
RANDOMIZED DINING PHILOSOPHERS
WITHOUT FAIRNESS ASSUMPTION

Marie Duflot, Laurent Fribourg and Claudine Picaronny
LSV, CNRS & ENS de Cachan,
61 av. du Pres. Wilson, 94235 Cachan cedex, France
{ d uflot, fribourg,picaro}@ lsv .ens-each an. fr

Abstract We consider Lehmann-Rabin's randomized solution to the well-known
problem of the dining philosophers. Up to now, such an analysis has
always required a "fairness" assumption on the scheduler: if a philoso­
pher is continuously hungry then he must eventually be scheduled. In
contrast here, we modify the algorithm in order to get rid of the fairness
assumption. We claim that the spirit of the original algorithm is pre­
served. We prove that, for any (possibly unfair) scheduler, the modified
algorithm converges: every computation reaches with probability 1 a
configuration where some philosopher eats. Furthermore, we are now
able to evaluate the expected time of convergence as a number of tran­
sitions. We show that, for some "malicious" scheduler, this expected
time is at least exponential in the number N of philosophers.

1. Introduction
Recently, due to the rising risk of traffic congestion, there has been an in­

creasing interest in providing differentiated Internet services, departing from
the traditional notion of fairness for bandwidth allocations [1, 6). This moti­
vates reconsidering the need for the fairness assumption, which is classical in
resource-allocation algorithms (see [9) chap 11). Here we consider Lehmann­
Rabin's randomized solution to a special case of resource-allocation problem:
the dining philosophers. N philosophers, P1 , · • • , PN, are seated around a ta­
ble, and variously think or try to eat by using some shared forks. The problem
is to find a distributed protocol guaranteeing that some philosopher will even­
tually eat. A philosopher is only able to execute a step provided he is selected
by a general mechanism called scheduler. When he is selected by the scheduler,
he executes exactly one action (and nothing is done by the others). Let C be
the set of configurations, called here "legitimate", where some philosopher eats.
We show here that the algorithm reaches C within a finite time with probability
1. In the following, we will call this property convergence. (This is sometimes
called progress in the literature, see e.g. [9).) Up to now, such a proof has
always required a "fairness" assumption on the scheduler: if a philosopher is
continuously hungry (i.e., trying to eat) then he must eventually be scheduled.

R. Baeza-Yates et al. (eds.), Foundations of Information Technology in the Era of Network
 and Mobile Computing © Springer Science+Business Media New York 2002

170

Fairness guarantees that there exist rounds, intervals in which each philoso­
pher has been scheduled at least once. It is shown in [10, 9, 13, 11, 14) that
within a constant number of rounds, the probability of reaching £ is greater
than 0. It follows that the algorithm converges towards a configuration of £
with probability 1.

In contrast here, we consider arbitrary schedulers, without any fairness as­
sumption (so we do not use the notion of rounds). We modify the original
Lehmann-Rabin's algorithm by removing self-looping actions. We show that
the new algorithm still converges towards £ with probability 1. This is done
by constructing a measure .:l over configurations that decreases with positive
probability at each computation step (that does not reach£). We thus pro­
pose a solution to the resource allocation problem for dining philosophers under
arbitrary scheduler. We also show that the expected time of convergence, in
terms of individual actions, is at least exponential in N, for some "malicious"
scheduler.

The plan of the paper is as follows. After some preliminaries on Lehmann­
Rabin's original algorithm (Section 2), we explain how we modify the algorithm
(Section 3). We then prove the convergence of the modified algorithm for an
arbitrary scheduler without fairness assumption (Section 4). In Section 5, we
show that, for some malicious scheduler, the expected time of convergence is
at least exponential inN. We conclude in Section 6.

