
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
J. Bosch et al. (eds.), Software Architecture

10.1007/978-0-387-35607-5_15

http://dx.doi.org/10.1007/978-0-387-35607-5_15

128

By considering different levels for each, or at least a number of, quality
requirements, as well as the associated solution fragments, the FS-graph can be
used to explore a design space consisting of architectural solutions for different
sets of quality requirements. The FS-graph then documents this design space,
and it can be used to explore and analyze the various possible architectural
solutions.

Most, if not all, architectural knowledge is context sensitive. It is applicable
in certain situations, but not in all. Different stakeholders, for example, have
different and often conflicting concerns. Differences in available infrastructure
often also result in different architectural solutions. By modeling this contex­
tual variation in the FS-graph as well, we get an even richer picture. To arrive
at a particular solution then requires an analysis of the FS-graph to identify and
resolve possible conflicts.

We illustrate our use of the FS-graph to model and reason about context­
sensitive architectural knowledge with an example from the e-business domain.
In the earlier analysis of this case, two feasible solutions were identified [10],
each of which is the result of a series of design decisions. By explicitly doc­
umenting all context-sensitive architectural knowledge in a FS-graph, a much
richer picture is created, which allows us to reason about feasible business
models and the concerns they address. Thus used, the FS-graph also provides
traceability from requirements and contextual concerns to architectural solu­
tions, which is a valuable asset during the further evolution of the system.

The remainder of this paper is organized as follows. We start with giving
a short description of the case we consider in section 2. In section 3, we give
background information on the FS-graph. Section 4 shows how the FS-graph
can be used to document and analyze the design space for the case. Finally,
section 5 discusses related work, and section 6 contains our conclusions.

2. Case Description

We illustrate the use of the FS-graph for capturing and reasoning about ar­
chitectural solutions by means of the Amsterdam Times newspaper case. The
case concerns the provisioning of a value-added news service. The newspaper
wants to offer its subscribers the ability to read articles online, without addi­
tional costs to these customers. The expenses are to be financed by telephone
connection revenues, which the reader must pay to set up a telephone connec­
tion for Internet connectivity.

The Amsterdam Times case is discussed extensively in [10]. A most criti­
cal aspect in a business model for this type of application is how value (such
as money and content) flows between actors involved. In [10], two different
e-business models are discussed: the terminating model and the originating
model. Both models involve several parties: the customer (reader of articles),
the newspaper, a local operator, and a telecom operator. In the terminating

Documenting and Analyzing a Context-Sensitive Design Space 129

model, the reader pays a fee for a telephone connection to the local opera­
tor which acts as an intermediary between the customer and The Amsterdam
Tim,es. The local operator, The Last Mile, transfers part of this fee to the news­
paper and the telecom operator. In the originating model, the reader pays The
Amsterdam Times directly, and the newspaper then has to pay the other parties
involved.

These two business models are the result of a series of design decisions,
resulting from choosing specific values for quality requirements. Though the
final models as presented in [10] are easy to grasp, the individual decisions
which led to these models are much harder to reconstruct. As a result, it is also
difficult to see which other solutions are possible. By explicitly documenting
all decisions, we get a much richer picture and, as a consequence, a larger set
of feasible business models to choose from.

3. Feature-Solution Graphs

3.1. A Quick Introduction
A Feature-Solution (FS) graph captures architectural knowledge in the form

of desired features and solutions that realize these features. A typical example
of a FS-graph is shown in Figure 1. The features as well as the solutions
are captured in AND-OR decompositions. We use an AND decomposition to
denote that all constituents of a node are included, an OR to select an arbitrary
number of constituents, and an EXOR to select exactly one constituent.

Besides the AND-OR relationships, the FS-graph contains directed selec­
tion edges (represented by a solid curve that ends with a hollow pointer) to
establish the connection between features and solutions. Thus, a feature in the
Feature (F) space selects a solution in the Solution (S) space. In some cases,
it is useful to outrule a solution explicitly. This is done with negative selection
(or rejection) edges (represented by a dashed curve that ends with a hollow
pointer).

