
ALGORITHMIC COMPLEXITY OF 
PROTEIN IDENTIFICATION: 
SEARCHING IN WEIGHTED STRINGS 

Mark Cieliebak, Zsuzsanna Liptak, Emo Welzl 
ETH Zurich, Institute of Theoretical Computer Science 
cielieba,zsuzsa,emo@inf.ethz.ch 

Thomas Erlebach 
ETH Zurich, Computer Engineering and Networks Laboratory 
erlebach@tik.ee.ethz.ch 

Jens Stoye• 
Max Planck Institute of Molecular Genetics, and Konrad-Zuse-Zentrum (ZIB}, Berlin 
stoye@techfa k. u n i-bielefeld .de 

Abstract We investigate a problem which arises in computational biology: Given 
a constant-size alphabet A with a weight function J.t : A --* N, find 
an efficient data structure and query algorithm solving the following 
problem: For a string u over A and a weight M E N, decide whether 
u contains a substring with weight M (ONE-STRING MASS FINDING 
PROBLEM). If the answer is yes, then we may in addition require a 
witness, i.e., indices i :5 j such that the substring beginning at position 
i and ending at position j has weight M. We allow preprocessing of the 
string, and measure efficiency in two parameters: storage space required 
for the preprocessed data, and running time of the query algorithm for 
given M. We are interested in data structures and algorithms requiring 
subquadratic storage space and sublinear query time, where we mea
sure the input size as the length of the input string. Among others, we 
present two non-trivial efficient algorithms: LOOKUP solves the prob
lem with O(n) space and 0( 10;n ·loglogn) time; INTERVAL solves the 
problem for binary alphabets with O(n) storage space in O(log n) query 
time. Finally, we introduce other variants of the problem and sketch 
how our algorithms may be extended for these variants. 
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1. Introduction 
In the present paper, we introduce a combinatorial problem which originates 

from computational biology: Given a string u over a weighted alphabet A, find 
a data structure and a query algorithm which, for a given weight M E N, decides 
whether u has a (contiguous) substring of weight M. If the answer is yes, we 
may in addition ask for a witness, i.e., two positions within u where a substring 
with weight M begins and ends. The actual problem in computational biology 
is to find several masses M1 , •.. , M m in a database of strings. We concentrate 
on the one-string problem because algorithms can be easily extended to the 
multiple-string problem. We formally define the other problem variants at the 
end of the paper and sketch how extensions may be designed. There are two 
simple algorithms which solve the one-string problem: One uses linear time for 
a query and no additional storage space; the other has logarithmic query time, 
but requires a preprocessing step and additional storage space for the resulting 
data structure which may be quadratic. Hereby, space and time complexities 
are measured in the length of the string. We are interested in algorithms that 
are better than these two: i.e., we allow preprocessing and look for an algorithm 
where the data structure needs subquadratic space and the running time for a 
query is sublinear. 

Formulated in this way, the problem is a purely combinatorial and algorith
mic problem: Are there algorithms which allow searching in weighted strings 
of size n with o(n2 ) additional storage space and o(n) query time? If so, can 
we find a tradeoff between space and time? 

The problem differs from traditional string searching problems in one im
portant aspect: While those look for substructures of strings (substrings, non
contiguous subsequences, particular types of substrings such as repeats, palin
dromes etc.), we are interested only in weights of substrings. This means that, 
on the one hand, we lose a lot of the structure of strings: e.g. the weight of a 
string is invariant under permutation of letters; on the other, we gain the addi
tional structure of the weight function, such as its additivity. For instance, the 
problem of searching in X + Y, where X and Y are two sets of numbers, turns 
out to be closely related to our problem (see [Fre75] and [HPSS75]). However, 
we have been able to extend negative results which have been reached for that 
problem ([CDF90]): We can show that this approach (using the naive solution 
without preprocessing) cannot lead to an efficient algorithm for our problem. 
We have been unable to find any treatment of our problem in the vast amount 
of literature on strings (e.g. [AG95, Gus97, Lot97, RS97, CR94]). 

