple h = (tr, ~'role), where tr is a
strand space,~ is a binary relation on Ntr (read n1 ~ n2 as "n1 is the send­
ing of a message received at n2"), and role is a function from strands to roles
(i.e., role E dom(tr)--+ (TIUilp(pik))) such that: (1) for each negative node n2 ,

there exists a unique positive node n1 such that n1 ~9 n2 and abs(term(nl)) =
abs(term(n2)); (2) the happened-before [5] (also called causal dependence) re-

lation ~h, defined to be the reflexive and transitive closure of ~9 U ~' is
well-founded and acyclic; (3) for all s E dom(tr), tr(s) is a trace for role(s);
(4) for all s E dom(tr), for all x E dom(args(role(s), tr(s))), if parameter xis
uniquely-originated and tr(s) is uncompromised, then args(role(s), tr(s))(x) is
not in genvals(pik) and uniquely originates from (s,i), where i is the index of
the first term in r that contains x.

If role(s) = r, then sis called a strand for r. If role(s) E II, then sis called a
regular strand; otherwise, sis called a penetrator strand. Nodes on regular and
penetrator strands are called regular nodes and penetrator nodes, respectively.

A system satisfies a predicate ¢> on histories iff all of its histories satisfy ¢>.
We sometimes use a history instead of a strand space as a subscript. For

example, if h = (tr, ~'role), we sometimes write Nh instead of Ntr·
The set of predecessors of a node n in a history h is predsh(n) = {n1 E

Nh I n1 ~h n 1\ n1 f. n}.
A set S of nodes is backwards-closed with respect to a binary relation R iff,

for all nodes n1 and n2, if n2 E Sand n1 R n2, then n1 E S. Given a history
h = (tr, ~,role) of a system M, a setS of nodes that is backward-closed with
respect to ~h can be regarded as a history of M, denoted nodesToHisttt(S),
in a natural way.

3.6. Derivability
A term t is derivable (by the penetrator) from a set S of nodes of a history

h of a system M = (II,pik), denoted S r-tt t, if the penetrator can compute
t from termh(S) U pik, by performing encryption, decryption, pairing, and
separation (i.e., projection) operations, and by generating genvals that are not
in uniqOrigRqrdtt(S), where uniqOrigRqrdtt(S) is the set of genvals g that
originate from a node in S and are required to be uniquely originated in h (by
item (4) in the definition of history). Similar derivability relations or functions
have been considered by several researchers, e.g., [9]. The new twist here is in
the treatment of genvals.

594

3. 7. Correctness Requirements
Genval Secrecy. Informally, genval secrecy says: the values of speci­
fied genval parameters are not revealed to the penetrator. Formally, a genval
secrecy requirement for a system (TI, pik) is specified by a set of uniquely­
originated genval parameters of TI. A history h = (tr, ":!!,role) of a system
M satisfies a genval secrecy requirement G iff, for every r.x E G, for every
uncompromised regular strand 8 for r, if x E dom(arg8(role(8), tr(8))), then
Ntr ~~~ args(role(8), tr(s))(x). For example, MNsL satisfies the genval se­
crecy requirement {InitNs£.ni, InitNSL·nr, RespNSL·ni, RespNSL·nr }.

Agreement. Informally, agreement says: if some uncompromised strand
executes a certain role to a certain point with certain arguments, then some
strand must have executed a certain role to a certain point with certain argu­
ments. An agreement requirement for a protocol n has the form "(rt, lent, XSt)
precedes (r2, len2, XS2)", where Tt E fi, r2 E fi, and XSt and XS2 are Sequences
of parameters of rt and r2, respectively, such that len(xs1) = len(xs2) and
for j E {1,2}, every parameter in xs; occurs in r;(O),r;(1), ... ,r;(len3 -1).
A history (tr, ":!/, role) of a system (TI, pik) satisfies that agreement require­
ment iff, if tr contains an uncompromised strand 82 such that role(82) = r2
and len(tr(s2)) ~ len2 , then tr contains a strand 8t such that role(8t) = rt
and len(tr(st)) ~ lent and the sequence of arguments of s2 corresponding
to parameters xs2 equals the sequence of arguments of Bt corresponding to
parameters XSt· For example, MNsL satisfies the agreement requirement
(RespNSL• 1, ((i,r,ni,nr))) precedes (InitNsL, 1, ((i,r,ni,nr))).

