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products are continuously introduced, existing products evolve, and old 
products are phased out. The set of architectural changes resulting from 
these actions must be carefully managed. This kind of management involves 
addressing two key problems: (1) capturing architectural changes, and (2) 
understanding the architectural changes that define the difference between 
two products (or two versions of the same product) and propagating these 
architectural changes to yet another, third (version of a) product. The first 
problem has already been addressed through the advent of architectural 
description languages that incorporate facilities for capturing different 
versions of a product line architecture [10,17]. The second problem, 
however, has not been addressed as of yet. 

Consider a situation in which a number of architects maintain a product 
line architecture. The product line architecture is defined as a set of core 
components and connectors that are shared among all of the products, and a 
set of per-product components and connectors that define the unique aspects 
of each product. Furthermore, the evolution of the product line architecture 
is explicitly captured at the level of individual components and connectors, 
at the level of the products themselves, and at the level of the overall product 
line architecture. One architect, responsible for maintaining a part of the 
product line architecture description that consists of some specific products, 
quits the organization. Fortunately, another architect who was responsible 
for those products just six months ago is able to take over. A first task for 
this architect is to get up to speed with the current state of the evolved 
products, i.e., to understand what has changed between six months ago and 
now. After spending quite some time examining the product line architecture 
description of six months ago and now, the architect gains the desired level 
of understanding and, in the process, realizes that a number of other products 
in the product line can benefit from the advances made by the changes to the 
products. A second task, then, is for the architect to propagate those changes 
from the products in which they were originally incorporated to those that 
can benefit. 

Although it is possible for the architect to carry out all of these tasks 
manually, it may be an intricate job that requires a significant amount of 
time and effort, especially if the product line is large and contains many 
different versions of many different products that each consist of many 
components and connectors. Clearly, it is desirable that the architect has 
automated support, not only in this scenario, but also in similar scenarios in 
which it is important to understand and propagate architectural changes. 

This paper begins to address this problem and is based on the recognition 
that understanding and propagating architectural changes bears great 
resemblance to a similar, long-standing issue in the field of configuration 
management: understanding the exact nature of source code changes as they 
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have been made over time and propagating selected changes from one 
version of a software system to another [4]. To address this problem, 
differencing and merging algorithms have been developed [3]. However, 
direct application of these algorithms to architectures would not yield the 
desired result. Because existing algorithms typically only operate on textual 
artifacts and are line-based in their operations, they cannot be aware of any 
specific architectural semantics and therefore offer little help, particularly in 
the understanding of architectural changes. Nonetheless, these algorithms 
form a solid basis upon which our approach is based. Specifically, we have 
adapted them in making three contributions to the field of software 
architecture. First, we have enhanced an existing representation for product 
line architectures, xADL 2.0 [5], with a representation in which the exact 
difference between two products in a product line architecture can be 
captured. Second, we have created a differencing algorithm that uses the 
representation to create an understanding of the exact set of architectural 
changes that constitute a difference between two products. Third, we have 
created a merging algorithm through which it is possible to propagate such 
architectural changes to other products in the product line. 

The remainder of this paper details our approach and is organized as 
follows. In Section 2 we provide some background material regarding 
differencing and merging algorithms as they exist in the field of 
configuration management. Section 3 introduces xADL 2.0, the 
representation for product line architectures upon which we have based our 
research. Subsequently, Section 4 introduces our approach to understanding 
architectural change, including the representation for capturing architectural 
change and the differencing algorithm. Section 5 highlights the merging 
algorithm used for propagating architectural changes. Section 6 briefly 
discusses the implementation of the algorithms and we conclude in Section 7 
with an outlook at future work. 

2. BACKGROUND 

Differencing and merging algorithms as used in the field of configuration 
management rely on comparing text-files on a line-by-line basis [3]. In this 
process, lines are atomic. A line is considered either exactly the same or 
completely different. A traditional configuration management differencing 
tool, then, takes as input two text files and outputs a "diff' containing an 
ordered list of those lines that have been added, removed, or replaced. This 
diff output is normally in textual form, but can usually be visualized if 
necessary. 
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Configuration management merge tools follow the same process. Based 
upon an available text file and diff, a merged result is calculated based upon 
lines of text. Conflicts either result in failure of the merge altogether, or are 
highlighted in the text such that users can manually resolve them. As of late, 
visual tools have greatly reduced the effort involved in merging by 
graphically highlighting merge results along with the input files, thereby 
allowing users to guide and tailor the merge algorithm to suit their needs 
[1,9,12]. 