Our problem is positioned between the areas of string algorithms, search al
gorithms, and algebra. We believe that it is not only relevant for computational 
biology, but that it is also of theoretical interest to the field of combinatorial 
searching. As far as we are aware, no efficient algorithms have so far been 
presented for this problem. 

We would like to stress at this point that, even though the source of our 
problem is a biological question, the results we present here are primarily of 
theoretical interest. The reason is twofold: First, none of the algorithms we 
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present are efficiently applicable in their current form. LOOKUP requires sublin
ear query time, but this is a mainly asymptotic result, since the query time only 
improves for very long input strings. Algorithm INTERVAL, on the other hand, 
is very efficient both in query time and storage space, but it only works for 
alphabets of size 2, a case which does not occur in the usual biological setting. 
The second reason is that all biological data are prone to errors; in fact, there 
is no such thing as error-free data. Thus, all applications in computational bi
ology need to be highly fault tolerant. Our algorithms can be straightforwardly 
adapted to become tolerant to measurement errors. However, this aspect is not 
included in this paper. 

Thus, the present paper demonstrates that efficient algorithms for the prob
lem presented are possible; it remains a great challenge to actually find algo
rithms that are also of practical value. 

1.1. Biological Motivation 
Proteomics is the field that investigates the nature and function of proteins. 

As in molecular biology in general, large amounts of data are being accumu
lated at present, which presents particular computational and mathematical 
challenges. 

Proteins are large molecules that play a fundamental role in all living or
ganisms. They are made up of smaller molecules (amino acids) that are linked 
together in a certain order. The sequence of amino acids constitutes the so
called primary structure of a protein. Protein size ranges from below 100 to 
several thousand amino acids, where a typical protein has length 300 to 600. 
Most proteins are made up of the 20 most common amino acids. For the pur
poses of this paper, we will view a protein as a finite string over an alphabet of 
size 20. 

The information about known proteins is stored in large databases, such as 
SWISS-PROT (nearly 100,000 proteins) or PIR (more than 200,000 proteins). 
When a protein is isolated, one would like to know whether it is already known 
and if so, to identify it. An obvious way is to establish its primary structure: 
This is called de novo protein sequencing. However, protein sequencing, unlike 
DNA sequencing, is very expensive (both in time and money!). E.g. identifying 
one amino acid with Edman Degradation, one standard method for protein 
sequencing, takes about 45 minutes, which makes this approach unfeasible in a 
high-throughput context. 

Therefore, methods are required that test the protein against a database 
without having to sequence it first. One such method-which we will investigate 
here-makes use of the differences in molecular weights of amino acids: The 
protein is broken up into smaller pieces and these pieces are then weighed1, 

using a mass spectrometer. This will yield a "fingerprint" of the protein that 

1 Biologists will excuse some rough simplifications. 
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can then be tested against the database: The goal is to find a protein in the 
database that has substrings matching each of the input masses. 

The method used for breaking up the protein into smaller pieces is referred 
to by biologists as digestion: a so-called cleavage agent such as an enzyme, 
e.g. trypsin, is used which literally cuts the protein in certain well-defined 
places. The whole process is called mass spectrometry. Using digestion is al
gorithmically rather simple, at least with error-free data, since the breakup 
points are known in advance; it is thus possible to preprocess the database in 
an appropriate way. The complications arise due to measurement errors and 
post-translational modifications. There is a large amount of literature on mass 
spectrometry [YISGH93, HBS+93, JQCG93, PHB93, MHR93, EMYI94]; some 
papers dealing with different aspects and modifications of the problem, e.g. the 
minimum number of masses needed to identify a protein [PHB93], combinato
rial [PDTOO] or probabilistic [BEOl] models for scoring the difference of two 
mass spectra, or approaches for a correct identification even in the presence 
of post-translational modifications of the protein [MW94, YEM95, PMDTOl]. 
The review [YI98] as well as chapter 11 of the book [PevOO] contain more de
tailed introductions to this topic. For an introduction to computational biology 
in general, see [SM97]; for more on molecular biology, [Str88]; while [GW91] is 
an easy-going introduction to genetics for non-biologists. 