4. Restrictions
Hereafter, we consider only systems (TI, pik) that satisfy the following static

restrictions.

Shallow Ciphertext Restriction. In every term in every role in TI
and in every term in pik, encr does not occur in the scope of encr.

Unsent Long-Term Keys Restriction. In every parameterized term
in every role of TI and in every term in pik \ (Keysym U Keyasym), the operators
key, pubkey, and pvtkey occur only in the second argument of encr. This implies
that long-term keys not in pik are not sent in messages.

4.1. Support
Informally, a set S' of nodes supports a set S of nodes if S' contains all of

the nodes in S and all of the regular nodes on which nodes in S depend. Let
N~eg denote the set of regular nodes in history h of system M. For a genval
g that uniquely originates in a history h, let originh(g) denote the node from
which g originates in h.

A Bound on Attacks onAuthentication Protocols 595

A set S' of nodes is a support for a set S of nodes in a history h of a system
Mif

Sul. S ~ S' ~ Nh, and S' is backwards-closed with respect to ~.
Su2. Every received term is derivable from preceding terms, i.e., for all neg­

ative nodes n inS', predsh(n) n S' n.Af!.eg f-~ termh(n).

Su3. ForgE genvals(termh(S'))n(uniqOrigRqrd~(Nh)\uniqOrigRqrd~(S')),
g occurs in the clear in termh(originh(g)). (Su3 is needed for Lemma 2.)

If S' is a support for S, we say that S' supports S. For a strands, if S' supports
nodes(s), we say that S' supports s. An algorithm for computing supports is
in [11].

To illustrate the treatment of unique origination, consider the following his­
tory of a generic server-based authentication protocol that reveals at least one
genval that originates from the initiator role; the Yahalom and Otway-Rees pro­
tocols are specific examples of this kind. Suppose SJ, SR, and ss are initiator,
responder, and server strands, respectively, that interact without interference
from the penetrator. Let n be a nonce that uniquely originates on SJ. The
penetrator then behaves as an initiator, interacting with a responder strand sR
and a server strand s$, except that the penetrator uses n instead of a fresh
nonce. A support for sR or s$ need not contain nodes on s1 . In that sense, sR
and s$ do not depend on SJ, even though the chain of messages that conveys
n means that there is causal dependence between those nodes in the classical
sense of Lamport [5]. Informally, that classical dependence can be ignored here
because the penetrator could generate a nonce n' and replace n with n' in the
terms of nodes on sR and s$. The careful treatment of unique origination in
the definition of derivability allows such inessential classical dependencies to be
ignored. If they were not ignored, few interesting protocols would satisfy BSR,
defined in Section 4.2. The next lemma says that a support can be transformed
into a history by adding only penetrator nodes.

Given a strand space tr, a strand s E dom(tr), and a set S of nodes of tr

that is backwards-closed with respect to ~. S contains nodes on a prefix of
tr(s); let prefixtr(s, S) denote that prefix.

Lemma 1 If S' is a support for Sin a history h = (tr, ~9 , role) of a system

M = (TI, pik), then there exists a history h' = (tr', ":!/, role') of M such that

('<Is E strand(S'): s E dom(tr') A tr'(s) = prefixtr(s,S') A role'(s) = role(s))
A (Vs E dom(tr') \ strand(S'): role'(s) E llp(pik))

Proof: h' is constructed by combining nodes in S with histories that witness
the derivability of terms, as required by Su2. Details are in [ll]. I

Lemma 2 Supports are compositional, i.e., if Sb and Sf support So and S1,

respectively, in a history h of a system M, then Sb U Sf supports So U S1 in
history h of M.

596

System Strand count f for BSR(f) DWR Total strands
/(lnit) /(Resp) /(Srvr) Init Resp Srvr

NSL 1 1 none 2 3 3 none
Yahalom 1 2 1 2 3 6 3
Otway-Rees 1 1 1 2 3 3 3

Figure 1. Results for some well-known authentication protocols. DWR is defined
in Section 5. The right part of the table gives the total number of strands for each
role that need to be considered in a history to verify correctness requirements and
dynamic restrictions (cf. Section 8).

