
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
J. Bosch et al. (eds.), Software Architecture

10.1007/978-0-387-35607-5_15

http://dx.doi.org/10.1007/978-0-387-35607-5_15

96 Christopher Van der Westhuizen and Andre van der Hoek

products are continuously introduced, existing products evolve, and old
products are phased out. The set of architectural changes resulting from
these actions must be carefully managed. This kind of management involves
addressing two key problems: (1) capturing architectural changes, and (2)
understanding the architectural changes that define the difference between
two products (or two versions of the same product) and propagating these
architectural changes to yet another, third (version of a) product. The first
problem has already been addressed through the advent of architectural
description languages that incorporate facilities for capturing different
versions of a product line architecture [10,17]. The second problem,
however, has not been addressed as of yet.

Consider a situation in which a number of architects maintain a product
line architecture. The product line architecture is defined as a set of core
components and connectors that are shared among all of the products, and a
set of per-product components and connectors that define the unique aspects
of each product. Furthermore, the evolution of the product line architecture
is explicitly captured at the level of individual components and connectors,
at the level of the products themselves, and at the level of the overall product
line architecture. One architect, responsible for maintaining a part of the
product line architecture description that consists of some specific products,
quits the organization. Fortunately, another architect who was responsible
for those products just six months ago is able to take over. A first task for
this architect is to get up to speed with the current state of the evolved
products, i.e., to understand what has changed between six months ago and
now. After spending quite some time examining the product line architecture
description of six months ago and now, the architect gains the desired level
of understanding and, in the process, realizes that a number of other products
in the product line can benefit from the advances made by the changes to the
products. A second task, then, is for the architect to propagate those changes
from the products in which they were originally incorporated to those that
can benefit.

Although it is possible for the architect to carry out all of these tasks
manually, it may be an intricate job that requires a significant amount of
time and effort, especially if the product line is large and contains many
different versions of many different products that each consist of many
components and connectors. Clearly, it is desirable that the architect has
automated support, not only in this scenario, but also in similar scenarios in
which it is important to understand and propagate architectural changes.

This paper begins to address this problem and is based on the recognition
that understanding and propagating architectural changes bears great
resemblance to a similar, long-standing issue in the field of configuration
management: understanding the exact nature of source code changes as they

Understanding and Propagating Architectural Changes 97

have been made over time and propagating selected changes from one
version of a software system to another [4]. To address this problem,
differencing and merging algorithms have been developed [3]. However,
direct application of these algorithms to architectures would not yield the
desired result. Because existing algorithms typically only operate on textual
artifacts and are line-based in their operations, they cannot be aware of any
specific architectural semantics and therefore offer little help, particularly in
the understanding of architectural changes. Nonetheless, these algorithms
form a solid basis upon which our approach is based. Specifically, we have
adapted them in making three contributions to the field of software
architecture. First, we have enhanced an existing representation for product
line architectures, xADL 2.0 [5], with a representation in which the exact
difference between two products in a product line architecture can be
captured. Second, we have created a differencing algorithm that uses the
representation to create an understanding of the exact set of architectural
changes that constitute a difference between two products. Third, we have
created a merging algorithm through which it is possible to propagate such
architectural changes to other products in the product line.

The remainder of this paper details our approach and is organized as
follows. In Section 2 we provide some background material regarding
differencing and merging algorithms as they exist in the field of
configuration management. Section 3 introduces xADL 2.0, the
representation for product line architectures upon which we have based our
research. Subsequently, Section 4 introduces our approach to understanding
architectural change, including the representation for capturing architectural
change and the differencing algorithm. Section 5 highlights the merging
algorithm used for propagating architectural changes. Section 6 briefly
discusses the implementation of the algorithms and we conclude in Section 7
with an outlook at future work.

2. BACKGROUND

Differencing and merging algorithms as used in the field of configuration
management rely on comparing text-files on a line-by-line basis [3]. In this
process, lines are atomic. A line is considered either exactly the same or
completely different. A traditional configuration management differencing
tool, then, takes as input two text files and outputs a "diff' containing an
ordered list of those lines that have been added, removed, or replaced. This
diff output is normally in textual form, but can usually be visualized if
necessary.

98 Christopher Van der Westhuizen and Andre van der Hoek

Configuration management merge tools follow the same process. Based
upon an available text file and diff, a merged result is calculated based upon
lines of text. Conflicts either result in failure of the merge altogether, or are
highlighted in the text such that users can manually resolve them. As of late,
visual tools have greatly reduced the effort involved in merging by
graphically highlighting merge results along with the input files, thereby
allowing users to guide and tailor the merge algorithm to suit their needs
[1,9,12].