2. Randomized Distributed Algorithms
2.1. Randomized Uniform Ring Systems

A randomized uniform ring system is a triple (N, -t, Q) where N is the
number of processes in the system, -t is a state transition algorithm, and Q
is the alphabet, i.e. a finite set of process states. The N processes P1, ... , PN
form a ring: there is an edge between two consecutive processes, which means
that Pi can observe the states qi-1 and qi+l of Pi-1 and Pi+l respectively. Let
Q be the state set of Pi. The system is uniform in the sense that -t and Q
are common to all processes. A configuration is an N-tuple of process states
(or letters); if the current state of process ~ is qi E Q, then the configuration
of the system is x = q1 q2 · · · qN. The state transition algorithm -t is given as
a set n of rules, consisting of deterministic or probabilistic rewrite rules. A
deterministic rule is here of one the following forms:

- q -t q'
- qr -t q'r,
- rq -t rq'

where q, q', r denote states of Q. A probabilistic rule is here simply of the form:
q -t q;_ with probability 1/2

or q~ with probability 1/2.
where q,q;_,q2 denote states of Q.The letter q of the left-hand side is the old
letter of the rule. The letter q' (with possible subscripts) of the right-hand side
is the new letter of the rule. For readability, the old and new letters will often

Randomized Dining Philosophers Without Fairness Assumption 171

be written in bold font within rules. A rewrite rule R of left-hand side q is
applicable at position i of a configuration x if the i-th letter of x is q. Likewise,
a rewrite rule R of left-hand side qr (resp. rq) is applicable at position i if the
i-th letter of x is q and the (i + 1}-th (resp. (i- 1)-th) letter is r.

We say that process P; is enabled if at least one rewrite rule is applicable to
the i-th letter of x. Let £ (x) be the set of indices of the enabled processes of x.

Given x and an enabled position i of x, a tronsition leads from x to the
configuration x' obtained from x by changing the i-th letter of x equal to the
old letter of some applicable rule, say R, into the new letter. Such a transition
is written x -4 x'. Notation x -4 x' means x -4 x' for some rule R E n.

R n R
A (centrol) scheduler is a mechanism that selects one enabled process at each

step. The distributed system corresponds to repeated application of transition
rules according to the philosopher chosen by the scheduler at each step. Given
a scheduler A, we are interested in proving the following convergence property
(see [7, 2)): No matter which initial configuration x0 one starts from, the prob­
ability that -t under A reaches a legitimate configuration in a finite number
of transitions is 1. This will be written: Pr(xo ~ • .C). (See [4] for a formal n
definition.)

2.2. Lehmann-Rabin's algorithm
We present Lehmann-Rabin's algorithm [8] along the lines of [11]. Since we

are only interested in the time before some philosopher eats, we disregard what
follows this event (after state E has been reached).

The state set of each philosopher is Q = {T, H, tv, W, S, S, D, D, E}.
The letter T represents thinking, H that a philosopher is hungry, tv (resp. W)
that a philosopher waits in order to attempt to pick up the left (resp. right)
fork next time he is scheduled, S (resp. S) that he is holding only the left
(resp. right) fork, D (resp. D) that he will put down the left (resp. right)
fork next time he is scheduled and E that he eats. The details relating to the
shared forks are omitted. Thus, for example, if Pi is in state S or Pi-1 is in
state S, it means the variable representing the shared fork (between P; and
P;_1) has been set to a value 'taken'. In this modeling, not all configurations
are possible. This is because a fork can be taken by at most one process. More
generally, we say that a configuration is admissible iff it does not contain any
substring of the form SS, SD, IJ*s or IJD. Henceforth, we will always
implicitly focus on admissible configurations. The set n of transition rules is:

QO: T -t T
Q1: T-tH

RO: H -t W with probability 1/2
or W with probability 1/2.

R1: ..,Sf) W -t ...,SJJ S
R2: SJJ W -t SJJ W
R3: W ...,SJj -t S ..,SJj

R4: W Sn -t W Sn
R5: S ...,SJj -t E ...,SJj
R6: S Sn -t B Sn
R7: ...,SJJ S -t ..,SJ) E
R8: SJ) s -t SJ) D
R9: B -t H
RiO: D -t H

172

where ..,S]j (resp. -.Sn) denotes any letter of Q distinct from ~ and D
(resp. +s and lJ), and sD (resp. Sn) denotes ~ or D (resp. +s or lJ).

The rules describe the behaviour of a selected philosopher as follows: initially
he thinks "repeatedly" (QO); he becomes hungry (Q1); he decides randomly
which fork to pick up first (RO); next he persists with his decision (R2 or R4)
until he finally picks it up when available (R1 or R3), only putting it down later
if he finds that his other fork is already held by his neighbour (R6 followed by
R9, or R8 followed by R10); if he finds that his other fork is not held, he takes
it and eats (R5 or R7).