These traditional differencing and merging algorithms typically aim to be 
language independent and, thus, do not further analyze or use the contents of 
the documents upon which they operate. Herein lies the problem with their 
application to the domain of understanding and propagating architectural 
changes within product line architectures. Although they may be able to 
operate on text files containing architectural descriptions, the result would be 
distinctly non-architectural in nature. This represents a particular problem in 
understanding the replacement of architectural elements. Whereas our 
algorithm described in Section 4.3 discovers architectural replacement 
semantically, a text-based differencing algorithm only would find lines of 
text that may have been replaced with others. Although this may accidentally 
coincide with the semantically desired result, such a result is dependent on 
the order in which architectural elements are placed in an architectural 
description. Since, more often than not, such placement is random and 
architectural elements are randomly spread throughout the description, text­
based differencing almost always leads to incorrect replacement detection at 
the architectural level. 

Recently, more semantic algorithms have been developed in a number of 
domains. In using abstract syntax trees, differencing and merging tools have 
been created that operate on, for example, UML diagrams [18]. Similarly, 
algorithms are now being researched that attempt to understand and interpret 
the difference between HTML pages [8], and XML-based differencing and 
merging tools have been developed that operate in terms of XML elements 
rather than lines of text [11]. It should be noted that direct application of the 
XML algorithms, although leading to higher-level results than text-based 
algorithms, still does not provide us with the desired level of functionality. 
As with text-based merging, related changes that constitute a replacement 
are not detected unless the changes happen to be in a consecutive part of the 
XML file. Nonetheless, the algorithms described in this paper fall in the 
same class as these semantic algorithms and build upon the results to date. 
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3. xADL2.0 

xADL 2.0 [5,7] is an extensible representation for product line 
architectures that was born out of the observation that, while each new 
architecture description language usually contributes some kind of unique 
feature, most share a relatively large set of common modeling concepts [15]. 
To leverage this commonality while still allowing individual advances and 
contributions, xADL 2.0 is constructed as a set of extensible XML schemas. 
To create a new architecture description language with some particular set of 
exclusive modeling features, an initial set of schemas is chosen that provides 
the base set of features. If desired, features can be modified by extending 
some of the selected XML schemas with new definitions of existing 
modeling features. Additional features are then added by writing new XML 
schemas on top of the selected (and possibly modified) schemas. 

xADL 2.0 already incorporates a number of schemas defining common 
architectural elements. The cornerstone of xADL 2.0 is formed by the 
Structure and Types schema, which defines the modeling features for 
capturing a particular architecture at design-time. Specifically, the schema 
allows the definition of the basic structure of one particular architecture in 
terms of a set of components, connectors, interfaces, and links among those 
elements. In addition, the schema provides a typing mechanism through 
which elements in the structure can be assigned specific types. 

The Options, Variants, and Versioning schemas extend the Structure and 
Types schema with modeling features for product line architectures. The 
Options schema allows for the definition of elements that mayor may not be 
present upon instantiation of a particular architecture as defined per the 
Structure and Types schema. The Variant schema allows the definition of 
alternatives: depending on a property selection mechanism, an architectural 
element in the structure is configured to be one of multiple types. This is 
critical in bringing variability into the picture: by introducing specific 
variation points, different products can be defined in a single product line 
architecture. Finally, the Versions schema allows the modeling of the 
evolution of a product line architecture, in terms of each of its individual 
types, each of its products, and the overall product line architecture. 

4. UNDERSTANDING DIFFERENCES 

To understand and propagate architectural changes, it is necessary to 
represent them first. Therefore, we extended xADL 2.0 with an additional 
XML schema in which to capture architectural changes. Based on this 
schema, we defined two algorithms. The first performs architectural 
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differencing by taking two architectures-each representing one (version of 
a) product-and automatically calculating the difference in terms of 
additions and removals of elements (elements being the entities defined in 
the xADL 2.0 Structure and Types schema: components, component types, 
connectors, connector types, interface types, and opaque links among the 
interfaces on the components and connectors). The second algorithm 
complements the first by calculating which additions and removals constitute 
replacements, thereby enhancing the level of understanding an architect may 
gain from using our approach. Below, we first discuss the schema and then 
introduce each of the algorithms. 

4.1 XML schema for representing architectural changes 

Figure 1 presents the XML schema we developed for capturing 
architectural change. The schema as shown is somewhat condensed in that 
commentary and some XML namespace details are left out for brevity. The 
schema is straightforward in simply defining an architectural "diff' as a 
series of additions and removals of architectural elements. Nonetheless, three 
important observations are in place about the design of the schema. First, it 
should be noted that the schema is based on the Structure and Types schema 
of xADL 2.0. In particular, each addition of an element contains the full 
definition of the element as specified in the Structure and Types schema. 
This has two distinct advantages. 

