
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
M. Robert et al. (eds.), SOC Design Methodologies

10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40

52 R. David, D. Chillet, S. Pillement, O. Sentieys

powerful and adaptive AMR (Adaptive Multi Rate) coder which is
recommended for the UMTS. At the same time, a multimedia terminal will
have to support the evolution of different standards and services, mentioned
in Figure 1, and the integration of new services which still have to be
imagined.

-iDs Soun:e coding

video
MPtiGx, R26x

Access

EFR,AMR,
audio CEll'. RJ>B.

LTP ...

data
V34. VB,

H22S.H24S •.••

Figure 1. Block diagram of a third-generation transmission system

From an architectural point of view, furthermore this kind of flexibility
which is usually referred to as software, the third-generation (3G) systems
must have another kind of flexibility which is far more problematic: That of
the Hardware. In fact, multimedia terminals will have to ensure successively
the execution of very different applications in terms of calculation and data
access patterns. For example, a Viterbi coder working at the bit level could
follow an MPEG-2 coder working on 8-bit data. These processing
modifications are then much more problematic since it will be necessary, in
order to be efficient, to dynamically adapt the architecture to these changes.

Because of the lack of flexibility in ASICs and the low level of
performance associated with the high energy consumption of the DSPs, the
reconfigurable architectures are more and more taken into consideration to
answer the problems associated with the 3G-telecommunications [11].
However, in spite of the quantity of projects on reconfigurable computing
[8], none of them ambition to solve all the problems listed above. Some of
these architectures are dynamically reconfigurable, others are multi­
granularity or low-power but none of them is really adapted to this
application domain.

Among these projects, some architectures related to our work can
however be distinguished. The PleIades project for example [1] is an
architecture template supporting various granularity of calculation. Although
this architecture has been designed under low-power constraints, it does
however not met all our requirements. In fact, even if this architecture
associates low-energy and high-performance, its flexibility is limited since it
is domain specific. The dynamic reconfiguration proposed by the
Chameleon™ processor [13] allows a flexibility which does not limit its use
to dedicated processings. This architecture, thanks to the large amount of
operators that are integrated, supports the 3G-telecommunication complexity

A Reconfigurable Architecture for Multimedia Terminals 53

but in spite of its flexibility and its performances, it is unusable in an
embedded system because of its high-energy consumption.

Moreover these two examples, many other projects on reconfigurable
computing are based on the use of FPOA. Some of these projects, like
OARP [9] or NAPA [12], associate a reconfigurable circuit to a
programmable processor or controller. Furthermore, other architectures such
as Piperench [6] or RAPID [4] can be reconfigured at a higher level in a
more efficient way, respectively at the operator and at the functional level.
However, they do not meet all the requirements that come from the
application domain. In fact, some are low power, others are very flexible or
very powerful, but none of them associates the performance to the flexibility
and the energy efficiency needed by portable multimedia terminals.

In order to answer to the overall problem of 30 telecommunications, a
new architecture, called DART, is proposed. The aim of this paper is to
present this architecture and to demonstrate its potential via some
implementation examples. The next section focuses on the DART
architecture. In the section 3, on the basis of key component study, we will
estimate the level of performance and the energy efficiency of DART as well
as its adequacy with next generation telecommunication domain. This paper
will finally evoke the software tools associated to DART in the conclusion.

2. THE DART ARCIDTECTURE

So that the user can use only one development platform and do not have
to worry about the interfacing of the architecture with the rest of the system,
DART is fully autonomous. This architecture has been designed to get the
programming model as simple as possible. This is obtained by organizing
the architecture into a hierarchy which allows the partitioning of the
development flow. This hierarchy concerns the calculation, the storage, the
interconnection and the control resources.

2.1 Processing primitives

The diversity of the calculation granularity levels in a 30 data processing
sequence led us to integrate two kinds of operator in DART. For bit-level
operations, we use an FPOA core, which allows a reconfiguration at the gate
level. For arithmetic processings, we use some Reconfigurable DataPath
(DPR), with a reconfiguration at the functional level. In order to optimize the
architecture according to the application, we exploit the dynamic
reconfiguration at both level of granularity.

54 R. David, D. Chillet, S. Pillement, o. Sentieys

The arithmetic processing primitives in DART are the DPRs fitted in
Figure 2. They are organized around functional resources and memories,
interconnected according to a very powerful communication network.