In this paper, we deal with algorithmic questions that arise if nothing is 
known about the breaking points, i.e., we assume random fragmentation. Test
ing for random weights is algorithmically far more complex than the digestion 
method, because the cutting places are not known in advance. This approach 
makes sense because it allows combination of several cleavage agents and it 
eliminates problems such as incomplete digestion. In addition, since we never 
make any assumptions about the probability distribution of breaking points, 
any algorithm for the random fragmentation method can be used for digested 
inputs, too. In the long run, however, for the biological application, algorithms 
are needed that are not only efficient, but also fault tolerant: They need to be 
tolerant both to measurement errors (M ± fj missing or additional masses in 
the spectrum) and to sequencing errors. 

1.2. Overview 
The paper is organized as follows. We first introduce the problem and all 

necessary definitions in Section 2, where we also present some simple ideas 
that motivate our efficiency requirements. In Section 3, we design an algorithm 
(LOOKUP) that is asymptotically efficient, with linear storage space and a query 
running time that is only just sublinear. LOOKUP thus serves to demonstrate 
that the requirements we defined earlier can be met. Section 4 contains an 
algorithm (INTERVAL) that solves the problem for alphabets of size 2 and has 
a very good performance. However, we do not think that it can be generalized 
to larger alphabets. In Section 5, we present two other problem variants and 
discuss how algorithms for the original problem can be extended to these. In 
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addition, we sketch improvements of our algorithms for special cases. Finally, 
in Section 6, we sketch ongoing work. 

2. Problem and Simple Solutions 
Fix an alphabet A of size IAI =sand a mass function J.l: A-t N. The mass 

(or the weight) of a string (or a sequence) u over A is defined as the sum of the 
individual masses J.L(u) := E~=l J.L(u(i)), where u(i) denotes the i'th letter of 
u, and n = lui is the length of u. For a mass M E Nand a string u of length 
n, we say that M is a submass of u if u has a substring of mass M, i.e., if there 
are indices 1 :5 i :5 j :5 n s.t. J.L(u(i,j)) = M, where u(i,j) is the substring of 
u starting in position i and ending in position j. For a E A, let us denote the 
multiplicity of a in u by lui a := I{ i I u(i) =a }I. 

The ONE-STRING MASS FINDING PROBLEM is defined as follows: 

Given a string u of length Ia I= nand a mass M, is M a submass of u? 

A simple algorithm to solve the problem is LINSEARCH, which performs 
a linear search through the string: For given u, start at position u(1) and 
add up masses until reaching the first position j s.t. J.L(u(1,j)) ~ M. If the 
mass of the substring u(1, j) equals M, then output yes and stop; else start 
subtracting masses from the beginning of the string until the smallest index 
i s.t. J.L(u(i,j)) :5 M is reached. Repeat until finding a pair of indices (i,j) 
s.t. J.L(u(i,j)) = M, or until reaching the end of the string (i.e., until the 
current substring is u(i, n) for some i and J.L(u(i, n)) < M). The algorithm can 
be visualized as shifting two pointers f. and r through the string, where f. points 
to the beginning of the current substring and r to its end. LINSEARCH takes 
O(n) time, since it looks at each letter at most twice. If we do not allow any 
preprocessing, this is asymptotically optimal, since it may be necessary to look 
at each letter at least once. 

On the other hand, if preprocessing of u is allowed, then there is another 
simple algorithm for the ONE-STRING MASS FINDING PROBLEM which uses 
binary search: in a preprocessing step, it calculates the set of all possible sub
masses of u (i.e., J.L(u(i,j)) for all 1 :5 i :5 j :5 n) and stores them in a sorted 
array. Given a query mass M, it performs binary search for M in this array. 
We will refer to this algorithm as BINSEARCH. The space required to store the 
sorted array is proportional to the number of different submasses in u, which 
is bounded by O(n2 ). The time for answering a query is thus O(logn). 