1. The original architectural specification does not have to be present if 
a merge is being performed with another architecture. All necessary 
data is contained in the diff. 

2. The differencing and merging algorithms do not have to be 
reimplemented with each change in the XML schemas. The nature 
of our XML tool support [7] is such that any additional information 
as specified in extension schemas is automatically included in the 
diff. Thus, if a particular extension has augmented a component type 
with, for example, a mapping to source code, our implementations of 
the differencing and merging algorithms automatically incorporate 
that information in the diff (see also Section 6). 

The second observation pertains to the fact that removals are specified in 
terms of identifiers. An important design consideration in xADL 2.0 is that 
each and every element has a unique identifier and that any change to an 
element will result in that element having anew, once again unique, 
identifier. This allows the removal of an element to simply be based on these 
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identifiers, since two elements with the same identifier are guaranteed to be 
the same element and any two elements that have a different identifier are 
guaranteed to be different elements. This holds true even if two elements are 
in different architectural specifications. 

The final observation is that the schema does not directly incorporate 
replacements. Traditional difference formats are three-tiered and distinguish 
additions, removals, and replacements [3]. In our approach, we decided upon 
a two-tiered approach for simplicity reasons. Leaving out replacements 
keeps the schema, differencing algorithm, and merging algorithm 
straightforward and allows separate treatment of the more difficult 
replacement problem (see Section 4.3). 

<xsd:schema 
xmlns="http://www.ics.uci.edu/pub/arch/xArch/diff.xsd"> 

<xsd:element name="diff" type="Diff"/> 

<xsd:complexType name="Add"> 
<xsd:choice> 

<xsd:element name="component" 
type="types:Component"/> 

<xsd:element name="connector" 
type="types:Connector"/> 

<xsd:element name="link" 
type="types:Link"/> 

<xsd:element name="componentType" 
type="types:ComponentType"/> 

<xsd:element name="connectorType" 
type="types:ConnectorType"/> 

<xsd:element name="interfaceType" 
type="types:lnterfaceType"/> 

</xsd:choice> 
</xsd:complexType> 

<xsd:complexType name="Remove"> 
<xsd:attribute name="removeld" 

type="archinstance:ldentifier"/> 
</xsd:complexType> 

<xsd:complexType name="DiffPart"> 
<xsd:choice> 

<xsd:element name = " add" type="Add"/> 
<xsd:element name="remove" type="Remove"/> 

</xsd:choice> 
</xsd:complexType> 

<xsd:complexType name="Diff"> 
<xsd:sequence> 

<xsd:element name="diffPart" type="DiffPart" 
minOccurs="O" maxOccurs="unbounded"/> 

</xsd:sequence> 
</xsd:complexType> 

</xsd:schema> 
Figure 1. XML Schema for Representing Architectural Changes. 
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4.2 Architectural differencing 

Based upon the XML schema defined in previous section, we have 
defined a differencing algorithm that takes as its input two product 
architectures and creates as its output an XML diff file adhering to the XML 
schema. Figure 2 illustrates this algorithm. Because a diff file only contains 
additions and removals, and because xADL 2.0 uses unique identifiers for all 
of its elements, the differencing algorithm is relatively straightforward. The 
basic algorithm iterates over each element (component, connector, link, 
component type, connector type, and interface type) in the first architecture, 
verifies via identifier comparison whether the element exists in the second 
architecture, and if not, adds the element to the diff. If the element does exist 
in the second architecture, the algorithm double checks whether the detailed 
contents match. If for any reason a mismatch is found (which would be a 
violation of the xADL 2.0 principles, but nonetheless could inadvertently 
occur if, for example, someone manually edited a xADL 2.0 document), the 
algorithm issues a warning and terminates. 

After this first phase, it is still necessary to determine superfluous 
elements in the second architecture. To do so, the algorithm iterates over 
those elements, verifies whether the element exists in the first architecture, 
and in case of absence adds instructions in the diff to remove the element. If 
the element does exist in the first architecture, nothing needs to be done. 