This behaviour is depicted on figure 1 (drawn from [13)) .

.. ······· .. QO

{>)·····~~····

R9
Figure 1. Illustration of the original algorithm. The dashed state and transitions
are the ones removed in our variant.

3. Removal of stuttering rules
Let us observe that rule QO (resp. R2, R4) is "stuttering" in the sense that the

old and new letters of the rule coincide. When a selected philosopher is thinking
(resp. waiting for picking up a first fork held by a neighbour), a transition that
does not change the configuration, may occur. This is depicted by a self-loop
on state T (resp. W, W) in figure 1. We modify Lehmann-Rabin's algorithm
by removing stuttering rules QO, R2 and R4:

- without QO, when a philosopher in state T is selected by the scheduler, his
state always becomes H via Q1. States T and H then play the same role and
will be merged together in the following;

- without R2 (resp. R4), when a philosopher waits for a first fork that is
held by a neighbour, i.e., is in state W (resp. W) and his left (resp. right)
neighbour in state sD (resp. ~), he is no longer enabled: no rule applies to
him. In such a situation, the philosopher cannot be selected by the scheduler.
Note that this differs from Lehmann-Rabin's original algorithm where every
process can always be selected.

Randomized Dining Philosophers Without Fairness Assumption 173

The rewrite system n is transformed into R-' = n- {QO, Ql, R2, R4}. The
behaviour of n' is depicted on figure 1 without the dashed node and transitions.
The new state set Q' is Q- {T}. Accordingly, the new legitimate set C' is
Q'*EQ'*.

Discussion.
In Lehmann-Rabin's algorithm, a non-eating philosopher either thinks (state
T) or tries to eat (states {H, W, S, D}). In our version of the algorithm, as the
state T has been dropped, this philosopher can only try to eat. This feature
may be seen as a limitation. Actually, since we have no fairness assumption, a
philosopher can be indefinitely ignored by the scheduler, thus behaving in state
Has he used to do originally in state T (i.e., not trying to pick up a fork). We
thus claim that our modified algorithm is similar in spirit to the original one.

The original convergence property of Lehmann-Rabin's algorithm can be
stated:

for any fairschedulerAandeveryx E Q*{H, W,S,D}Q*, Pr(x ~*.C)= 1. n
Surprisingly, as shown in section 4, for our modified version R' of R, the
convergence property holds with no fairness assumption on the scheduler, i.e.:

Theorem 1 For any arbitrary scheduler A and every x E {H, W,S,D}*,
Pr(x ~ • .c') = 1. n•

4. Convergence of 'R/

4.1. Scheme of the proof
We are going to prove Theorem 1 by using the following property proved in

[4) (cf Theorem 1 of [2) and Theorem 5 of [3]):

Theorem 2 Suppose that there exists a measure ~ and an ordering « such
that:

Vx rt .C' ViE £(x) 3x' (x ~ x' A (~(x') « ~(x) V x' E £'))
n•

A Then, for any (central) scheduler A: Vx Pr(x --+* .c') = 1.
n•

More precisely, we will find an appropriate "rewriting strategy" for proba­
bilistic rule RO (i.e., a fixed choice of the new letter W or W, depending on the
context of the old letter H in x, when rewriting x via RO), and a measure ~
such that

- the application of RO under this strategy makes ~ decrease,
- the application of any other rule makes ~ decrease or leads to .C'.
Actually, a configuration x will be given with two lists 11' and 1jJ such that

for every choice of the scheduler, there exists a configuration x' and two lists of
indices 11'1, 1/J' constructed from 11' and 1jJ such that x -+ x' and ~(x', 11'1, 1/J') «
~(x, 11', 1/J) (see Sections 4.2 and 4.3 for definitions of 11' and 1/J).

In the following, the configurations are implicitly non-legitimate (i.e, belong
to (Q'- {E})*). Symbol W denotes a letter of {W, W}. Likewise, S (resp.

174

D) denotes a letter of{~, 1} (resp. {D, D}). Let Q = {H, W, ~. D} and
Q = {H, W, "'§, J1}. (Note that YJ n (J = {H}.)