The selection and rejection edges establish a rather strong relation between
features and solutions, that is, they establish relations of the form if situation
X is encountered, then (don't) apply Y. In practice, many useful relations that
we wish to model are not that clearcut. We will use positively-influenced­
by (represented by a dash-dotted curve that ends with a harpoon pointer) and
negatively-influenced-by (represented by a dotted curve that ends with a har­
poon pointer) edges to establish weaker relations.

As can be seen in Figure I, multiple edges may originate from a single node.
By default, these edges are AND related, that is, they are all selected simulta­
neously. However, in some cases, we need to express optional and exclusive
relations. This is done by explicitly annotating these relations as such. For
instance, the requirement to-be-operational-within-three-months translates to

130

_ ..
r········· .. • .. ···•···•·• • I I .• lac:tlan I> i

I I!
1- -i pult1 .. 1, I
I ifl_nm by :

'1 _ .. - .. - !
"''''HIt.. 1

! I
l_ :

Future aol\1tlon
Spec. apace

...
--- ------

Figure 1. FS-graph example.

either an outsource-IT or a hire-new-personnel solution, as indicated by the
EXOR relation.

3.2. Semantics

The semantics can be given informally as follows. First of all, the AND­
(EX)OR relations are generalized into a single [x, y]-of-N relation to select
i out of N constituents, with 0 x i y N. A configuration is defined
as a set of activated (Le., instantiated) nodes as induced by the [x, y]-of-N
relation. The configurations thus obtained are called the degrees of freedom of
a FS-graph.

A node in F-space can be connected to a node in S-space by means of the
select relation. Such a connection implies that if a source node in a select
relation is activated, then the target node is activated as well. As a result, the
activated target node selects a particular branch, which may thereby exclude
other branches. Thus, the select relation reduces the degrees of freedom. The
select relation is transitive. It activates other nodes, which in their tum may
activate other nodes. In contrast, the reject relation is not transitive since it

Documenting and Analyzing a Context-Sensitive Design Space 131

does not activate the target node, and therefore the target node cannot activate
other nodes. Select relations may lead to contradictions (for instance, two
activated nodes nodes in the feature space may select nodes in the solution
space that are EXOR-related). This is not a problem, it simply means that
a particular configuration is not feasible. Notice that we abstract away from
search processes, conflict resolution, order of node activation, and the like. We
only define which configurations are feasible and which are not.

The [x, y}-ofN and the select/reject are the fundamental relations. The other
two relations that we use (Le., the positively/negatively-inftuenced-by) merely
enrich the model in order to cope with the problem at hand. The semantics of
the positively/negatively-inftuenced-by relations are defined as relations that
are only meaningful between active nodes in a particular configuration. These
are transitive relations: an active node can influence another node (either pos­
itively or negatively), which in its tum may influence other active nodes, and
so on. We will demonstrate later how the positively/negatively-inftuenced-by
relations are used in conflict resolution.

Another way to give an interpretation of a FS-graph is to view it as a pro­
duction system consisting of production rules, as used as a knowledge repre­
sentation formalism in the AI field. Production rules have the form: if «a
particular situation X is then «select solution Obviously,
select relations in the FS-graph establish such production rules. But also the
[x, y]-of-N relation can be interpreted as a production rule in the sense that
it selects a number of constituents. What sets a FS-graph apart is that it may
contain degrees of freedom that can be used to explore design alternatives.

3.3. Advanced Modeling Concepts

Architectural knowledge is often context sensitive, and can only be applied
in certain situations. In order to capture contextual information, we augment
a FS-graph with an optional Context (C) space. Contextual information in the
C-space is organized in AND-(EX)OR decompositions as well.

In Figure 2, we show how the C-space is used to capture stakeholders'
views. In particular, the figure shows how conflicting requirements can be
incorporated in a FS-graph. From The Amsterdam Times point of view, the
set-the-price requirement translates into the selection of the originating busi­
ness model and the rejection of the terminating business model. However,
The Last Mile stakeholder favors exactly the opposite. In order to model both
perspectives in one FS-graph, a conditional node type is introduced, which is
visualized as a switch. If a switch node is selected, the switch is closed and
establishes context-dependent relations between features and solutions.

