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powerful and adaptive AMR (Adaptive Multi Rate) coder which is 
recommended for the UMTS. At the same time, a multimedia terminal will 
have to support the evolution of different standards and services, mentioned 
in Figure 1, and the integration of new services which still have to be 
imagined. 
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Figure 1. Block diagram of a third-generation transmission system 

From an architectural point of view, furthermore this kind of flexibility 
which is usually referred to as software, the third-generation (3G) systems 
must have another kind of flexibility which is far more problematic: That of 
the Hardware. In fact, multimedia terminals will have to ensure successively 
the execution of very different applications in terms of calculation and data 
access patterns. For example, a Viterbi coder working at the bit level could 
follow an MPEG-2 coder working on 8-bit data. These processing 
modifications are then much more problematic since it will be necessary, in 
order to be efficient, to dynamically adapt the architecture to these changes. 

Because of the lack of flexibility in ASICs and the low level of 
performance associated with the high energy consumption of the DSPs, the 
reconfigurable architectures are more and more taken into consideration to 
answer the problems associated with the 3G-telecommunications [11]. 
However, in spite of the quantity of projects on reconfigurable computing 
[8], none of them ambition to solve all the problems listed above. Some of 
these architectures are dynamically reconfigurable, others are multi­
granularity or low-power but none of them is really adapted to this 
application domain. 

Among these projects, some architectures related to our work can 
however be distinguished. The PleIades project for example [1] is an 
architecture template supporting various granularity of calculation. Although 
this architecture has been designed under low-power constraints, it does 
however not met all our requirements. In fact, even if this architecture 
associates low-energy and high-performance, its flexibility is limited since it 
is domain specific. The dynamic reconfiguration proposed by the 
Chameleon™ processor [13] allows a flexibility which does not limit its use 
to dedicated processings. This architecture, thanks to the large amount of 
operators that are integrated, supports the 3G-telecommunication complexity 
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but in spite of its flexibility and its performances, it is unusable in an 
embedded system because of its high-energy consumption. 

Moreover these two examples, many other projects on reconfigurable 
computing are based on the use of FPOA. Some of these projects, like 
OARP [9] or NAPA [12], associate a reconfigurable circuit to a 
programmable processor or controller. Furthermore, other architectures such 
as Piperench [6] or RAPID [4] can be reconfigured at a higher level in a 
more efficient way, respectively at the operator and at the functional level. 
However, they do not meet all the requirements that come from the 
application domain. In fact, some are low power, others are very flexible or 
very powerful, but none of them associates the performance to the flexibility 
and the energy efficiency needed by portable multimedia terminals. 

In order to answer to the overall problem of 30 telecommunications, a 
new architecture, called DART, is proposed. The aim of this paper is to 
present this architecture and to demonstrate its potential via some 
implementation examples. The next section focuses on the DART 
architecture. In the section 3, on the basis of key component study, we will 
estimate the level of performance and the energy efficiency of DART as well 
as its adequacy with next generation telecommunication domain. This paper 
will finally evoke the software tools associated to DART in the conclusion. 

2. THE DART ARCIDTECTURE 

So that the user can use only one development platform and do not have 
to worry about the interfacing of the architecture with the rest of the system, 
DART is fully autonomous. This architecture has been designed to get the 
programming model as simple as possible. This is obtained by organizing 
the architecture into a hierarchy which allows the partitioning of the 
development flow. This hierarchy concerns the calculation, the storage, the 
interconnection and the control resources. 

2.1 Processing primitives 

The diversity of the calculation granularity levels in a 30 data processing 
sequence led us to integrate two kinds of operator in DART. For bit-level 
operations, we use an FPOA core, which allows a reconfiguration at the gate 
level. For arithmetic processings, we use some Reconfigurable DataPath 
(DPR), with a reconfiguration at the functional level. In order to optimize the 
architecture according to the application, we exploit the dynamic 
reconfiguration at both level of granularity. 
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The arithmetic processing primitives in DART are the DPRs fitted in 
Figure 2. They are organized around functional resources and memories, 
interconnected according to a very powerful communication network. 

Figure 2. Architecture of a DPR 
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Every DPR have 4 functional units followed by a register, namely 2 
multipliers (16x16->32) and 2 reconfigurable ALUs (32+40->40), 
supporting Sub-Word Processings. They are working on data stored in 4 
local memories (256x16bits) which permit 4 read/write per cycle. In addition 
to these memories, 2 registers are also available in every DPR. These 
registers are particularly useful for data flow oriented applications where the 
different functional units are working on the same data flow but on samples 
delayed from one iteration to the following. In fact, in that case, these 
registers will be used to build delay chains that will allow the time-sharing of 
the data. All these resources are connected via an entirely connected 
network. The right part of the Figure 2 facts also of appearing some 
connections with global buses which permit to connect several DPRs for the 
massively parallel processings. 