In order to define a, we exploit the fact that any non-legitimate configuration
can be decomposed into:

- "bonds", i.e. strings of two letters in QCl.
- "anti-bonds", that are, roughly speaking, strings of two letters in ClQ.
- letters belonging to neither a bond nor an anti-bond. (These letters are

in {W,S,D}*, since every H belongs to a bond or an anti-bond; see Prop. 4
below.)

4.2. Bonds
A bond in a configuration x is a substring of x made of two consecutive

letters in Q (j. The index of a bond W 7J is the position of its first letter W.
Note that, due to letter H, two bonds may overlap: for example, in expression
W H"'t there are two overlapping bonds W H and H"t. In the following, given
a configuration x, we focus on a sequence 1r of indices of disjoint bonds of x,
i.e., such that i + 2 :5 j, for all consecutive indices i and j of 1r. We suppose
also that 1r is maximal, i.e., such that between two consecutive indices i,j e 1r

there is no bond of index k with i + 2 :5 k :::; j - 2. A maximal sequence 1r of
indices of disjoint bonds of x is called a bond list of x. Note that such a list is
not unique. Bund(1r) is defined as the set ofletters of x at position l such that
l = i or l = i + 1 for some i e 1r.

Example: For the configuration Ww~WHD, there are two possible bond
lists 1r1 = {1,4} and 1r2 = {1,5}. Bonds are Ww and WH for 'lr}, and Ww
and HD for 1r2.

Henceforth, every non-legitimate configuration x will be provided with a
bond list 1r. The bond list 1r0 of the initial configuration x0 is arbitrary. Given
a configuration x, a bond list 1r of x, and a rewriting of x into x' via some rule
of 'R', the bond list 1r1 associated with x' is constructed from 1r as follows:

-If the rewriting changes a He Bund(1r) via probabilistic rule RO, we apply
the following strategy:

• if H is the first letter of a bond of 1r, then H is changed into W,
• if H is the second letter of a bond of 1r, then H is changed into W.

Bonds of 1r are thus preserved, and we let: 1r1 = 1r.

- If the rewriting creates a new bond of index k disjoint from every bond of
1r, then 1r' is 1r U {k}.

- In all other cases, we let 1r1 = 1r.

Let A 1(x, 1r) beN minus the number of elements of 1r. The bond coefficient
is 3 for D, 2 for H, 1 for W and 0 for S. The weight of a bond tr 1 is the sum
of the bond coefficients of tr and 1: for example, the weight of bond H H is
4. Then A 2 (x, 1r) is the sum of the weights of all the bonds of x indexed by 1r.

Example: In the configuration WWSW HD of the previous example, we
have A 1 = 4, A2 = 5 for 1r1 = {1, 4}, and A1 = 4, A2 = 7 for 1r2 = {1, 5}.

Randomized Dining Philosophers Without Fairness Assumption 175

~3(x) is defined as the number of two-letter strings of the form DH, vW,
HD or WD ofx.

4.3. Anti-bonds
Given a configuration x and a bond list 1r of x, an anti-bond is a substring

of two letters of x of one of the three forms:
1. y+-t" with ""1 (j Bond(1r), +-t" (j Bond(1r) and ""1 E Q, +-t" E Q.
2. ytr with '1 (j Bond(1r), '1 E Q and tr 1st letter of a bond of 1r,
3. 1+-t" with ~ (j Bond(1r), ~ E Q and 712nd letter of a bond of 1r.

The index of an anti-bond of x is the position of its first letter C'Y in cases 1-2,
Pin case 3).

Consider two bonds trp and tr'P' indexed by consecutive index i and i'
of 1r. Then either:

- tr 71 and tr'71' are contiguous (i.e: i1 = i + 2) and there is no anti-bond
between them (i.e: no anti-bond indexed by j with i + 1 $ j $ i'- 1), or

- tr 71 and tr'71' are not contiguous (i.e: i' ~ i + 3).
In the latter case, it is easy to see that, between tr71 and tr'7/', there is no
substring of the form · · · ry · · · "f · · · with ry E Q and "f E t}. (Otherwise,
there would be a disjoint bond between trp and Yr'ff', and 1r would not
be maximal.) Hence the substring between tr71 and tr'71' is of the form
Q*Q* with either no H (case HO) or just one H (case H1). More precisely,
the substring delimited bY. the two bonds is of the form:

- HO: tr7J-rTtr'1J', or
- Hl: trf!rHTtr'/J'

with r E {W, s, ll}* and '7 E {W, s, D}*. Let X and tr be the last
letter of PI and the first letter of Ttl' respectively. Between these bonds,
there is:

- HO: a single anti-bond, viz: Y Jr, or
- H1: two overlapping anti-bonds, viz: Y Hand HJr.