These traditional differencing and merging algorithms typically aim to be
language independent and, thus, do not further analyze or use the contents of
the documents upon which they operate. Herein lies the problem with their
application to the domain of understanding and propagating architectural
changes within product line architectures. Although they may be able to
operate on text files containing architectural descriptions, the result would be
distinctly non-architectural in nature. This represents a particular problem in
understanding the replacement of architectural elements. Whereas our
algorithm described in Section 4.3 discovers architectural replacement
semantically, a text-based differencing algorithm only would find lines of
text that may have been replaced with others. Although this may accidentally
coincide with the semantically desired result, such a result is dependent on
the order in which architectural elements are placed in an architectural
description. Since, more often than not, such placement is random and
architectural elements are randomly spread throughout the description, text­
based differencing almost always leads to incorrect replacement detection at
the architectural level.

Recently, more semantic algorithms have been developed in a number of
domains. In using abstract syntax trees, differencing and merging tools have
been created that operate on, for example, UML diagrams [18]. Similarly,
algorithms are now being researched that attempt to understand and interpret
the difference between HTML pages [8], and XML-based differencing and
merging tools have been developed that operate in terms of XML elements
rather than lines of text [11]. It should be noted that direct application of the
XML algorithms, although leading to higher-level results than text-based
algorithms, still does not provide us with the desired level of functionality.
As with text-based merging, related changes that constitute a replacement
are not detected unless the changes happen to be in a consecutive part of the
XML file. Nonetheless, the algorithms described in this paper fall in the
same class as these semantic algorithms and build upon the results to date.

Understanding and Propagating Architectural Changes 99

3. xADL2.0

xADL 2.0 [5,7] is an extensible representation for product line
architectures that was born out of the observation that, while each new
architecture description language usually contributes some kind of unique
feature, most share a relatively large set of common modeling concepts [15].
To leverage this commonality while still allowing individual advances and
contributions, xADL 2.0 is constructed as a set of extensible XML schemas.
To create a new architecture description language with some particular set of
exclusive modeling features, an initial set of schemas is chosen that provides
the base set of features. If desired, features can be modified by extending
some of the selected XML schemas with new definitions of existing
modeling features. Additional features are then added by writing new XML
schemas on top of the selected (and possibly modified) schemas.

xADL 2.0 already incorporates a number of schemas defining common
architectural elements. The cornerstone of xADL 2.0 is formed by the
Structure and Types schema, which defines the modeling features for
capturing a particular architecture at design-time. Specifically, the schema
allows the definition of the basic structure of one particular architecture in
terms of a set of components, connectors, interfaces, and links among those
elements. In addition, the schema provides a typing mechanism through
which elements in the structure can be assigned specific types.

The Options, Variants, and Versioning schemas extend the Structure and
Types schema with modeling features for product line architectures. The
Options schema allows for the definition of elements that mayor may not be
present upon instantiation of a particular architecture as defined per the
Structure and Types schema. The Variant schema allows the definition of
alternatives: depending on a property selection mechanism, an architectural
element in the structure is configured to be one of multiple types. This is
critical in bringing variability into the picture: by introducing specific
variation points, different products can be defined in a single product line
architecture. Finally, the Versions schema allows the modeling of the
evolution of a product line architecture, in terms of each of its individual
types, each of its products, and the overall product line architecture.

4. UNDERSTANDING DIFFERENCES

To understand and propagate architectural changes, it is necessary to
represent them first. Therefore, we extended xADL 2.0 with an additional
XML schema in which to capture architectural changes. Based on this
schema, we defined two algorithms. The first performs architectural

100 Christopher Van der Westhuizen and Andre van der Hoek

differencing by taking two architectures-each representing one (version of
a) product-and automatically calculating the difference in terms of
additions and removals of elements (elements being the entities defined in
the xADL 2.0 Structure and Types schema: components, component types,
connectors, connector types, interface types, and opaque links among the
interfaces on the components and connectors). The second algorithm
complements the first by calculating which additions and removals constitute
replacements, thereby enhancing the level of understanding an architect may
gain from using our approach. Below, we first discuss the schema and then
introduce each of the algorithms.