Proof: The proof is straightforward. Details are in [11]. I

4.2. Bounded Support Restriction
A strand count for a protocol IT is a function from IT to the natural numbers.

A set S of nodes has strand count f iff, for each role r, S contains nodes from
exactly /(r) strands for r. If .Nh has strand count /,then we say that history
h has strand count f. We define a partial ordering -jsc on strand counts for a
protocol: -jsc is the pointwise extension of the usual ordering on numbers.

A history h satisfies the bounded support restriction for strand count f, ab­
breviated BSR(f), iff for each regular strand 8 in h, there exists a support for
8 in h with strand count at most f.

Figure 1 lists some systems and, for each system, a strand count f for which
the system satisfies BSR(f). By Theorem 2 in Section 6, these results can be
verified automatically through state-space exploration of histories with strand
counts bounded by the values in the right part of the table. Our method is
not currently implemented, so these results were proven by hand, which is not
difficult. The proof for the NSL protocol appears in [11]; the other proofs
are similar. Although we do not have formal guidelines for choosing a strand
count f for verifying a given system, in practice, it appears that all correct and
un-contrived authentication protocols satisfy BSR(/2).

4.3. Revealed Genval Restriction
A node n directly reveals a term t in a history h of a system M iff n is a

positive regular node and { n} f--~ t. A history h of a system M satisfies the re­
vealed genval restriction (RGR) if, for every genval g E uniqOrigRqrd~ (Ntr),
if the penetrator learns g (i.e., .Nh r-f! g), then h contains a node that di­
rectly reveals g. RGR prevents genvals from being revealed to the penetrator
indirectly, e.g., by encrypting one genval with another and then revealing the
latter genval. RGR helps us obtain a static bound on the dependence width
(see Section 5). The NSL, Yahalom, and Otway-Rees protocols satisfy RGR.
By Theorem 2 in Section 6, this can be verified automatically through state-

A Bound on Attacks onAuthentication Protocols 597

space exploration of histories with the strand counts given in the right part of
Figure 1. Currently. we proved these results by hand.

5. Dependence Width
Let r be a role of a system M, and let i be the index of a negative parame­

terized term in r. An instance of (r, i) in a history his a node (s, i) on a strand
s for r. A revealing set for a term tat a node nina history h of a system M
is a set R of positive regular nodes of tr such that R n preds,.(n) f-~ t.

The dependence width of (r, i) in M is the maximum, over all histories h
of M and all instances n of (r, i) in h, of IR \ nodes,.(strand(n))l, where R is
a minimum-size revealing set for term,.(n) at n in h. For example, suppose h
contains an instance (s,i) of (r,i) with term,.((s,i)) = g1·{g2h· Suppose g1
and g2 were sent in the clear at positive regular nodes n1 and n2 not on s,
respectively, and k E pik, and no other regular nodes send or receive g1 and
g2 • Then n1 and n2 together reveal t, and no single node reveals t, so the
dependence width of (r, i) in h is at least 2. If we suppose instead that n1 is on
s, then we would not count n1 in the dependence width. Note that a support
for { n} would (in general) include nodes that n 1 and n2 causally depend on; a
revealing set for n does not. Dependence width is used in the proof of Theorem
2 (in Section 6) to bound the number of strands involved in a violation of BSR.

Nodes on strand(n) are not counted in the dependence width, because de­
pendence width is designed to bound the size of the index set of the rightmost
union in equation (3), and those nodes appear in support~(so) and hence are
excluded from that index set.

The dependence width of a system M is the maximum, over all roles r of M
and all negative parameterized terms r(i) in r, of DW((r, i), M).

The proof of Theorem 2 relies on an upper bound on the dependence width
of a system. It is convenient to base this bound on the syntactic structure
of the protocol. This is difficult if a protocol sends terms of the forms {g hn
{kt}k2 , {k2}k3 , ••• , {k;-th., k;; in this case, a minimum-size revealing set for
g might contain i + 1 nodes. RGR prohibits such behavior.

The RGR dependence width of (r,i) in M, denoted DWR((r,i),M), is de­
fined like DW((r,i),M), except ignoring histories that do not satisfy RGR.
The RGR dependence width of M, denoted DWR(M), is defined analogously.