From now on, an algorithm for the ONE-STRING MASS FINDING PROBLEM 
will consist of three components: a preprocessing phase, a data structure in 
which the result of the preprocessing is stored, and a query method. For a 
string u, the preprocessing will be done only once, while the query step will 
typically be repeated many times. For this reason, we are interested in algo
rithms with fast query methods, whereas we ignore time and space required for 
the preprocessing step (as long as they are within reasonable bounds). Space 
efficiency is measured in storage space required by the data structure. 
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We are looking for algorithms that are better than LINSEARCH and BIN
SEARCH, i.e., require storage space o(n2 ) for the data structure, and query time 
o(n). We will call an algorithm skinny if the associated data structure requires 
o(n2 ) space, and speedy if the query method runs in time o(n). 

In this context, the question naturally arises whether a given mass M can be 
the weight of a string. If the size of the alphabet is variable, then this question 
is a variant of the INTEGER KNAPSACK PROBLEM, and is NP-complete (cf. 
[GJ79]). If the alphabet size is constant, the question can be solved with a 
simple Integer Linear Program. 

A third simple algorithm for the ONE-STRING MASS FINDING PROBLEM, 
which we will call BOOLEANARRAY, works as follows: In the preprocessing 
phase, define W :=max{~( a) I a E A} and let B be a Boolean array of length 
n · W. Set B[k] to true if and only if k is a submass of u. Given a query 
mass M, we output B[M]. This algorithm has query time 0(1), while the data 
structure B requires space O(n · W) bits. Thus, the algorithm is speedy and, 
if W = o(n), it is skinny, too. However, this does not solve the ONE-STRING 
MASS FINDING PROBLEM in general, since we do not want to restrict the size 
ofW. 

In the following, we assume that the alphabet A is of constant size and we do 
not restrict the maximum weight W of a letter. We assume a machine model 
with word size f!(logn + logW) in which arithmetic operations on numbers 
with O(log n + log W) bits can be executed in constant time; storage space is 
measured in terms of the number of words used. Without this assumption, we 
would get an extra factor O(log W) in the query time and in the storage space. 

3. An Algorithm that is Both Skinny and 
Speedy 

In this section, we present algorithm LOOKUP that solves the ONE-STRING 
MASS FINDING PROBLEM with storage space O(n) and query time 0( 10~n · 

loglogn). The idea is as follows. Similar to the simple linear search algorithm 
LINSEARCH introduced in Section 2, LOOKUP shifts two pointers along the 
sequence which point to the potential beginning and end of a substring with 
mass M. However, c(n) steps of the simple algorithm are bundled into one 
step here. If c(n) is chosen appropriately, i.e. approximately logn, then this 
will reduce the number of steps from O(n) to 0( 10~n), while each step will 
now require O(loglogn) time instead of constant time. We will hereby heavily 
exploit the fact that the alphabet has constant size. 

3.1. An Example 
Example 1. Let A= {a,b,c},~(a) = 1,~(b) = 2,~(c) = 5. Let us assume 
that we are looking forM= 14 in u = abbcabccaabb. LINSEARCH would shift 
two pointers e and r through the sequence until reaching positions 5 and 9 
respectively. Here, it would stop because the substring u(5, 9) = abcca has 
weight 14. Let us assume that c(n) = 3. We divide the sequence u into blocks 
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of size c(n). Now, rather than shifting the two pointers letter by letter, we will 
shift them by a complete block at a time. In order to do this, for each block we 
store a pointer to an index I which corresponds to the substring which starts 
with the first letter of the block and ends with the last. Let us assume now that 
f. is at the beginning of the first block, and r is at the end of the second block, as 
indicated in Figure 1. We are interested in the possible changes to the current 
submass if we shift the two pointers at most c(n) to the right. Given a list of 
these, we could search forM- J..L(a(f., r)). For example, the current submass in 
Figure 1 is J..L(a(1,6)) = 13, and we want to know whether, by moving e and r 
at most 3 positions to the right, we can achieve a change of 14- 13 = 1. 