An interesting conclusion that can be drawn directly from Figure 2 is that a
business model in which The Amsterdam Times and The Last Mile both select
the set-the-price requirement leads to a configuration that is not feasible. As a

132

Legend ,._
I selection E>
:
: rejection :---1>
i i _ ... _ .. __ .:..
I negatively
: influenced by ! :... , /

Figure 2. FS-graph example with C-space.

Context
Space

consequence, either stakeholder will have to drop this requirement. In the next
section, we explore conflict detection and conflict resolution in more depth.

4. Case Study

In this section, we discuss how a design space can be explored system­
atically. Particularly, we show how design spaces can be captured and how
trade-offs can be identified and dealt with. The approach is illustrated with the
e-commerce case introduced in section 2. We have successfully applied the ap­
proach in other domains as well, including a multi-channel system for selling
railway tickets and WEB servers supporting replicated objects.

4.1. e3-value Framework augmented with
FS-graphs

By today's standards, e-commerce projects require a short time to market to
obtain or retain a competitive edge. As a consequence, there is no time to go

Documenting and Analyzing a Context-Sensitive Design Space 133

into a full-fledged system development process. Instead, methods are required
to quickly assess whether a newly conceived e-business is feasible or not. The
e3-value framework [11, 12] offers such a lightweight approach. The frame­
work provides three viewpoints that address the concerns of the stakeholders
involved in an e-commerce project:

Business value viewpoint. This viewpoint focuses on economic value cre­
ation, distribution, and consumption in a multi-actor network.

Business process viewpoint. This viewpoint focuses on how the business
value viewpoint is put into operation in terms of business processes.

System architecture viewpoint. This viewpoint focuses on the information
system and infrastructure that support the e-business.

As its name suggests, the business value viewpoint is mainly of interest to
the top management stakeholders. It enables setting up a prediction of revenues
and expenses based on value exchanges between multiple actors. The business
process viewpoint focuses on ownership of business processes. It determines
which actor is involved in a particular value proposition and in what way. The
system architecture viewpoint is usually a concern of an IT department, but it
is crucial in the lightweight approach since information systems are a critical
success factor in e-commerce and, typically, major investments and operational
expenses are involved.

As presented above, the viewpoints are relatively unrelated, which makes it
difficult to reason about viewpoint interactions and, hence, to assess the con­
sequences of decisions taken in a particular viewpoint. We therefore add a
process step called design space exploration, in which we reason about de­
sign alternatives in a systematic way. This step is centered round FS-graphs.
For each viewpoint recognized in the e3-value framework a FS-graph is estab­
lished. Features (i.e., requirements) are linked to solutions, and the S-space in
one viewpoint serves as a F-space of the subordinate viewpoint. In this way,
the business value, business process, and system architecture viewpoints are
related, which enables us to reason about the impact of decisions made in all
viewpoints.

4.2. Exploring the Design Space

An e-business must be profitable to all actors involved. For this reason, we
analyze the case for multiple actors. For reasons of space, we restrict ourselves
to the main actors only, The Amsterdam Times and The Last Mile. In addition,
our focus will be on the business value viewpoint. After all, this viewpoint
is the main driver in setting up a new business. The other two viewpoints are
more or less derived from the business value viewpoint.

The exploration of the design space involves the following two steps:

134

EstabHsh FS-graphs. First, the requirements are captured in the F-space of a
FS-graph for each actor involved in the e-business, solutions are codified
in the S-space, and the requirements and the solutions are then related
from the perspective of each actor.

EstabHsh business cases. Next, business cases are derived from the FS-graph.
We use a rather technical definition of a business case. A business case
is defined as an economically and technically feasible set of related con­
figurations of a FS-graph as obtained by selecting a particular set of fea­
tures.

Establish FS-graphs. The business value requirements stem from dif­
ferent sources. Some requirements have been gathered from the commission­
ers. However, they usually do not have enough experience with e-commerce to
articulate their needs accurately [11]. Other requirements have been obtained
from past experiences, and yet another set of requirements can be regarded as
common sense. The set of requirements that we established is used to model
the requirements of The Amsterdam Times as well as The Last Mile. Some
of the requirements are relevant to both actors, whereas others are specific for
one actor only. The set of design solutions have been gathered in a similar
way. Again, these solutions stem from a mixture of commissioners input, past
experiences, and common sense.