For the low-level processings, DART integrates an FPGA core. It will, 
for example, be very effective for the generation of Gold or Kasami code in 
W -CDMA [5], just as for channel coding algorithms. The operators are now 
LUTs, dynamically reconfigured as well as their interconnection network. 

2.2 Cluster organisation 

The processing primitives previously mentioned are integrated within the 
clusters of DART represented on figure 3. They integrate an FPGA core and 
6 DPRs interconnected via a segmented network. Thus, every DPR can work 
independently from the others or be connected to them thanks to Switching 
Boxes that allow some flexibility in their connections. Every cluster also 
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integrates a data memory which is shared between all the processing 
elements, and a configuration memory dedicated to the FPGA. For its last, 
the reconfiguration will be done in a serial manner, thanks to the DMA 
controller. 
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Figure 3. Architecture of a cluster 
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The cluster controller manages the DPRs and their reconfigurations. Its 
primary task is so to sequence the reconfiguration instructions of the cluster. 
Its architecture is similar to that of a controller in a typical DSP processor. 
However, it sequences configurations rather than instructions and so, it does 
not need to access an instruction memory at every cycle, but only when a 
reconfiguration occurs. This allows very significant energy savings. 

2.3 Dynamic Reconfiguration 

Resource 
Interconnect 
Clock guard 
Multiplier 
ALU 
total 

Bits/resource 
92 
1 
3 
11 

ResourceJDPR 
1 
10 
2 
2 

BitsIDPR 
92 
10 
6 
22 
130 

Table 1. Reconfiguration instruction width 

Bits/cluster 
592 
60 
36 
132 
820 

The DPRs are dynamically reconfigured due to instructions carried out 
from the cluster controller. The Table 1 resumes the targets of the 
reconfiguration and the number of bits necessary to this operation. This table 
shows that the dynamic reconfiguration of a cluster will require more than 
800 bits. Wishing to be able to reconfigure the cluster in one cycle, to be 
effective in both regular and irregular applications, a disproportionately large 
amount of memory would have to be used. A more thorough examination of 
Table 1 led us to discern two kinds of processing. 
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2.3.1 Hardware reconfiguration 

The regular processings are typically those that can be found in loop 
kernels. They are realized during long periods of time and are composed of 
very few operations. In order to optimize the datapath for the calculation 
pattern during these regular processings, a hardware reconfiguration will be 
done. The configuration being used the time of the processing, its 
modification is very occasional and it can so require a large amount of data 
without disturbing the execution of the entire processing. Moreover, the 
reconfiguration periods of the different DPRs in the cluster will be disjointed 
unless these DPRs are executing the same task. 

The reconfiguration can so concern only one DPR per cycle without 
lowering the performances. This property allows the controller to manage 
only one instruction per cycle and so to be less complex while authorizing 
the simultaneous reconfiguration of several DPRs in the cluster. In that case, 
every DPR concerned by the reconfiguration will have its datapath 
optimized for the same processing pattern. We define this as the Single 
Configuration Multiple Data (SCMD) concept. This hardware 
reconfiguration will require between 4 and 9 instructions of 52-bit width. 
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Figure 4. Hardware reconfiguration 

This kind of configuration can for example be illustrated by the Figure 4. 
In this figure, the datapath is optimized at first in order to compute a filtering 
based on Multiply-ACcumulate operations. Once this configuration has been 
specified, the computation model is of dataflow type and no other instruction 
memory readings are done during the time of the filtering. At the end of the 
computation, after a reconfiguration step which needs 4 cycles, a new 
datapath is specified in order to be in adequacy with the computation of the 
square of the difference between x(n) and x(n-l). Once again, no control is 
necessary to conclude this processing. 

2.3.2 Software reconfiguration 

On the other hand, all the processings in UMTS are not regular and 
DART must be able to execute very different processings, from one cycle to 
the following. The efficiency of the processing is thus less important since it 
will be executed once. This property imposes to minimize the amount of data 
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necessary to the reconfiguration and therefore, the flexibility of the DPRs. It 
has been decided to adopt a calculation pattern of Read-Modify-Write type, 
such as those that are used in conventional DSPs. rml Mem2 
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Figure 5. Software reconfiguration 

This software reconfiguration thus concerns only the functionality of the 
operators and the origin of the data handled by the application. Thanks to 
these flexibility limitations, the DPR may be reconfigured at each cycle with 
only one 52-bit instruction, as illustrated in Figure 5. Like in hardware 
reconfiguration, the controller handles only one instruction per cycle which 
is sufficient since irregular processings have little parallelism. 