e r e r 

I I 
Ia b blcablcc a I a b b labblca b 1 c c a I a b b 

I ! ! I mass= 14 
abb cab cca abb 

Figure 1. Example 1- LOOKUP searching forM= 14 

We can calculate these possible changes and store them in a (c(n) + 1) x 
(c(n) + 1) matrix T whose (i,j)-entry holds the submass change when f. is 
moved i - 1 positions to the right, and r is moved j - 1 positions to the right: 

= ( -~ ~ 1~ ~~ ) T[abb, cca] _ 3 2 7 8 
-5 0 5 6 

In order to be able to do fast search, we store the entries of the matrix in a 
sorted array: S(abb, cca] = (-5, -3, -1,0, 2, 4, 5, 6, 7, 8, 9, 10, 11]. Now we can 
find out in time O(log(size of array)) whether the difference we are looking for 
is there. In the present case, 1 is not in the array, which tells us that we have 
to move one of the two pointers to the next block. 

To determine which pointer to move, we consider what the linear search 
algorithm LJNSEARCH would do when searching for M and starting in the 
current positions of the left resp. right pointer. Since M is not present within 
these two blocks, at least one of the two pointers would reach the end of its 
current block. Here, we want to move the pointer which would first reach the 
end of its block. We can determine which pointer this is if we compare the 
difference M- J..L(a(f.,r)) with the matrix entry T(c(n),c(n)) corresponding to 
c(n) - 1 moves of both the left and the right pointer (in this case 7). If the 
difference is smaller, we move the left pointer to the next block, otherwise we 
move the right one. In our example, we have a difference of 1, thus we move 
the left pointer to the next block. 

This will change the current submass by -5 (the minimum of the array), 
yielding J..L(o-(4,6)) = 13-5 = 8. Thus, we now look forM -~-t(o-(4,6)) = 
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14 - 8 = 6. The sorted array for this pair of positions is S[cab, cca] = 
(-8, -6, -5, -3, -1,0, 2, 3,4, 5, 6, 10, 11], and the matrix is as follows: 

T[cab,cca] = ( 
0 5 

-5 0 
-6 -1 
-8 -3 

10 11 ) 5 6 
4 5 
2 3 

Value 6 is in the array: By looking in the matrix, we can see that a difference of 
6 can be achieved by moving the left pointer by 1 position and the right pointer 
by 3 positions. The algorithm outputs positions 5 and 9 and then terminates. 

3.2. Algorithm LooKUP 

We postpone the exact choice of the function c( n) to the analysis, but assume 
for now that it is approximately logn. For simplicity, we assume that c(n) is a 
divisor of n. 

Preprocessing: Given u of length n, first compute c(n). Next, build a table 
T of size IAic(n) x IAic(n). Each row resp. column of T will be indexed by a 
string from Ac(n). For/, J E Ac(n), the table entry T[I, J] contains the matrix 
and the sorted array as described above. The matrix contains all differences 
p,(prefix(J))- p,(prefix(J)}. Note that the tableT depends only on n and A, 
and not on the sequence u itself. Next, divide u into blocks of length c(n). For 
each block, store a pointer to an index I that will be used to look up table T. 
Each such index I represents one string from Ac(n). 

Query Algorithm: Given M, set e := 1 and r := 0. Repeat the following 
steps until M has been found or r > n: 

Step 1: Say e is set to the beginning of the i 'th block and r to the end of the 
(j- 1}'th block. Then look in the sorted array in T(I, J) where the pointer of 
block i resp. j points to index I resp. J. Find whether M- p,(u(f, r)) is in the 
array with binary search. 

Step 2: If M - p,( u( e, r)) is in the array, search for an entry ( u, v) in the 
matrix T(I, J) which equals M- p,(u(f,r)) by exhaustive search2, and return 
yes, along with the witness i' := (i -1} · c(n) + u,j' := (j -1} · c(n) + (v -1), 
since p,(u(i',j')) has mass M. 

Step 3: Otherwise, M- p,(u(f,r)) is not in the array. If M- p,(u(f,r)) is 
less than the matrix entry at position (c(n),c(n)), then increment e by c(n) 
and set p,(u(f,r)) := p,(u(f,r)) + min(array); otherwise, increment r by c(n) 
and set p,(u(f, r)) := p,(u(e, r)) +max( array). 