The business value requirements and solutions are related by means of a FS­
graph. The FS-graph contains all the knowledge that is required for analyzing
business cases at the business value viewpoint level. A partially completed
FS-graph is shown in Figure 3. Note that the complexity of typical FS-graphs
such as the one shown in Figure 3 indicates that we need abstraction mecha­
nisms to show those aspects that currently have our focus of attention. It also
indicates that analyzing various business cases without knowledge capturing
models such as a FS-graph is infeasible.

Establish Business Cases. Finally, business cases are established and
the consequences of implementing a particular business case are assessed. As
discussed before, the business cases are addressed mainly at the business value
viewpoint level. However, the consequences of choices at this level are as­
sessed at the business process and system architecture level too in order to
consider their impact on grounds of economical and technical feasibility.

The analysis of business cases involves the following steps:

1 Develop business cases for each actor involved: (a) make strategic de­
cisions, (b) control feasibility, (c) exclude conflicting requirements, and
(d) include harmless requirements.

2 Resolve trade-offs between actors.

Documenting and Analyzing a Context-Sensitive Design Space 135

Figure 8. Business value viewpoint FS-graph.

136

3 Elaborate business cases.

Make Strategic Decisions. The first step in defining business cases is
to identify the key strategic issues. A fundamental requirement in e-business
activities is a short time to market. This requirement is therefore included in
almost all business cases for The Amsterdam Times. Other strategic issues
that can be identified include: outsourcing services or not, hiring new staff or
insisting on not doing so, customer ownership, maintaining little dependence
on other parties in the market, and the (exclusive) ownership of setting the
price.

The strategic decisions are documented as business-case nodes in the C­
space of a FS-graph (see Figure 3). A particular business-case node selects a
number of requirements in F-space, which in their turn select or reject particu­
lar solutions in S-space. An interesting example is the ownership of setting the
price. As discussed before, this is a conflicting requirement. Depending on the
stakeholder's viewpoint, the set-the-price requirement translates into the orig­
inating or the terminating business model. Therefore, this requirement, when
selected simultaneously in business cases for The Amsterdam Times and The
Last Mile, results in infeasible configurations of the FS-graph.

Control Feasibility. The strategic issues are next used to define, for
each actor involved, an initial set of business cases each of which exhibits no
internal conflicts. This is done on the basis of the knowledge captured in the
FS-graph. The following rules are applied for conflict detection and resolution:

• A conflict that involves both a selection and a rejection relation is called
a major conflict. The existence of such a conflict marks a particular
business case as not feasible. The business case is either discarded or re­
examined using a slightly different set of strategic decisions as a starting
point.

• A conflict which involves an influenced-positively-by and an influenced­
negatively-by relation is called a minor conflict. The business case is
feasible, but requires compromises.

• A conflict which involves either a selection or a rejection, but not both,
is classified as either a major or a minor conflict, depending on a further
analysis of its impact.

Exclude Conflicting Requirements. For each business case, re­
quirements that are not of strategic importance but whose selection implies a
conflict are explicitly excluded from the business case.

Include Harmless Requirements. By the same token, requirements
can be added to a business case if they cause no conflict.

Documenting and Analyzing a Context-Sensitive Design Space 137

Resolve Trade-Offs between Actors. The combination of strate­
gic issues and the application of feasibility control results in seven feasible
business cases for The Amsterdam Times and two feasible ones for The Last
Mile. Next, the business cases for each actor involved are compared. Basically,
the same strategy for conflict resolution is followed. We determine whether a
particular combination has no conflicts or has minor conflicts only. Such a
combination is a feasible business case for both actors involved, and can be
elaborated further, as discussed in the next paragraph.

By systematically analyzing the 14 business case combinations, we found
three promising combinations. However, in all three business cases, The Am­
sterdam Times has to give up customer ownership, which is a major compro­
mise from the viewpoint of The Amsterdam Times. Once customer ownership
is given up by The Amsterdam Times, we have the choice of adopting the orig­
inating as well as the terminating business model. The actual choice depends
on whether particular strategic issues are emphasized or not as reflected in the
business cases identified for the The Amsterdam Times and The Last Mile.