Let genvalPar(r, i) be the set of genval parameters of role r that occur in the
term r(i). Let genva!ParClr(r, i) = { x E genva!Par(r, i) I x occurs in the clear
in r(i) }. Let genva!ParClrBefore(r, i) be the set of genval parameters of r that
occur in the clear in some r(j) with j < i.

Theorem 1 Let M = (II,pik) be a system satisfying the shallow ciphertext
and unsent long-term keys restrictions. Let r E II. If r(i) is negative and
contains at most one occurrence of encr, then

DWR((r, i), M) :5 max(lgenva!Par(r, i) \ genvalParClrBefore(r, i)l,
lgenvalParClr(r, i) \ genva!ParClrBefore(r, i)l + 1)

{1}

598

Proof: Consider how the penetrator learns each ciphertext and genval in
term((8, i)), where 8 is a strand for r, and sum the number of nodes involved in
revealing each of them. Let t = term((8, i)). The shallow ciphertext restriction
ensures that each ciphertext is directly revealed by some node. RGR implies
that each genval is directly revealed by some node. The first argument of max
in (1) corresponds to the case in which the penetrator learns all of the genvals in
t and then performs an encryption to compute the ciphertext (if any) in t; the
second argument of max corresponds to the case in which the penetrator learns
the genvals that occur in the clear in t and the ciphertext in t. A genval that
occurs in the clear in a term before (8, i) on 8 does not contribute to the RGR
dependence width oft, because nodes on 8 are not counted in the dependence
width. This justifies subtracting genvalParC!rBefore(r, i) in (1). I

Theorem 1 yields the bounds on RGR dependence width in Figure 1. A
simple correctness-preserving transformation was applied to some of the pro­
tocols to satisfy the "at most one ciphertext" hypothesis; specifically, each
parameterized term of the form -{t}k·{t'}k, was replaced with the sequence
-{t}k, -{t'}k,.

Generalizing Theorem 1 to apply to terms containing multiple shallow ci­
phertexts is not difficult. Generalizing it to eliminate the shallow ciphertext
restriction is also possible, thereby completely eliminating the need for this
restriction. This requires extending the proof of Theorem 1 to consider values
that are revealed by sequences of decryptions applied to nested ciphertexts.

6. Reduction for Dynamic Restrictions
For a strand count f and a system M, define a strand count {3(!, M) by

{3(!, M)(r) =max({DWR(M) + 1, 3})f(r). (2)

Theorem 2 Let M = (IT, pik) be a system satisfying the shallow ciphertext
and unsent long-term keys restrictions. Let f be a strand count for IT. M
satisfies BSR(f) and RGR iff all histories of M with strand count {3(!, M) do.

Proof: (A more detailed proof is in [11].) The forward direction(=>) of the
"iff" follows immediately from the definitions. For the reverse direction (<=),
we prove the contrapositive, i.e., we suppose there exists a history h of M that
violates BSR(f) or RGR, and we construct a history of M with strand count
at most {3(!, M) that violates the same property.

BSR(f) and RGR are safety properties satisfied by histories with zero nodes,
so there exists a ~h-minimal node n0 such that (1) nodesToHist~(predsh(no))
satisfies BSR(f) and RGR, and (2) nodesToHist~ (predsh (no) U {no}) violates
BSR(f) or RGR.

A Bound on Attacks onA uthentication Protocols 599

Let h0 = nodesToHist;;t (predsh (no)). Let so = strand(no) and io = index(no).
Note that n0 f/. .Nho· For a history h' of M that satisfies BSR(f), for a regular
strand s of h', let support~ (s) denote a support for s in h' that has strand
count at most f and contains no penetrator nodes. Consider cases based on
the sign of no.

Suppose n0 is negative. no cannot cause a violation of RGR, so no causes
a violation of BSR(f). Suppose i0 > 0 (the proof for io = 0 is similar). no
directly depends on (so, i0 - 1) and on a revealing set R for term(no) at no.
Let

sl ={no} u supportt'(so) u u supportt'(strand(n)). (3)
nER\nodesh0 (so)

h0 satisfies RGR, so Theorem 1 implies IR \ nodesh0 (so)l ~ DWa(M). ho
satisfies BSR(f), so each support in (3) has strand count at most f. n0 is on
s0 , so it does not increase the strand count of S1• Thus, S1 has strand count at
most (3(f,M). It is easy to show that S1 supports {no} in h. Lemma 1 implies
that S1 can be transformed into a history h1 of M by adding penetrator nodes.
It is easy to show that h1 violates BSR(f).