Analysis: First we derive formulas for space and time, and then we show 
how to choose c(n). The space needed for storing tableT is IA12c(n) · ((c(n) + 
1)2 + (c(n) + 1)2) = O(IAI2c{n) · c(n)2 ). Space needed for storing the pointer 
at each block is c&J · log(jAjc(n)) = O(n). For the last equality, recall that 
A is of constant size. For the query time, observe that after each iteration 

2 Alternatively, we could have stored ( u, v) during the preprocessing in the sorted array, too. 
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(consisting of Steps 1 to 3), either e orr is advanced to the next block. As 
each of the pointers can advance at most cfnJ times, there can be at most 2cfnJ 
iterations. Each iteration except the last one takes time O(logc(n)2 ) + 0(1). 
The last iteration may take time O(c(n) 2 ). 

In total, the algorithm requires storage space O(n+ IAI2c(n) · c(n)2 ) and time 
O(cfny+cfny logc(n)+c(n)2). Now, if we choose c(n) := Jog1t 1 n, then we obtain 

JAJc(n) = n:L This yields a storage space of O(n + n! ·log2 n) = O(n) and 
query time O<to;n loglogn), which is both skinny and speedy. Other choices 
of c(n) do not asymptotically improve time and space at the same time. 

Theorem 1. Algorithm LOOKUP solves the ONE-STRING MASS FINDING 
PROBLEM with storage space O(n) and query time 0( 10;n loglogn). 

Thus, LoOKUP beats both the query time of LINSEARCH and the storage 
space of BrNSEARCH. However, its practical use is limited to very long se
quences: In order to obtain a block size of, say, c(n) = 10, the input string 
would have to have length n = IAJ40 • In the next section we present a practical 
algorithm for binary alphabets. 

4. A Speedier Algorithm for Binary Alphabets 
In this section, we present algorithm INTERVAL which solves the ONE

STRING MASS FINDING PROBLEM for an alphabet of size 2. It uses storage 
space O(n) and has query time O(logn). The algorithm decides whether a 
given mass is a submass of a, but does not return a witness. 

Let a be a string over A := {a, b} of length n and fix k :::; n. Observe that, 
when sliding a window of size k over a, then in one step, the multiplicities of 
a and b within the window change at most by one. We represent substrings 
of a by points in the Z x Z lattice, where the two coordinates signify the 
multiplicities of a and b: 

sk := { (i, j) E z X z I i + j = k, there is a substring T of a : I ria = i, Jrlb = j}. 

All points in Sk will lie on a line (a diagonal), and moreover, they will be 
neighbours. We will refer to such a set of neighbours on a line as an interval. 
Each such interval has two extremal points. 

Example 2. a= aaaaabaabb. The figure shows 
the representation of all substrings of length k = 
8. Extremal points of this interval are (5, 3) and 
(7, 1). 

(5.3) 
(6.2) 

(7,1) 

Assume for a moment that we know the multiplicities of a and b in M, e.g. 
M = i · p.(a) + j · p.(b). Then we can easily find out whether M is a submass 
of a: We store the Sk 's, for 1 :::; k :::; n by their extremal points during the 
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preprocessing phase. Now we only have to check whether (i,j) E Si+;, which 
takes 0(1) time. This requires storage space linear inn. If, in addition, i and 
j were known to be the only feasible multiplicities of a and b (i.e., the unique 
solution of the equation X·l'(a) +Y·!'(b) = M), then this algorithm would even 
decide whether M is a submass of u, and we would be done. 

Unfortunately, we do not know the multiplicities of a and b in M. We 
define d := !'{b) - l'(a) (w.l.o.g., assume l'(a) < !'(b)) and use the residue of 
M mod d to look up a table. The table, generated during the preprocessing 
phase, contains representations of all sub masses of u. 