The result of applying the algorithm is a diff adhering to the schema 
defined in the previous section. This diff can be viewed with any standard 
XML viewer to gain an understanding of what changed between two 
architectures. Of note is that the algorithm operates solely in terms of the 
Structure and Types schema and does not worry about the selection of 
particular products out of a product line architecture (i.e., it does not 
interpret elements that are specified according to the Options, Variants, and 
Versions schemas). We consider this selection a separate problem, and are 
developing separate tools that take as input a set of selection properties and 
produce as output the specific product architecture as abstracted out of a 
product line architecture. This results in a two-phased approach, which is 
appropriate since both selection and differencing are algorithms that can be 
reused in many different places. To understand the differences between two 
products of a product line architecture, then, one first selects two (versions 
ot) products by applying the selection algorithm twice. Only then, the 
differencing algorithm can be applied. 

Note that the differencing algorithm is inherently architecture-based. 
Whereas a line-based or XML-based differencing algorithm would have 
identified small-grained elements that may have changed (e.g., individual 
lines in an architectural description or XML tags or elements), our algorithm 
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results in a diff that naturally operates in terms of architectural elements such 
as components and connectors. 

elementListOne All elements in architecture one 
elementListTwo All elements in architecture two 
diff empty 

/* 
Inspect all elements in the first structure and compare them 
to elements in the second structure to check for additions. 
*/ 
for each elementl in elementListOne 
( 

/* 

if an element in elementListTwo has an 10 matching 
elementl. getID () 

element2 element with matching 10 in elementListTwo 
if (!elementl.isEquivalent(element2» 
{ 

else 
( 

/* 
elementl and element2 have same ID but not 
identical internally so are different. 
*/ 
... output warning & terminate ... 

diff. addAdd (elementl) 

Check second list for removals. 
*/ 
for each element2 in elementListTwo 
( 

if no element in elementListOne has an ID matching 
element2.getIO() 

/* 
element2 is an obsolete element. 
*/ 
diff.addRemove(element2) 

Figure 2. Architectural Differencing Algorithm. 

4.3 Replacement 

Simply presenting an architect with the set of elements that have been 
added and removed is not always sufficient to fully understand the difference 
between two architectures. Often, certain sets of changes are related in that 
some set of elements was removed and substituted, in place, by another set 
of elements. To an architect, it is important to gain insight in such 
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replacements because they represent a higher-level concept than a simple list 
of additions and removals. 

We have defined a replacement detection algorithm that, given a target 
architecture (e.g., architecture 2 in Figure 2) and a diff, calculates 
replacement sets. Figure 3 illustrates this algorithm, which operates by 
searching for differing sets of elements that each are entirely surrounded by 
the same set of common elements. Based on the realization that, upon 
replacement of a component or connector, an old link must have been broken 
and replaced by a new link, the algorithm uses links from common elements 
to find potential starting points for replacements. Once such a starting point 
has been found, the algorithm grows the set of elements included in a 
replacement group by step-by-step examining whether a common element is 
found (indicating a boundary) or whether another replaced element is found. 
In doing so, the algorithm not only finds one-on-one replacements, but also 
replacements of the nature in which some number of elements is replaced by 
some other number of elements (e.g., 2 components are replaced by 3 
components and a connector). 

elementCollection All elements in new architecture 
diffcollection All diff elements 
commonElements All common components and connectors 
closedList empty 
openList empty 
replacedGroups Groups of elements that are replaced 
replacedWithGroups Group of elements that replace 

for each element in commonElements 
{ 

if (element not in closedList) 
( 

closedList. add (element) 
for each curLink connecting to an interface of element 
{ 

if (curLink not in closedList) 
{ 

newLink link connecting to this interface 
in target architecture 

if (newLink present « different from curLink) 
( 

/* replacement beginnings found */ 
closedList.add(curLink) 
closedList.add(newLink) 
rGroup new group representing a group 

of replaced elements 
rwGroup new group representing a group 

of replacing elements 
rGroup.add(curLink) 
rwGroup.add(newLink) 
oppositeElement element opposite curLink 

in current architecture 
neWOppositeElement element opposite 

newLink in new architecture 
if (oppositeElement not in commonElements) 
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rGroup. add (oppositeElement) 
if (neWOppositeElement not in commonElements) 

rwGroup. add (newOppositeElement) 
addLinksToOpenList(oppositeElement) 
addLinksToOpenList(newOppositeElement) 

/* Grow replacement group */ 
while (openList not empty) 
( 

} 

link link popped off the openList 
closedList.add(link) 
if (link in new architecture) 

rGroup.add(link) 
else 

rwGroup.add(link) 

oppElement element on the opposite side 
of this link 

if (oppElement not part of the 
commonElements collection) 

addLinksToOpenList(oppElement) 
if (oppElement in new architecture) 

rGroup. add (oppElement) 
else 

rwGroup.add(oppElement) 

replacedGroup. add (rGroup) 
replacedWithGroup. add (rwGroup) 

Figure 3. Replacement Detection Algorithm. 