Given 1r, we construct an anti-bond list '1/J of x as a set of indices obtained by
putting, for every couple of non-contiguous consecutive bonds indexed by 1r:

-the index of Yti in case HO,
- the index of either Y H or HJr in case Hl.

Given a configuration x and a bond list 1r of x, an anti-bond list '1/J of x, is
thus a maximal set of indices j of anti-bonds of (x, 1r). More precisely:

Proposition 3 Given a configuration x and a bond list 1r of x, an anti-bond
list '1/J of x, is such that, for any couple of consecutive indices i, i' E 1r, either:

- the bonds indexed by i and i' are contiguous (i' = i + 2}, in which case no
anti-bond of '1/J lies between them (i.e., no j E '1/J such that i + 1 $ j $ i' - 1},
or

- they are not contiguous (i' ~ i + 3), in which case exactly one anti-bond
indexed by '1/J lies between them (i.e., :3! j E '1/J : i + 1 $ j $ i'- 1}.

176

Note that, in any case, the occurrence of H (if any) between tr 7/ and tr'ff'
always belongs to an anti-bond indexed by '1/J. Formally:

Proposition 4 For a given configuration x ¢ C', a bond list 1r of x and an
anti-bond list '1/J, every H of x belongs to a bond of 1r or an anti-bond of '1/J.

Example: For the configuration W H~11Ww1J, we have one bond list 1r =
{3, 7} and two possible anti-bond lists 1fL = {1, 5} and t/J2 = {2, 5}. Anti-bonds
are WH and WW for '1/Jt, H~ and WW for tP2·

Henceforth, every configuration x coupled with a bond list 1r, will be provided
with an anti-bond list '1/J. The anti-bond list t/Jo associated with the initial couple
(xo, 1r0) is arbitrary. Given a couple (x, 1r) and an associated anti-bond list '1/J,
the rewriting of x into x' via probabilistic rule RO preserves 1r when a bond is
rewritten, using the strategy described in section 4.2. Rewriting via RO also
preserves '1/J using the following strategy:

-if His the 1st letter of an anti-bond of '1/J, then His changed into W;
- if H is the 2nd letter of an anti-bond of ,P, then H is changed into W.
It is easy to see that this strategy is compatible with the one for bonds: if

H is shared by a bond of 1r and an anti-bond of '1/J, both strategies agree for
rewriting H either into W or W. For example, if His in ~H~, the expression
rewrites to ~W~. The rewriting of x into x' via the other rules transforms 1r
into 1r1 as explained in section 4.2, and '1/J into t/J' where t/J' = '1/J except in some
cases where D is replaced by H via R9 or R10 (see [5], for details).

We say that an anti-bond is oriented leftwards i;_esp. oriented rightwards) if
it is of the form {"t, 11}{W,H} (resp. {W,H}{S, D}).

Given a bond list 1r and an anti-bond A of index k oriented leftwards (resp.
rightwards), the 1r-distance of A is k- i (resp. i- k) where i is the index of
the closest bond of 1r to the left (resp. right) of A.

Let ~4 (x, '1/J) be N minus the number of oriented anti-bonds of x indexed by
'1/J and ~5 (x, 1r, ,P) be the sum of 1r-distances of the oriented anti-bonds of '1/J.

The anti-bond coefficient is 3 for H, 2 for W, 1 for S and 0 for D. The
weight of an anti-bond 7i lf is the sum of the anti-bond coefficients of 71 and
lf: for example, the weight of HW is 5.

Let ~6 (x, ,P) be the sum of the weights of the anti-bonds of x indexed by '1/J.