2.4 The address generation units 

Since the controller task is limited to the management of the 
reconfigurations, DART must integrate some dedicated resources for address 
generation. These units must provide the addresses of the data handled in the 
DPRs for each memory during the dataflow tasks. In order to be efficient in 
a large variety of application, they support numerous addressing pattern (bit­
reverse, modulo, pre/post increment, ... ). These units are built around a 
module in charge of sequencing the accesses to an instruction memory 
(64x16-bits). In order to minimize the energy consumption, these accesses 
will take place only when an address has to be generated. For that, the 
sequencer may be put in Wait State thanks to an instruction which will 
moreover specify the number of Wait State. Another module is then in 
charge of waking up the sequencer after the number of cycle specified in the 
instruction. Even if this method needs some additional resources, its interest 
is largely justified with the energy savings. 

Once, the instruction has been red, it is decoded in order to control a 
small datapath which will supply the addresses. On top of the four address 
generation units of each DPR (one per memory), a module will provide a 
zero-overhead loop support. Thanks to this module, up to four levels of 
nesting will be supported, each loop kernel being able to contain up to eight 
instructions, without any additional cycle for their management. 
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2.S System level architecture of DART 

As it has been said below, DART is fully autonomous. Hence, DART 
integrates a task controller which manage 4 clusters accessing a same data 
memory space. At this system view (Figure 6), the clusters can now be 
considered as the processing primitives of DART and the task controller is in 
charge of assigning the different tasks to be executed on the clusters 
according to urgency and resource availability constraints. It has to support a 
Real-Time Operating System. The configurations ofthe clusters are realized 
dynamically, since the task controller as only to specify to the cluster 
controller, which task has to be executed. The configuration support is thus 
only an address bound which corresponds to the location of the program in 
the cluster memory. In the same time, the data have obviously to be loaded 
into the cluster memories. 
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Figure 6. System level architecture of DART 

3. DART EVALUATION 

In order to validate the architecture and to evaluate its potential, some 
key applications of the UMTS have been implemented on DART. To 
estimate the performance and the energy efficiency of DART, its main parts 
have been synthesized on a 1.95V ST O.18#Lm technology thanks to the 
Synopsys design tool framework. These synthesis have permitted to extract 
the key features of our design and to integrate them into the DART simulator 
which has been developed in systemC. The results described bellow are 
coming from this simulator. 
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3.1 Some key applications 

Because of the complexity of W-CDMA [10], its implementation in a 
multimedia terminal has to be very effective. In order to test DART for such 
application, a subset of the norm has been implemented, a finger of a rake 
receiver which realizes the complex de spreading, represented by the 
equations 1 and 2, with a spreading factor of 256. 

INB = *Cp(j +'r j ) + QWB(j) * CQ(j +'r j ) (1) 

(2) 

To illustrate the video processings we also have implemented a Discrete 
Cosine Transform, which is working on 8x8 pixels MacroBlocs, since this 
kind of algorithm is nearly systematic in video compression's standards like 
MPEGx or H.26x [7]. The 2 loop kernels of this algorithm are based on a 
Multiplication-ACcumulation. For MacroBloc Raws, the loop kernel is: 

value[y] = L:=ocoef[y][x]*bloc[j +x*8] (3) 

The multimedia terminals of third generation will still be used for the 
transmission of speech between two distant persons and so need very 
effective speech coders [2]. To illustrate these kind of processings, we have 
implemented an autocorrelation, on a signal of 240 samples, preamble of 
Levinson-Durbin algorithm which permits the adaptation of the prediction 
filter coefficients in speech coders such as the EFR or the AMR. The 
mathematical description of this processing is given by equation 4. 

r(p) = £.Jo x(n) * x(n- p) for pE [0 .. 239] (4) 

3.2 Experimentation results 

The Table 2 resumes the implementation results and reveals the potential 
of DART in two ways. The columns of this table specify for each 
application: the number of DPRs needed for the implementation; its number 
of operation; the number of execution cycles; the number of accesses to the 
instruction and to the data memories and finally the energy consumed for the 
execution of the algorithm. 

A lication DPR C cles Inst. Read Data read ener 
Complex Despreading 2 258 4 1032 435.8nJ 
DCT2-D 4 85 6 1088 6O.3nJ 
Autocorrelation 6 2543 43 5040 3.15j.LJ 

Table 2. Implementation results on DART 
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3.2.1 Performance analysis 

A synthesis of the DPR estimate the operating frequency of DART at 130 
MHz. Running at 130 MHz, DART is thus able to provide 260 MMACS 
(260.106 Multiplication-ACcumation per second) on each DPR when 
handling 16 bits data. Integrating 6 DPR per cluster, 1.56 GMACs/cluster 
can be achieved and these figures are doubled when handling 8-bits data as 
in video-coding [6]. From an instruction point of view, DART may deliver 
up to 520 MIPSIDPR or 3.12 GIPS/cluster. As an instruction includes an 
address generation, a memory access and up to 2 operations per multiplier (1 
shift + 1 multiply) or 3 operations per ALU (2 shift + 1 ALU operation), this 
may be translated in 10.9 16-bit OOPS/cluster or 18.7 8-bit OOPS/cluster. 