Elaborate Business Cases. Mter having identified the most promis­
ing business cases, the subsequent steps towards realizing the e-business are
straightforward. First, business process and system architecture view models
are established. Again, the FS-graph is the central concept in this step, since
at each viewpoint level requirements are linked to possible solutions. In [8, 9],
we describe how architectures can be generated from a FS-graph. These gener­
ated architectures are then assessed with respect to given quality requirements,
such as performance and security, but also profitability (see for instance [10]).
Finally, the most appropriate system architecture is realized, and we are in
business.

4.3. Lessons Learned

The e3-value framework provides the means to assess an e-business idea
from three viewpoints corresponding with the interests of the various stake­
holders involved. As presented in [10], the three viewpoints are not connected
strongly, which makes it difficult to trace design decisions from business con­
cepts all the way down to system architectures and eventually the e-business
system itself. FS-graphs fill in this void. They are used to relate features and
solutions within and between viewpoints. As a result, design decisions are
now traceable, e.g., by coloring the links in FS-graphs that make up the busi­
ness case chosen. But even more importantly, the FS-graph approach allows
us to reason about solutions systematically. Conflicting stakeholder views are
detected and design alternatives are assessed to make sure that a particular so­
lution is acceptable to all parties involved.

138

The exercise did not result in unexpected business models, or provide the
expert that devised the models as presented in [10] with new architectural in­
sights. The approach, though, did result in a much more thorough and system­
atic exploration of the design space. In particular, the analysis of the business
cases yielded two interesting observations that were not clear from the outset:

1 The Amsterdam Times is dependent on other parties in order to meet
the short-time-to-market requirement that is present in almost all of its
business cases.

2 The Amsterdam Times can only assure a high level of customer owner­
ship in combination with the originating business model.

Thus, the impact of business cases stands out more clearly by applying a
systematic analysis than would otherwise be possible by an ad-hoc approach.

5. Related Work

A Design Rationale (DR) [4, 19] is a representation of the reasoning behind
the design of an artifact. It is concerned with methods and representations for
capturing why designers have made the decisions they have made. A well­
known approach to representing design rationale is Design Space Analysis,
whose notation is called QOC (Questions, Options and Criteria) notation [18].
Questions in QOC are key design issues, and Options are possible answers to
the Questions. The solution fragments of the FS-graph contains both Questions
and Options. Criteria in QOC are used to choose between Options. They
resemble the requirements as captured in the FS-graph. Options and Criteria
in QOC are linked by Arguments such as supports or objects to which resemble
the links between the requirements and solution part of the FS-graph. DR is
most often used as a tool in the design process, especially the user-interface
design process, to augment design reasoning, and to help in formulating and
communicating arguments. It usually pertains to one particular set of choices,
not to a complete space of design options, as we try to capture in the FS­
graph. In [3], design spaces are used to map requirements to components. The
approach is geared towards the reuse of components within a domain, and does
not handle conflicts.

In Feature-Oriented Domain Analysis (FODA) [14, 6], and variants thereof,
a family or product line is represented in a feature tree. Features can be manda­
tory, alternative, or optional. A specific product is then composed by choosing
a set of alternative and optional features; these express the variabilities within
the product line. The feature tree may span the current set of products, or a de­
sign space of possible products, or a mixture. The feature tree thus resembles
the F-part of the FS-graph. Usually though, features of a product line are units
of functionality rather than quality concerns.

Documenting and Analyzing a Context-Sensitive Design Space 139

In requirements engineering, viewpoints are used to express different per­
spectives of stakeholders, agents that may have different responsibilities or
roles [7]. Some requirements engineering methods, and the associated tool
environments, treat viewpoints as first class objects that may be used and ma­
nipulated by the users of that method. At an early stage, each viewpoint is
represented. Later on, viewpoints are compared and conflicts and inconsisten­
cies are generally solved to arrive at a unified, integrated viewpoint. Often,
only the chosen alternative is well-documented. Important issues in this area
include the handling of inconsistent and conflicting viewpoints [1, 2], and the
prioritization of requirements and stakeholder win-conditions [22]. The em­
phasis is on identifying and resolving conflicts, rather than retaining a picture
of the complete space of options.