Example: In the configuration W H~11Ww1J of the previous example, we
have ~4 = 7(= N), ~5 = 0, ~6 = 9 for tP1 = {1,5}, and ~4 = 6, ~5 = 1,
~6 = 8 for t/J2 = {2, 5}. In ¢1 no anti-bond is oriented. In t/J2, the anti-bond
H~ is oriented rightwards. Its 1r-distance with token ~Jj is 1.

4.4. ~easure a
The WSD-coefficient is 2 for W, 1 for Sand 0 for D. Let ~7(x) be the sum

of the W S D-coefficients of all the letters of x distinct from H.
Given a configuration x ¢ £', a bond list 1r and an anti-bond list '1/J, measure

~is defined as 7-tuple (~1, ~2 , ~3, ~4, ~5, ~6, ~7). The evolution of~ along
a computation is illustrated on an example in the first appendix.

Randomized Dining Philosophers Without Fairness Assumption 177

By Proposition 4, any configuration can be decomposed into bonds, anti­
bonds and W, S, D-letters. Using this fact, it can be shown by case analysis
that, under the strategies defined above for RO, ~ decreases whenever x rewrites
to x' for lists 1r1 and 1/J' constructed from 1r and 1/J as described in sections 4.2
and 4.3. (The full proof is given in (5].) Formally, let « be the lexicographic
extension of <; we have:

Proposition 5 For every x f/. .C', every bond list 1r and anti-bond list 1/J of x,
and every position i in &(x), there exists a configuration x', a bond list 1r1 and
an anti-bond list 1/J' of x' such that:

x --4 x' 1\ (x' E .C' V ~(x1 ,7r 1 ,1/J') « ~(x,7r,1/J)).
'R!

Theorem 1 then follows from proposition 5 and Theorem 2.

5. Expected Time of Convergence
In traditional approaches (see e.g. [9]) the time is measured in terms of

rounds (intervals in which each process has been scheduled at least once). The
time is never evaluated as a number of transitions.

With our approach, we do not make any assumption on this round time.
We evaluate the expected time of convergence as a number of transitions. It
turns out that, for some "malicious" scheduler such a time can be "very" long.
In 2nd apl?endix, we show indeed that, for some configuration x0 (of the form
SS · · · S) and some scheduler A0 , one can stay out of£! during an expected
time at least exponential in N. This gives us an exponential lower bound for
the expected time of convergence. In other words, the expected number of
transitions in a round can be exponential.

6. Conclusion
We have shown in this paper that a modified version of Lehmann-Rabin's

algorithm always converges, whatever the (possibly unfair) scheduler is. We
claim that our modified algorithm preserves the spirit of the original one.

With our approach, we are also able to evaluate the expected time of con­
vergence as a number of transitions. We have shown that this time may be
exponential for some malicious scheduler.

An interesting further work would be to remove the fairness assumption with
more complex connection topologies of dining philosophers as, e.g., in (12].

References

(1] T. Bonald and L. Massouli. Impact of fairness on Internet performance. In Proc.
of Joint International Conference on Measurements and Modeling of Computer
Systems (SIGMETRICS/Performance 2001}, Cambridge, USA, 2001, pp. 82-91.

(2) J. Beauquier, J. Durand-Lose, M. Gradinariu, and C. Johnen. Token based self­
stabilizing uniform algorithms. J. of Parallel and Distributed Systems, To appear.

178

(3] S. Dolev, A. Israeli, and S. Moran. Analyzing expected time by scheduler-luck
games. IEEE 7ransactions on Software Engineering, 21(5), 1995, pp. 429-439.

[4) M. Dufl.ot, L. Fribourg, and C. Picaronny. Randomized distributed algo­
rithms as Markov chains. In Proc. 15th Int. Conf on Distributed Comput­
ing (DISC'01), Lisbon, 2001, pp. 24Q-254. (Extended version available on
http://wvv.lsv.ens-cachan.fr/Publis/).

(5] M. Dufl.ot, L. Fribourg, and C. Picaronny. Randomized dining philosophers with­
out fairness assumption. Research Report LSV-01-11, Cachan, France, December
2001. Available on http://wvv.lsv.ens-cachan.fr/Publis/

[6) P. Gevros, F. Risso, and P. Kirstein. Analysis of a Method for Differential TCP
Service. In Proc. of the IEEE GLOBECOM'99, Rio de Janeiro, 1999.