5. PROPAGATION 

105 

To complement the differencing algorithm used for understanding 
architectural changes, we have defined a merging algorithm that is capable 
of propagating, to a third architecture in the product line architecture, the 
changes captured in a diff. Given a diff and a target architecture, this 
algorithm constructs a new architecture that is the result of merging the diff 
with the target architecture. The algorithm is shown in Figure 4 and iterates 
over each of the elements in the diff and adds those elements that must be 
added and removes those elements that must be removed. Error handling 
(not shown) simply abandons the algorithm in case a conflict occurs (e.g., a 
non-existing element must be removed, an element must be added that 
already exists, a link must be added to a non-existing element). 

Of note is the simplicity of the merging algorithm. Because replacement 
was relegated to a separate algorithm rather than incorporated in the diff 
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representation, an architectural diff is simply stated in terms of additions and 
removals and the merging algorithm only has to follow those instructions 
step-by-step. 

Critical in the functioning of the merging algorithm is the presence of 
some common elements among the original two product architectures that 
were used to construct the diff, and the third architecture upon which the diff 
is applied. Without at least a few common elements, the merge algorithm 
would clearly not be able to function. Fortunately, the very nature of product 
line architectures is such that most, if not all, of its products share a set of 
common architectural elements that form the core of the product line. While 
we, thus, believe our algorithms to be effective within the domain of product 
line architectures, their application to random, non-related architectures may 
not give as good results. 

elementCollection All elements in target architecture 

diffCollection All diff elements 

for each diffElement in diffCollection 
{ 

if (diffElement is an Add) 
{ 

addElement element in diffElement 
if (!elementCollection.hasElement(addElement» 
( 

architecture.addElement(addElement) 

else if (diffElement is a Remove) 
{ 

removeElement element in diffElement 
if (elementCollection.hasElement(removeElement» 
( 

architecture.removeElement(removeElement) 

Figure 4. Architectural Merging Algorithm. 

6. IMPLEMENTATION 

We have created the XML diff schema as part of xADL 2.0 and 
implemented the algorithms in ArchDiff, a new component in the 
ArchStudio environment for architecture-based software development [14]. 
Thus far, we have used ArchDiff extensively on several small examples and 
briefly on one larger demonstration project. This project involved a real-life 
architecture description consisting of hundreds of components and 
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connectors. Our algorithms and tools scaled to support an architecture 
description of this size, and returned results generally within several seconds 
and at most within minutes. The nature of this delay does not lay in the 
algorithms, which are of order 0(n2), but in the implementation which needs 
to perform a large amount of XML processing and is not further optimized in 
any which way. We expect a future version of the tool to be optimized and to 
reduce the differencing and merging time significantly. 

Currently, ArchDiff is entirely text-based with a simple command-line 
interface. We plan for future versions of the tool to incorporate graphical 
views that illustrate the process taking place and allow users to manually 
resolve conflicts as they occur. 

ArchDiff is build upon the xADL 2.0 data binding library [7] that is 
automatically generated by a tool called ApiGen [6]. The data binding 
library preserves any information attached by extension schemas (such as 
source code mappings or versioning metadata) to lower-level xADL 2.0 
elements (such as components and component types). ArchDiff, though 
implemented to operate at the level of components and component types, 
therefore supports extensions and does not have to be reimplemented when 
new modeling concepts are added to xADL 2.0. 

7. CONCLUSION 

This paper makes a small but important contribution to the field of 
product line architecture in developing algorithms that can be used for 
understanding architectural changes and propagating those changes among 
individual architectures in the product line. The strength of the algorithms 
lies in their use of a simple, XML-based representation for capturing 
architectural changes. Different algorithms build upon this representation to 
determine not only those architectural elements that have been added or 
removed, but also those sets of elements that represent replacements within 
the architecture. 

ArchDiff represents only the beginnings of our work in this area. The 
creation of a graphical user interface is clearly at the forefront of our further 
development efforts. However, we also intend to address some more 
fundamental research questions as part of our future work. Most notably, we 
intend to investigate how the differencing and merging algorithms can be 
adapted to support dynamic, run-time updates [13,16]. Given that xADL 2.0 
supports attaching implementation information (such as Java class files) to 
architectural elements, we intend to leverage the above results in developing 
a tool that "merges" architectural changes into a running system by 
removing, instantiating, and linking elements dynamically. Additionally, we 
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intend to investigate the use and applicability of more fine-grained, 
semantic-based differencing and merging algorithms to further support the 
management of architectural change. 
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