Let M~o := {!'(r) IT is a k-length substring of u}. Observe that consecutive 
elements of M,. (when sorted) differ by exactly d. Therefore, we can write 
Mk = {ck +l·d ll = o, ... ,n,. -1}, where Ck = minM,. and nk = IM~ol· 
Furthermore, Mk = {rk + l · d I l = a~o, ... , bk}, where Tk := (ck mod d), 
ak := l Ff J and bk := ak + n~o - 1. This says that all submasses of the same 
length have the same residue modulo d. 

Observe that rk = (k ·!'(a) mod d). Thus, we may have the same residue 
modulo d for different values of k. Instead of storing a~o and bk for each rk 
individually (which could result in linear query time), we will store the union 
of all intervals which belong to the same residue r, sorted by their endpoints. 
For an example, see [CEL+OI]. 

4.1. Algorithm INTERVAL 

In the preprocessing phase, we calculate the r~o 's, ak 's, and bk 's as above. 
We then sort the rk 's, thus obtaining a sorted array ql, ... , qm, where m :5 n 
(since different Sk's may have the same residue). For each q,, we compute a 
list of interval endpoints which represents the union of all intervals [ak, b~o] with 
r~o = q,. This list consists of one or more disjoint intervals, which we store in 
sorted order in an array A,. 

Now, when querying whether a given mass M is contained in u, first de
compose M = g · d + r, where r = (M mod d) and g E N; then find index 
l E { 1, ... , m} such that r = q,, using binary search; if no such index can be 
found, then M is not a submass of u, and the algorithm outputs no; otherwise, 
find whether there is an interval [a, b] in array At such that g e [a, b], using 
binary search on (the left endpoints of) the intervals; M is a submass of u if 
and only if such an interval exists. 

Since the total number of intervals to be stored is n, the storage space needed 
is O(n). The first step of the query algorithm takes time 0(1). The second step 
takes time O(logn), since the number of different residues is at most n. The 
third step takes time O(logn), since the maximum number of intervals stored 
in one array A, is n. We obtain a total query time O(logn). 

Theorem 2. Algorithm INTERVAL solves the ONE-STRING MASS FINDING 
PROBLEM/or binary alphabets with storage space O(n) and query time O(logn). 

The problem in generalizing this approach to larger alphabets is that the 
algorithm relies on the crucial fact that points representing substrings of the 
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same length lie on a line and form an interval. This does not generalize to higher 
dimensions, since there we only know that the points representing substrings 
of the same length are connected. 

5. Problem Variants 
The MULTIPLE-STRING MASS FINDING PROBLEM is defined as follows: 

Given k strings at, ... , ak and a mass M E N, return a list it, ... , ir of 
those strings a;; which have M as a subrnass. 

An algorithm IJ.i for the ONE-STRING MASS FINDING PROBLEM can be 
extended to an algorithm for the MULTIPLE-STRING MASS FINDING PROB
LEM by running IJ.i on each string ui one by one. Required storage space and 
query time simply sum up. 

Alternatively, we can adapt an approach from Group Testing (cf. [DHOO]): 
We define a new string u := u1wu2w ... wuk, where w is a new letter with 
mass !J(w) := max{!J( ui) I 1 :::; i :::; k} + 1. Before applying IJ.i to u, we 
check whether M ?: J.t(w). If so, then M cannot be a submass of any of the 
strings, and we are done. Otherwise, we know that whenever IJ.i finds mass M 
in u, then it is a submass of ui for some index i. If algorithm IJ.i can output 
all positions of M in u, this solves the MULTIPLE-STRING MASS FINDING 
PROBLEM. If IJ.i only decides whether M is a submass of u (i.e. it outputs only 
yes or no), we use a kind of "binary tree search" BINTREESEARCH to find all 
u; with submass M as follows. First, we run IJ.i on u as described above. If it 
outputs no, then no string Ui has submass M, and we are done. Otherwise, we 
divide u into two new strings Ut := u1w .. . wul~J and Ur := ul~J+1w ... wuk 
and run IJ.i on both strings separately. We repeat the division step until the 
new strings cover exactly one Ui, in which case the answer of IJ.i determines 
whether Ui has a submass M. Analysis of BINTREESEARCH depends heavily 
on storage space and query time required by IJ.i. For instance, if algorithm IJ.i 
requires storage space linear in the length of the string, then the storage space 
of BINTREESEARCH is O((log k) · l:~=I lui I). Query time of BINTREESEARCH 
depends on the number of strings with submass M, in contrast to the simple 
idea of applying IJ.i to each string separately. 