[7] H. Kakugawa and M. Yamashita. Uniform and Self-Stabilizing Token Rings Al­
lowing Unfair Daemon. IEEE 7rans. Parallel and Distributed Systems, 8{2), 1997,
pp. 154-163.

[8) D. Lehmann and M.O. Rabin. The advantages of free choice: a symmetric and
fully-distributed solution to the dining philosophers problem. In Proc. 8th Annual
ACM Symposium on Principles of Programming Languages(POPL'81), Williams­
burg, U.S.A., 1981, pp. 133-138.

(9) N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[10) N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized dis­
tributed algorithms. In Proc. 13th Annual ACM Symposium on Principles of
Distributed Computing (PODC'94), Los Angeles, USA, 1994, pp. 314-323.

(11) A.K. Mciver. Quantitative program logic and efficiency in probabilistic distrib­
uted algorithms. Tech. report, Computing Lab., Oxford U., UK, 1998. (Ex­
tended version of "Quantitative program logic and performance" , Proc. of 5th Int
AMAST Workshop, ARTS '99).

[12) O.M. Herescu and C. Palamidessi. On the Generalized Dining Philosophers
Problem. In Proc. 20th Annual ACM Symposium on Principles of Distributed
Computing (PODC'01), Newport, USA, 2001, pp. 81-89.

[13) A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis­
tributed Computing, 1(1), 1986, pp. 53-72.

(14) A. Pogosyants and R. Segala. Formal verification of timed properties for random­
ized distributed algorithms. In Proc. 14th Annual ACM Symposium on Principles
of Distributed Computing (PODC'95), Ontario, Canada, 1995, pp. 174-183.

Appendix: An example of computation
The general behaviour of bonds should be clear: with our strategy, once a bond is

created, it never disappears (At never increases) and stays in fixed position. On the
example below, the two leftmost and two rightmost letters of each configuration are
the bonds of 11' (11' is here the only possible bond list).

Let us explain the general evolution of an anti-bond A located between two con­
secutive (non contiguous) bonds B1 and B2. Once oriented, say rightwards, A moves
towards B2 until it overlaps with it. It may then lose its orientation and become
oriented later in the other direction. Such aU-turn is possible only if the left letter of
B2 is rewritten. A thus oscillates between Bt and B2. The total number of U-turns

Randomized Dining Philosophers Without Fairness Assumption 179

is finite as each bond coefficient can decrease at most 3 times. For example the first
letter of a bond can change from D to H then to W and to S. Once it is S, if
this process is selected by the scheduler and as the right fork is not taken (the right
neighbour is in stateD, H, W or S) the philosopher enters state E and C, is reached.
A computation with ~1 and ~3 constant illustrated on Figure A.l.

wwt>vvs ~ WWHDDS ~ wwwt>vs ~ WWWHBS
Ll.s=3 Ll.s=2 Ll.o=2 Ll.o=1

~ WWWHHS ~ WWWHWs ~ wwwwws ~ wwwsws
Ll.s=O Ll.s=O Ll.s=O Ll.o=3

~ WWs&7Ws ~ wws:Divs ~ WWsHWs ~ Ws&7HWs
Ll.s=3 Ll.s=3 Ll.s=2 Ll.s=2

~ WsJJHWs ~ Ws:DWWs ~ WsHWWs ~ WsWWWs
Ll.·=2 Ll.·=2 Ll.s=1 Ll.s=1

Figure A.l. A computation: each configuration has a single anti-bond, which is
underlined and labelled with the value of the ~5-distance; the bold letter is the letter
to be changed; the arrow depicting each transition is labelled with the first decreasing
~-component.

Each transition is represented by an arrow labelled with the first decreasing com­
ponent of ~. For each configuration, we also give the corresponding measur~ ~5·
As there is just one anti-bond A, ~5(x, 1r, t/1) is either the 1r-distance of A when it
is oriented, or 0 otherwise. Note that, in the last configuration, the anti-bond SW
cannot be rewritten without reaching C,'.

Appendix: Expected Time of Convergence
Let us show on a example that the expected time of convergence is at least ex­

ponential in the number N of processes for some "malicious" scheduler. We ex­
hibit a scheduler which, starting from the uniform configuration xo = S N, goes to
x1 = sN-2W~ within a constant expected time. Then, from x 1, it can stay in the
set of configurations {S'WWiji+j+ 1 = N} U{S'WSiji+ j+ 1 = N} during an
expected time exponential inN.