On each application previously quoted, the flexibility of the DPRs 
permits to obtain very good performances. The Table 2 shows for example 
that a finger of a rake receiver may be implemented on 2 DPRs which is 
allowing us to integrate 3 fingers in each cluster for a processing power 
bigger than 3.6 OOPS. 

The connection of the DPRs being made thanks to a segmented mesh 
network, they can work independently or together. This property may be 
particularly useful. For example, to compute simultaneously a 2-D DCT and 
a finger of a Rake Receiver, within a same task, it would be possible to have 
the two elementary computations running concurrently on a single cluster. 
On the hand, the massively parallel processings such as the 
autocorrelation should occupy all the DPRs, for a very effective execution. 

3.2.2 Energy consumption analysis 

If there are several architectures that can reach such level of performance 
e.g. the Chameleon [3], DART differs from its competitors by allowing a 
very significant energy saving thanks to the data sharing and the memory 
accesses minimization. In fact, the energy efficiency of ASIC is obtained by 
integrating operators that are not any larger or more complicated than they 
need to be and so, that consume a minimum of energy. Moreover, since they 
realize only one operation, the energy overhead of the instruction 
distribution is avoided. On the contrary, to be flexible, the programmable 
processors need general-purpose circuit blocks that are more complex to 
support the execution of several operations. Moreover, to control these 
general-purpose units, an instruction has to be red and decoded at each cycle. 
Since the instructions and the data are stored in very large memories, the 
energy waste in data access and control distribution widely exceed that 
which is useful to perform a computation. These two points are however, 
much less problematic in DART as shown in Table 2. 
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This table shows that only 43 instructions permit the control of the 
autocorrelation. On a conventional DSP processor more than 57,000 
readings from the instruction memory would have to be done. Given the cost 
in energy of a memory access, the gain in energy consumption is therefore 
very important. 

The second source of energy savings in DART is the data sharing. For 
example, on the autocorrelation, DART allows to divide by 12 the number of 
accesses to the data memory and so the energy waste due to this accesses 
(which is typically very high). This data sharing is made easier by the high 
degree of flexibility of the interconnection network and the use of the 
registers in data flow oriented applications. 

In addition to the minimization of the memory accesses, the energy 
consumption of DART is lowered by the minimization of transistor activity. 
This point is essential in an architecture like DART since it must integrate, 
in order to be effective, a large amount of resources. However, all these 
resources will not be used at every cycle. DART has so to avoid making 
them to work when they are not in use to the execution thanks to guarded 
clocks. The energy is also saved in DART by optimizing the operators at the 
bit level and by scaling the voltage and the operating frequency of the 
clusters according to the complexity of the task to be implemented. 

Hence, DART provide more than 9.2 MIPS for each mW consumed for 
16-bit operations and about 15.8 MIPS for Sub-Word Processings. In an 
operation point of view, DART may deliver up to 32 MOPS for each mW 
consumed during the 16-bit operations and up to 55 MOPS for the Sub­
Word Processings. It has to be noted that these 9.2 MIPSlmW are obtained 
in the worst, i.e. when at each cycle, each memory is accessed, 4 addresses 
are generated, and where the functional units realize an arithmetic operation 
on 16-bit data. This is however not the typical case since one of the main 
advantages of this architecture is to allow a large amount of data sharing. 
Practically, the energy consumption of the implementations described below 
are between 11.6 and 16.7 MIPSlmW. 

4. CONCLUSION AND FUTURE WORKS 

This paper has described a dynamically reconfigurable architecture for 
portable multimedia terminals developed within the framework of a project 
associating the University of Brest and ST Microelectronics, funded by the 
industry and research French ministry. We have shown, thanks to our 
implementation examples, that the use of a massively parallel architecture 
can be compatible with low-energy considerations. The next stage is to 
provide tool support for the development flow. This tool, which is in 
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development, is built around a retargetable compiler developed at the IRISA, 
CALIFE [14], able to supply the software configurations and on a 
behavioural synthesis framework, GAUT [15], developed at the laboratory 
which is in charge of generating the Hardware configurations. The codes 
provided by this tool can then be validate on athe DART systemC simulator. 
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