Early approaches to requirements engineering focussed on eliciting and doc­
umenting the requirements sec, and not the reasons for them. In goal-oriented
requirements engineering [17, 20], the relation between goals and require­
ments is represented explicitly. Recently, representation schemes used in goal­
oriented requirements engineering have also been used to represent dependen­
cies between quality goals and architectural styles [5].

The Architecture Tradeoff Analysis Method (ATAM) [15] supports the eval­
uation of software architectures with respect to different quality attributes.
In later publications ([16]), the focus of ATAM shifted to architectural ap­
proaches and their properties, captured in Attribute-Based Architectural Styles
(ABASs). The key of such an analysis is to 'understand the consequences of
architectural decisions with respect to the quality requirements of the system' .

The gap between requirements engineering and architecture is also ad­
dressed in the CBSP approach [13]. Software requirements may contain in­
formation that is relevant to the software architecture, and CBSP supports the
task of identifying and elaborating this information. CBSP uses an iterative
process of selecting essential requirements, relating these requirements to ar­
chitectural artefacts, and the identification and resolution of conflicts, until a
satisfactory model is obtained. A similar weaving of requirements engineering
and architecture development is described in the twin peaks model in [21].

6. Concluding Remarks
We have discussed FS-graphs as a means to document and analyze archi­

tectural trade-offs that arise from conflicting stakeholders' concerns. In our
experience, a FS-graph is a powerful representation scheme for capturing ar­
chitectural knowledge. First of all, a sharp distinction is made between Feature
(F) and Solution (S) spaces. In this way, the relations between requirements
and solutions can be made explicit. This idea can be applied recursively. For
instance, in the e3-value framework, three viewpoints are recognized, which
can all be modeled with FS-graphs. The S-space of one viewpoint serves as a

140

F-space for a subordinate viewpoint. This provides the means to trace require­
ments at the business level all the way down to the system architecture and its
realization. Secondly, a FS-graph is typically underspecified in the sense that
not all nodes in F-space have a connection with nodes in S-space. To put it dif­
ferently, a FS-graph has degrees of freedom that can be used to explore design
alternatives. Thirdly, context-sensitive knowledge, such as stakeholders' view­
points, can be modeled in a Context (C) space. We introduced a conditional
node type (i.e., a switch) for establishing context-dependent relations between
features and solutions.

We have recently started the QUASAR project, which stands for QUAlity­
driven Software ARchitecture. The goal is to generate software architectures
and implementations from domain and application specific knowledge cap­
tured in the FS-graph. In the case of e-commerce projects, this would mean
that a feasible e-business solution can be elaborated directly into an operational
system. Besides generation techniques, the QUASAR project concentrates on
visualization techniques and abstraction mechanisms to focus on specific parts
of a FS-graph. Additionally, we look at automatic reasoning with FS-graphs.
In particular, we want to support conflict (trade-off) detection and conflict res­
olution using the principles discussed in this paper.

Future work includes the exploration of the concept of context in FS-graphs
in more depth. In this paper, we used the Context (C) space to model, possibly
conflicting, stakeholder views. An interesting option is to enrich the C-space
with a notion of configuration management. We envisage that the C-space can
be used to document particular configurations of features and solutions that
realize these features. In this way, we may capture variations in a product
family. Another possibility is to define evolutionary migration trajectories.
Each step in a trajectory can be captured in a configuration. A FS-grapb can
then be used to guide us through successive steps in a migration process.

References

[1] Special Section: Managing Inconsistency in Software Development. IEEE Transactions
on Software Engineering, 24(11):906-1001, 1998.

[2] Special Section: Managing Inconsistency in Software Development. IEEE Transactions
on Software Engineering, 25(6):782-870,1999.

[3] L. Baum, M. Becker, L. Geyer, and G. Molter. Mapping Requirements to Reusable Com­
ponents using Design Spaces. In Proceedings 4th International Conference on Require­
ments Engineering, pages 159-167. IEEE,2000.

[4] Simon Buckingham Shum and Nick Hammond. Argumentation-based design rationale:
What use at what cost? International Journal of Man-Machine Studies, 40(4):603-652,
1994.

[5] L. Chung, D. Gross, and E. Yu. Architectural design to meet stakeholder requirements. In
P. Donohue, editor, Software Architecture, pages 545-564. Kluwer Academic Publishers.
1999.