4.1 XML schema for representing architectural changes

Figure 1 presents the XML schema we developed for capturing
architectural change. The schema as shown is somewhat condensed in that
commentary and some XML namespace details are left out for brevity. The
schema is straightforward in simply defining an architectural "diff' as a
series of additions and removals of architectural elements. Nonetheless, three
important observations are in place about the design of the schema. First, it
should be noted that the schema is based on the Structure and Types schema
of xADL 2.0. In particular, each addition of an element contains the full
definition of the element as specified in the Structure and Types schema.
This has two distinct advantages.

1. The original architectural specification does not have to be present if
a merge is being performed with another architecture. All necessary
data is contained in the diff.

2. The differencing and merging algorithms do not have to be
reimplemented with each change in the XML schemas. The nature
of our XML tool support [7] is such that any additional information
as specified in extension schemas is automatically included in the
diff. Thus, if a particular extension has augmented a component type
with, for example, a mapping to source code, our implementations of
the differencing and merging algorithms automatically incorporate
that information in the diff (see also Section 6).

The second observation pertains to the fact that removals are specified in
terms of identifiers. An important design consideration in xADL 2.0 is that
each and every element has a unique identifier and that any change to an
element will result in that element having anew, once again unique,
identifier. This allows the removal of an element to simply be based on these

Understanding and Propagating Architectural Changes 101

identifiers, since two elements with the same identifier are guaranteed to be
the same element and any two elements that have a different identifier are
guaranteed to be different elements. This holds true even if two elements are
in different architectural specifications.

The final observation is that the schema does not directly incorporate
replacements. Traditional difference formats are three-tiered and distinguish
additions, removals, and replacements [3]. In our approach, we decided upon
a two-tiered approach for simplicity reasons. Leaving out replacements
keeps the schema, differencing algorithm, and merging algorithm
straightforward and allows separate treatment of the more difficult
replacement problem (see Section 4.3).

<xsd:schema
xmlns="http://www.ics.uci.edu/pub/arch/xArch/diff.xsd">

<xsd:element name="diff" type="Diff"/>

<xsd:complexType name="Add">
<xsd:choice>

<xsd:element name="component"
type="types:Component"/>

<xsd:element name="connector"
type="types:Connector"/>

<xsd:element name="link"
type="types:Link"/>

<xsd:element name="componentType"
type="types:ComponentType"/>

<xsd:element name="connectorType"
type="types:ConnectorType"/>

<xsd:element name="interfaceType"
type="types:lnterfaceType"/>

</xsd:choice>
</xsd:complexType>

<xsd:complexType name="Remove">
<xsd:attribute name="removeld"

type="archinstance:ldentifier"/>
</xsd:complexType>

<xsd:complexType name="DiffPart">
<xsd:choice>

<xsd:element name = " add" type="Add"/>
<xsd:element name="remove" type="Remove"/>

</xsd:choice>
</xsd:complexType>

<xsd:complexType name="Diff">
<xsd:sequence>

<xsd:element name="diffPart" type="DiffPart"
minOccurs="O" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>
Figure 1. XML Schema for Representing Architectural Changes.

102 Christopher Van der Westhuizen and Andre van der Hoek

4.2 Architectural differencing

Based upon the XML schema defined in previous section, we have
defined a differencing algorithm that takes as its input two product
architectures and creates as its output an XML diff file adhering to the XML
schema. Figure 2 illustrates this algorithm. Because a diff file only contains
additions and removals, and because xADL 2.0 uses unique identifiers for all
of its elements, the differencing algorithm is relatively straightforward. The
basic algorithm iterates over each element (component, connector, link,
component type, connector type, and interface type) in the first architecture,
verifies via identifier comparison whether the element exists in the second
architecture, and if not, adds the element to the diff. If the element does exist
in the second architecture, the algorithm double checks whether the detailed
contents match. If for any reason a mismatch is found (which would be a
violation of the xADL 2.0 principles, but nonetheless could inadvertently
occur if, for example, someone manually edited a xADL 2.0 document), the
algorithm issues a warning and terminates.

After this first phase, it is still necessary to determine superfluous
elements in the second architecture. To do so, the algorithm iterates over
those elements, verifies whether the element exists in the first architecture,
and in case of absence adds instructions in the diff to remove the element. If
the element does exist in the first architecture, nothing needs to be done.