Consider xo = S N as a starting configuration. Let us first show that the scheduler
may reach the configuration x 1 = gN- 2WS in a finite amount of time: It selects a
Sand applies R8.R10.RO to obtain gN-1W or gN- 1 W. In the first case, it applies
R3 and goes on. In the second case, it selects the last S and applies R8.R10.RO to
obtain STN- 2WW or gN- 2WW. In the first case, it applies R3 to W and begins
again. In the second case, it applies R2 to the right W. The expected time E of going
from xo to x1 may be easily computed: E = 15.

Now, we describe two possible choices of the scheduler on a configuration of the
form S'WSi with i 2;:: 2 and i + j + 1 = N. These two choices are the application
of four consecutive rules, one of which is a probabilistic one. The three first rules are
the same: select the rightmost Sand applies R8.R10.RO. This yields: gi- 1WWSi
or gi- 1WWWi.
From gi- 1WWSi, apply R1 to the rightmost W to get gi- 1WSi+ 1.
From gi- 1WWSi, the scheduler can choose W or W, which leads to the two cases:

(A) The scheduler applies R1 toW and yields gi- 1 W~i+1 ,
(B) The scheduler applies R3 to W and yields S;W~i.

180

Symmetrically, using R6.R9_.RO, ~-a conf!K'!-ration ""!;WWi (with j ;:: 2 and
i + j + 1 = N), one goes to ~·wW 'S ,_1 or ""S''WW~'-1 •
From -g;wW~i-1 , apply R3 to the leftmost w, to get ~H1wWi-1 •
From -g;WWWi-1 , the scheduler can choose W or W, which leads to the two cases:

(A') The scheduler applies R3 toW and yields ~;+IwWi- 1 •
(B') The scheduler applies R1 to W and yields ~;WWi.
The scheduler can iterate such application of four consecutive rules until the system

reaches an "end" configuration, ije a configuration of the form:
...,.N-2~+...-'S i;;t.;-'S N-2

Xend = ::; w or Yend = w .
Let us consider the following "malicious" scheduler: From ~;WWi (with i;:: 2

and i + j + 1 = N), it chooses (A) or (B) according to the compared values of i and
j. Precisely: it chooses (A) if L;:: i, and (B) if j < i.

Symmetrically, from S';w"'Si (with j ~ 2 and i + j + 1 = N): it chooses (A') if
i ~ j, and (B') if i < j.

For this scheduler, let us now ~omE!l~e the expe~ted ti~e for reaching Xend or Yend,

starting from a configuration ~'W"S3 (resp. 't•wW3), wit~ ;:: 2 (resp. i;:: 2)
and i + j + 1 = N. Let us abbreviate this expected time as E[i J (resp. E[.,-]). We
have:

E[7] = 4 + 1/2 E[i + i] + 1/2 E[l + 1), for 1 ~ i and 2i ;:: N- 2.
E[7] = 4 + 1/2 E[i + i] + 1/2 E[7], for 1 ~ i and 2i < N- 2.
E[T] = 4 + 1/2 E(i- i] + 1/2 E[l- 1], for 2 ~ i and 2i ~ N- 2.
E(7] = 4 + 1/2 E[J- 1] + 1/2 E[T], for 2 ~ i and 2i > N- 2.
E[N-~J =0.
E[Y]=O.
We then solve this linear system. The symmetry shows that E[7] = E[N -1- ~],

for all1 ~ i < N -1. Let m be the integral part of (N- 1)/2. The result is:

E[7) = 8(3 x 2m-l + 5m- 6- i), for 1 ~ i < m.
E(7] = 8(3(2m-l - 2i-m)- 2m+ i + 1)) form~ i < N- 1.

In particular, the time to go from x1 to Xend (hence xo to Xend) is E(1v=2] =
E[Y] = 8(3 X 2m-l + 5m -7) ~ 3 X 2m+2.
This shows that we can stay out of C' an exponential expected number of steps, hence
the upper bound for the expected time of convergence for a general scheduler is at
least exponential.