Documenting and Analyzing a Context-Sensitive Design Space 141

[6] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Reading, Massachusetts, 2000.

[7] Peta Darke and Graeme Shanks. Stakeholder Viewpoints in Requirements Definition:
A Framework for Understanding Viewpoint Development Approaches. Requirements
Engineering Journal, 1:88-105, 1996.

[8] Hans de Bruin and Hans van Vliet. Scenario-based generation and evaluation of software
architectures. In Jan Bosch, editor, Proceedings of the Third Symposium on Generative
and Component-Based Software Engineering (GCSE'2001), Erfurt, Germany, volume
2186 of Lecture Notes in Computer Science (LNCS), pages 128-139, Berlin, Germany,
September 10-13,2001. Springer-Verlag.

[9] Hans de Bruin and Hans van Vliet. Top-down composition of software architectures.
In Per Runeson, editor, Proceedings of 9th International Conference and Workshop on
the Engineering of Computer-Based Systems (ECBS'2002), Lund, Sweden, pages 1-10,
April 8-11, 2002.

[10] Jaap Gordijn and Hans Akkermans. e3 -value: Design and evaluation of e-business mod­
els. IEEE Intelligent Systems, 16(4):11-50,2001. Special issue on e-business.

[11] Jaap Gordijn, Hans Akkermans, and Hans van Vliet. Value based requirements creation
for electronic commerce applications. In Proceedings of HlCSS 33, Hawaii, USA, 2000.

[12] Jaap Gordijn, Hans de Bruin, and Hans Akkermans. Scenario methods for viewpoint
integration in e-business requirements engineering. In Proceedings of HlCSS 34, Hawaii,
USA, January 3-6, 2001.

[13] Paul Griinbacher, Alexander Egyed, and Nenad Medvidvic. Reconciling Software Re­
quirements and Architectures: The CBSP Approach. In Proceedings 5th IEEE Interna­
tional Symposium on Requirements Engineering, pages 202-211. IEEE,2001.

[14] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented Domain Anal­
ysis (FODA) Feasibility Study. Technical report, Software Engineering Institute, 1990.

[15] R. Kazman, M. Barbacci, M. Klein, and SJ. Carriere. Experience with Performing Ar­
chitecture Tradeoff Analysis. pages 54-63,1999.

[16] R. Kazman, M. Klein, and P. Clements. ATAM: Method for Architecture Evaluation.
Technical Report Technical Report CMU/SEI-2000-TR-004, Software Engineering In­
stitute, Pittsburg, USA, 2000.

[17] Axel van Lamsweerde. Requirements engineering in the year 00: A research perspective.
In Conference Proceedings ICSE'OO, pages 5-19, Limerick, Ireland, 2000. ACM.

[18] Allen MacLean, Richard M. Young, Victoria M.E. Bellotti, and Thomas P. Moran. Ques­
tions, options and criteria: Elements of design space analysis. Human-Computer Inter­
action, 6(3 &4):201-250,1991.

[19] T.P. Moran and 1M. Carroll, editors. Design Rationale: Concepts, Techniques, and Use.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1994.

[20] John Mylopoulos, Lawrence Chung, Stephen Liao, Huaiqing Wang, and Eric Yu. Ex­
ploring alternatives during requirements analysis. IEEE Software, 18(1):92-96, January
2001.

[21] Bashar Nuseibeh. Weaving Together Requirements and Architectures. IEEE Computer,
34(3):115-117,2001.

[22] Jung-Won Park, Daniel Port, and Barry Boehm. Supporting Distributed Collaborative
Prlorization for WinWin Requirements Capture and Negotiation. In Proceedings 3rd
World Multi Conference on Systemics, Cybernetics and Informatics (SCI'99), pages 578-
584. IllS, 1999.

	DOCUMENTING AND ANALYZING A CONTEXT-SENSITIVE DESIGN SPACE
	1. Introduction
	2. Case Description
	3. Feature-Solution Graphs
	3.1. A Quick Introduction
	3.2. Semantics
	3.3. Advanced Modeling Concepts

	4. Case Study
	4.1. e3-value Framework augmented withFS-graphs
	4.2. Exploring the Design Space
	4.3. Lessons Learned

	5. Related Work
	6. Concluding Remarks
	References