The result of applying the algorithm is a diff adhering to the schema
defined in the previous section. This diff can be viewed with any standard
XML viewer to gain an understanding of what changed between two
architectures. Of note is that the algorithm operates solely in terms of the
Structure and Types schema and does not worry about the selection of
particular products out of a product line architecture (i.e., it does not
interpret elements that are specified according to the Options, Variants, and
Versions schemas). We consider this selection a separate problem, and are
developing separate tools that take as input a set of selection properties and
produce as output the specific product architecture as abstracted out of a
product line architecture. This results in a two-phased approach, which is
appropriate since both selection and differencing are algorithms that can be
reused in many different places. To understand the differences between two
products of a product line architecture, then, one first selects two (versions
ot) products by applying the selection algorithm twice. Only then, the
differencing algorithm can be applied.

Note that the differencing algorithm is inherently architecture-based.
Whereas a line-based or XML-based differencing algorithm would have
identified small-grained elements that may have changed (e.g., individual
lines in an architectural description or XML tags or elements), our algorithm

Understanding and Propagating Architectural Changes 103

results in a diff that naturally operates in terms of architectural elements such
as components and connectors.

elementListOne All elements in architecture one
elementListTwo All elements in architecture two
diff empty

/*
Inspect all elements in the first structure and compare them
to elements in the second structure to check for additions.
*/
for each elementl in elementListOne
(

/*

if an element in elementListTwo has an 10 matching
elementl. getID ()

element2 element with matching 10 in elementListTwo
if (!elementl.isEquivalent(element2»
{

else
(

/*
elementl and element2 have same ID but not
identical internally so are different.
*/
... output warning & terminate ...

diff. addAdd (elementl)

Check second list for removals.
*/
for each element2 in elementListTwo
(

if no element in elementListOne has an ID matching
element2.getIO()

/*
element2 is an obsolete element.
*/
diff.addRemove(element2)

Figure 2. Architectural Differencing Algorithm.

4.3 Replacement

Simply presenting an architect with the set of elements that have been
added and removed is not always sufficient to fully understand the difference
between two architectures. Often, certain sets of changes are related in that
some set of elements was removed and substituted, in place, by another set
of elements. To an architect, it is important to gain insight in such

104 Christopher Van der Westhuizen and Andre van der Hoek

replacements because they represent a higher-level concept than a simple list
of additions and removals.

We have defined a replacement detection algorithm that, given a target
architecture (e.g., architecture 2 in Figure 2) and a diff, calculates
replacement sets. Figure 3 illustrates this algorithm, which operates by
searching for differing sets of elements that each are entirely surrounded by
the same set of common elements. Based on the realization that, upon
replacement of a component or connector, an old link must have been broken
and replaced by a new link, the algorithm uses links from common elements
to find potential starting points for replacements. Once such a starting point
has been found, the algorithm grows the set of elements included in a
replacement group by step-by-step examining whether a common element is
found (indicating a boundary) or whether another replaced element is found.
In doing so, the algorithm not only finds one-on-one replacements, but also
replacements of the nature in which some number of elements is replaced by
some other number of elements (e.g., 2 components are replaced by 3
components and a connector).

elementCollection All elements in new architecture
diffcollection All diff elements
commonElements All common components and connectors
closedList empty
openList empty
replacedGroups Groups of elements that are replaced
replacedWithGroups Group of elements that replace

for each element in commonElements
{

if (element not in closedList)
(

closedList. add (element)
for each curLink connecting to an interface of element
{

if (curLink not in closedList)
{

newLink link connecting to this interface
in target architecture

if (newLink present « different from curLink)
(

/* replacement beginnings found */
closedList.add(curLink)
closedList.add(newLink)
rGroup new group representing a group

of replaced elements
rwGroup new group representing a group

of replacing elements
rGroup.add(curLink)
rwGroup.add(newLink)
oppositeElement element opposite curLink

in current architecture
neWOppositeElement element opposite

newLink in new architecture
if (oppositeElement not in commonElements)

Understanding and Propagating Architectural Changes

rGroup. add (oppositeElement)
if (neWOppositeElement not in commonElements)

rwGroup. add (newOppositeElement)
addLinksToOpenList(oppositeElement)
addLinksToOpenList(newOppositeElement)

/* Grow replacement group */
while (openList not empty)
(

}

link link popped off the openList
closedList.add(link)
if (link in new architecture)

rGroup.add(link)
else

rwGroup.add(link)

oppElement element on the opposite side
of this link

if (oppElement not part of the
commonElements collection)

addLinksToOpenList(oppElement)
if (oppElement in new architecture)

rGroup. add (oppElement)
else

rwGroup.add(oppElement)

replacedGroup. add (rGroup)
replacedWithGroup. add (rwGroup)

Figure 3. Replacement Detection Algorithm.