Given a specific algorithm for the ONE-STRING MASS FINDING PROBLEM, 
there might be even better ways to extend it to the MULTIPLE-STRING MASS 
FINDING PROBLEM: E.g. for BINSEARCH, we can use one sorted array to store 
all submasses of all strings. For each submass x we store the set of indices Ix 
of all those strings which have a submass x. Given mass M, we perform binary 
search in the array and output all indices stored in I M. Required storage space 
remains unchanged, but the running time becomes O(log(L:~=llu;l) + IIMI), 
where liM I :::; k is the size of the output. A similar idea applies to LOOKUP, 
where we could store only one table T of size IAicm•• X IAicm•• where Cmax = 
maxr=l c{lu;l), and use it for all runs of the algorithm. However, this does not 
decrease the asymptotic space required, which still remains linear. 
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We define a third problem variant, the MULTIPLE-STRING MULTIPLE-MASS 
FINDING PROBLEM: 

Given k strings u1, ... , uk, m masses M1, ... , Mm EN, and a threshold 
1 ~ t ~ m, return a list i1, ... , ir of those strings O"i; which have at least 
t of the masses as submasses. 

In the setting of our application in computational biology, this will be a more 
realistic formulation, since typically, one breaks a given protein in several pieces 
and wants to find the protein in the database which contains all (or at least 
many) of these pieces. Obviously, the MULTIPLE-STRING MULTIPLE-MASS 
FINDING PROBLEM can be solved by applying algorithms for the MULTIPLE
STRING MASS FINDING PROBLEM m times. We are investigating the question 
whether concurrently searching for m masses can be performed more efficiently. 

Finally, we present an improvement of all our algorithms for "short masses": 
Let the length of a mass M be defined as ~(M) := max(Urll T E A*,p(r) = 
M} U {-1}). Here, ~(M) = -1 means that there is no string with mass M. 
Suppose that we know in advance that all query masses are short in comparison 
to n, i.e., that there is a function f(n) such that A(M) ~ f(n) = o(n) for all 
queries M. Then there is a simple algorithm to solve the ONE-STRING MASS 
FINDING PROBLEM, which is a variant of BINSEARCH: In the preprocessing, 
we store all submasses of u of length l ~ f(n) in a sorted array. This requires 
storage space O(n· f(n)), since for each position i in u, at most f(n) substrings 
of length l ~ f(n) start in i. For a query, we do binary search in this array. 
This takes time O(logn), which is speedy. Since f(n) = o(n), the algorithm is 
skinny, too. We can use this approach to improve our algorithms in the sense 
that they will run faster on short masses. 

6. Conclusion 
For some algorithms (e.g. BINSEARCH), storage space and query time for a 

string u depend on the number of different submasses of u. This number is 
bounded from below by O(n) and from above by O(n2), and there are examples 
which meet these boundaries: For instance, let A= {a, b},p(a) = 1 and p(b) = 
n + 1. The string an has n different submasses, while the string anbn has 
(n + 1)2 -1 different submasses. It may be interesting to explore properties of 
the number of different submasses, e.g. its expected value or a characterization 
of all strings with 8(n2 ) submasses. Furthermore, we are looking for efficient 
algorithms to compute this number. 

With LOOKUP, we presented an algorithm for the ONE-STRING MASS FIND
ING PROBLEM which is both skinny and speedy. This proves that it is asymp
totically possible to beat both LINSEARCH and BINSEARCH at the same time. 
This raises the question whether there are more practical algorithms that are 
skinny and speedy. In the long run, we are interested in the tradeoff between 
query time and storage space for the ONE-STRING MASS FINDING PROBLEM. 
Do algorithms exist that can be parametrized to allow for adjustment of this 
tradeoff? 
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