Suppose no is positive. n0 cannot cause a violation of BSR(f), so no causes
a violation of RGR in h. Let g0 be a genval that is "indirectly" revealed jointly
by no and other nodes, causing a violation of RGR. Now perform a series of
case analyses based on the decryption keys that the penetrator uses to obtain
g0 • In each case, one can identify a set S1 of nodes such that S1 has strand
count at most (3(!, M) and S1 f-~ go and originh(go) E S1• Using Lemmas
1 and 2, one can show that S1 can be transformed into a history h1 of M by
adding penetrator nodes. Furthermore, h1 violates RGR. I

7. Reduction for Correctness Requirements
Given a strand count f for a protocol 11, define a strand count dbl(f) for 11

by: dbl(f)(r) = 2f(r).

Theorem 3 Let M = (Il,pik) be a system satisfying the shallow ciphertext
and unsent long-term keys restrictions. Let f be a strand count for IT. Let ¢>
be a genval secrecy or agreement requirement. Suppose all histories of M with
strand count (3(!, M) satisfy BSR(f) and RGR. M satisfies ¢> iff all histories
of M with strand count dbl(f) do.

Proof: The proof is in [11]. It is similar in strategy to the proof of Theorem
2, but simpler. I

8. Bounds for Sample Protocols
The right part of Figure 1 contains the maximum of the bounds obtained

from Theorems 2 and 3, i.e., max((3(f, M), dbl(f)).

600

References
[1] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication.

ACM 'lransactions on Computer Systems, 8(1):18~36, February 1990.

(2] Iliano Cervesato, Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Sce­
drov. Relating strands and multiset rewriting for security protocol analysis. In
Paul Syverson, editor, Proc. 13th IEEE Computer Security Foundations Work­
shop, pages 35~51. IEEE Press, 2000.

(3] Edmund M. Clarke, Orna Grumberg, and Somesh Jha. Verifying parameter­
ized networks using abstractions and regular languages. In Proc. Sixth Int'l.
Conference on Concurrency Theory (CONCUR), 1995.

[4] James Heather and Steve Schneider. Towards automatic verification of authen­
tication protocols on an unbounded network. In Proc. 13th IEEE Computer
Security Foundations Workshop (CSFW), July 2000.

[5] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558~564, 1978.

(6] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proc. Workshop on Tools and Algorithms for The Construction
and Analysis of Systems (TACAS), volume 1055 of Lecture Notes in Computer
Science, pages 147~166. Springer, 1996.

[7] Gavin Lowe. Towards a completeness result for model checking of security pro­
tocols. The Journal of Computer Security, 7(2/3):89~146, 1999.

[8] Dave Otway and Owen Rees. Efficient and timely mutual authentication. Op­
erating Systems Review, 21(1):8~10, January 1987.

[9] L. C. Paulson. The inductive approach to verifying cryptographic protocols. The
Journal of Computer Security, 6(1/2):85~128, 1996.

[10] A. W. Roscoe and P. J. Broadfoot. Proving security protocols with model check­
ers by data independence techniques. The Journal of Computer Security, 7(2/3),
1999.

[11] Scott D. Stoller. A bound on attacks on authentication protocols. Technical
Report 526, Computer Science Dept., Indiana University, July 1999. Revised
April 2001. Also available at www.cs.sunysb.edu;-stoller/TR526.html .

[12] Scott D. Stoller. A bound on attacks on payment protocols. In Proc. 16th
Annual IEEE Symposium on Logic in Computer Science (LICS}, pages 61~70.
IEEE Press, June 2001.

(13] F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: proving security protocols correct. The Journal of Computer Security,
7:191~230, 1999.

[14] Thomas Woo and SimonS. Lam. A semantic model for authentication protocols.
In Proc. 14th IEEE Symposium on Research in Security and Privacy, pages 178~
194. IEEE Press, 1993.