5. PROPAGATION

105

To complement the differencing algorithm used for understanding
architectural changes, we have defined a merging algorithm that is capable
of propagating, to a third architecture in the product line architecture, the
changes captured in a diff. Given a diff and a target architecture, this
algorithm constructs a new architecture that is the result of merging the diff
with the target architecture. The algorithm is shown in Figure 4 and iterates
over each of the elements in the diff and adds those elements that must be
added and removes those elements that must be removed. Error handling
(not shown) simply abandons the algorithm in case a conflict occurs (e.g., a
non-existing element must be removed, an element must be added that
already exists, a link must be added to a non-existing element).

Of note is the simplicity of the merging algorithm. Because replacement
was relegated to a separate algorithm rather than incorporated in the diff

106 Christopher Van der Westhuizen and Andre van der Hoek

representation, an architectural diff is simply stated in terms of additions and
removals and the merging algorithm only has to follow those instructions
step-by-step.

Critical in the functioning of the merging algorithm is the presence of
some common elements among the original two product architectures that
were used to construct the diff, and the third architecture upon which the diff
is applied. Without at least a few common elements, the merge algorithm
would clearly not be able to function. Fortunately, the very nature of product
line architectures is such that most, if not all, of its products share a set of
common architectural elements that form the core of the product line. While
we, thus, believe our algorithms to be effective within the domain of product
line architectures, their application to random, non-related architectures may
not give as good results.

elementCollection All elements in target architecture

diffCollection All diff elements

for each diffElement in diffCollection
{

if (diffElement is an Add)
{

addElement element in diffElement
if (!elementCollection.hasElement(addElement»
(

architecture.addElement(addElement)

else if (diffElement is a Remove)
{

removeElement element in diffElement
if (elementCollection.hasElement(removeElement»
(

architecture.removeElement(removeElement)

Figure 4. Architectural Merging Algorithm.

6. IMPLEMENTATION

We have created the XML diff schema as part of xADL 2.0 and
implemented the algorithms in ArchDiff, a new component in the
ArchStudio environment for architecture-based software development [14].
Thus far, we have used ArchDiff extensively on several small examples and
briefly on one larger demonstration project. This project involved a real-life
architecture description consisting of hundreds of components and

Understanding and Propagating Architectural Changes 107

connectors. Our algorithms and tools scaled to support an architecture
description of this size, and returned results generally within several seconds
and at most within minutes. The nature of this delay does not lay in the
algorithms, which are of order 0(n2), but in the implementation which needs
to perform a large amount of XML processing and is not further optimized in
any which way. We expect a future version of the tool to be optimized and to
reduce the differencing and merging time significantly.

Currently, ArchDiff is entirely text-based with a simple command-line
interface. We plan for future versions of the tool to incorporate graphical
views that illustrate the process taking place and allow users to manually
resolve conflicts as they occur.

ArchDiff is build upon the xADL 2.0 data binding library [7] that is
automatically generated by a tool called ApiGen [6]. The data binding
library preserves any information attached by extension schemas (such as
source code mappings or versioning metadata) to lower-level xADL 2.0
elements (such as components and component types). ArchDiff, though
implemented to operate at the level of components and component types,
therefore supports extensions and does not have to be reimplemented when
new modeling concepts are added to xADL 2.0.

7. CONCLUSION

This paper makes a small but important contribution to the field of
product line architecture in developing algorithms that can be used for
understanding architectural changes and propagating those changes among
individual architectures in the product line. The strength of the algorithms
lies in their use of a simple, XML-based representation for capturing
architectural changes. Different algorithms build upon this representation to
determine not only those architectural elements that have been added or
removed, but also those sets of elements that represent replacements within
the architecture.

ArchDiff represents only the beginnings of our work in this area. The
creation of a graphical user interface is clearly at the forefront of our further
development efforts. However, we also intend to address some more
fundamental research questions as part of our future work. Most notably, we
intend to investigate how the differencing and merging algorithms can be
adapted to support dynamic, run-time updates [13,16]. Given that xADL 2.0
supports attaching implementation information (such as Java class files) to
architectural elements, we intend to leverage the above results in developing
a tool that "merges" architectural changes into a running system by
removing, instantiating, and linking elements dynamically. Additionally, we

108 Christopher Van der Westhuizen and Andre van der Hoek

intend to investigate the use and applicability of more fine-grained,
semantic-based differencing and merging algorithms to further support the
management of architectural change.

ACKNOWLEDGMENTS

The authors would like to thank Eric Dashofy for his valuable
contributions to the described research.

Effort sponsored by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-00-2-0599. Effort also
partially funded by the National Science Foundation under grant number
CCR-0093489. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air Force Laboratory,
or the U.S. Government.

REFERENCES

[1] Allen, L., Fernandez, G., Kane, K., Leblang, D., Minard, D., and Posner, J.
ClearCase MultiSite: Supporting Geographically-Distributed Software
Development. In Software Configuration Management: ICSE SCM-4 and
SCM-5 Workshops Selected Papers. p. 194-214, Springer-Verlag, 1995.

[2] Bosch, J. Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. ed. Wesley, A. 2000.

[3] Buffenbarger, J. Syntactic Software Merging. In Software Configuration
Management: ICSE SCM-4 and SCM-5 Workshops Selected Papers. p.
153-172, Springer-Verlag, 1995.

[4] Conradi, R. and Westfechtel, B. Version Models for Software
Configuration Management ACM Computing Surveys. 30(2), p. 232-282,
1998.

[5] Dashofy, E., van der Hoek, A., and Taylor, R.N. A Highly-Extensible,
XML-Based Architecture Description Language. In Proceedings of the The
Working IEEElIFIP Conference on Software Architecture (WICSA 2001).
Amsterdam, The Netherlands, August 28-31,2001.

Understanding and Propagating Architectural Changes 109

[6] Dashofy, E.M. Issues in Generating Data Bindings for an XML Schema­
Based Language. In Proceedings of the Workshop on XML Technologies in
Software Engineering. 2001.

[7] Dashofy, E.M., van der Hoek, A., and Taylor, R.N. An Infrastructure for

the Rapid Development of XML-based Architecture Description
Languages. In Proceedings of the 24th International Conference on
Software Engineering. p. (to-appear), 2002.

[8] Douglis, F., Ball, T., Chen, Y.-F., and Koutsofios, E. The AT&T Internet

Difference Engine: Tracking and Viewing Changes on the Web. World
Wide Web. 1(1), p. 27-44, January, 1998.

[9] Flamsholt, R. Viff - A Tool for Visual Diffing and Merging.
<http://www.richard.flamsholt.dklsrc/viff/viff.html>. Web site accessed on
0310612001.

[10] van der Hoek, A., Mikic-Rakic, M., Roshandel, R., and Medvidovic, N.
Taming Architectural Evolution. In Proceedings of the Sixth European
Software Engineering Conference (ESEC) and the Ninth ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-9). p. 1-10,
Vienna, Austria, September 10-14, 2001.

[11] IBM. XML Diff and Merge Tool. <http://www.alphaworks.ibm.com!­
tech/xmldiffmerge>, Web site accessed on 0111712002.

[12] INTERSOLV. Using PVCS for Enterprise Distributed Development.
1998.

[13] Kramer, J. and Magee, J. The Evolving Philosophers Problem: Dynamic
Change Management IEEE Transactions on Software Engineering. 16(11),
p. 1293-1306, 1990.

[14] Medvidovic, N., Oreizy, P., Taylor, R.N., Khare, R., and Guntersdorfer, M.
An Architecture-Centered Approach to Software Environment Integration.
<ftp:/Iwww.ics.uci.eduipub/arch/papersITR-UCI-ICS-00-11.pdf>, Web site
accessed on March.

[15) Medvidovic, N.M. and Taylor, R.N. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering., p. 70-93, 2000. .

[16] Oreizy, P. and Taylor, R.N. On the Role of Software Architectures in
Runtime System Reconfiguration. In Proceedings of the Fourth
International Conference on Configurable Distributed Systems. p. 61-70,
IEEE Computer Society Press, 1998.

[17] van Ommering, R., van der Linden, F., Kramer, 1., and Magee, J. The

Koala Component Model for Consumer Electronics Software. Computer.
33(3), p. 78-85, 2000.

[18] Ziindorf, A., Wadsack, J.P., and Rockel, I. Merging Graph-Like Object

Structures. In Proceedings of the Tenth International Workshop on
Software Configuration Management. 2001.

	Understanding and Propagating ArchitecturalChanges
	1. INTRODUCTION
	2. BACKGROUND
	3. xADL2.0
	4. UNDERSTANDING DIFFERENCES
	4.1 XML schema for representing architectural changes
	4.2 Architectural differencing
	4.3 Replacement

	5. PROPAGATION
	6. IMPLEMENTATION
	7. CONCLUSION
	REFERENCES