Figure 2. Architecture of a DPR

Global
Buses

Every DPR have 4 functional units followed by a register, namely 2
multipliers (16x16->32) and 2 reconfigurable ALUs (32+40->40),
supporting Sub-Word Processings. They are working on data stored in 4
local memories (256x16bits) which permit 4 read/write per cycle. In addition
to these memories, 2 registers are also available in every DPR. These
registers are particularly useful for data flow oriented applications where the
different functional units are working on the same data flow but on samples
delayed from one iteration to the following. In fact, in that case, these
registers will be used to build delay chains that will allow the time-sharing of
the data. All these resources are connected via an entirely connected
network. The right part of the Figure 2 facts also of appearing some
connections with global buses which permit to connect several DPRs for the
massively parallel processings.

For the low-level processings, DART integrates an FPGA core. It will,
for example, be very effective for the generation of Gold or Kasami code in
W -CDMA [5], just as for channel coding algorithms. The operators are now
LUTs, dynamically reconfigured as well as their interconnection network.

2.2 Cluster organisation

The processing primitives previously mentioned are integrated within the
clusters of DART represented on figure 3. They integrate an FPGA core and
6 DPRs interconnected via a segmented network. Thus, every DPR can work
independently from the others or be connected to them thanks to Switching
Boxes that allow some flexibility in their connections. Every cluster also

A Reconfigurable Architecture for Multimedia Terminals 55

integrates a data memory which is shared between all the processing
elements, and a configuration memory dedicated to the FPGA. For its last,
the reconfiguration will be done in a serial manner, thanks to the DMA
controller.

___ DPR ___ _

- - - PP:& - - - -

___ DPR ____

- - - PP:& - - - - i
L----..''-i - - - DPR - - - -

- - - -DPf{- - --

Figure 3. Architecture of a cluster

Data
Mem

The cluster controller manages the DPRs and their reconfigurations. Its
primary task is so to sequence the reconfiguration instructions of the cluster.
Its architecture is similar to that of a controller in a typical DSP processor.
However, it sequences configurations rather than instructions and so, it does
not need to access an instruction memory at every cycle, but only when a
reconfiguration occurs. This allows very significant energy savings.

2.3 Dynamic Reconfiguration

Resource
Interconnect
Clock guard
Multiplier
ALU
total

Bits/resource
92
1
3
11

ResourceJDPR
1
10
2
2

BitsIDPR
92
10
6
22
130

Table 1. Reconfiguration instruction width

Bits/cluster
592
60
36
132
820

The DPRs are dynamically reconfigured due to instructions carried out
from the cluster controller. The Table 1 resumes the targets of the
reconfiguration and the number of bits necessary to this operation. This table
shows that the dynamic reconfiguration of a cluster will require more than
800 bits. Wishing to be able to reconfigure the cluster in one cycle, to be
effective in both regular and irregular applications, a disproportionately large
amount of memory would have to be used. A more thorough examination of
Table 1 led us to discern two kinds of processing.

56 R. David, D. Chillet, S. Pillement, O. Sentieys

2.3.1 Hardware reconfiguration

The regular processings are typically those that can be found in loop
kernels. They are realized during long periods of time and are composed of
very few operations. In order to optimize the datapath for the calculation
pattern during these regular processings, a hardware reconfiguration will be
done. The configuration being used the time of the processing, its
modification is very occasional and it can so require a large amount of data
without disturbing the execution of the entire processing. Moreover, the
reconfiguration periods of the different DPRs in the cluster will be disjointed
unless these DPRs are executing the same task.

The reconfiguration can so concern only one DPR per cycle without
lowering the performances. This property allows the controller to manage
only one instruction per cycle and so to be less complex while authorizing
the simultaneous reconfiguration of several DPRs in the cluster. In that case,
every DPR concerned by the reconfiguration will have its datapath
optimized for the same processing pattern. We define this as the Single
Configuration Multiple Data (SCMD) concept. This hardware
reconfiguration will require between 4 and 9 instructions of 52-bit width.

Config.l Uml Mona ConIIg.2 Moml
1 16 I Recoat>

X 3 + 32 4cyd.. _

16

y(n)+=x(n)*c(n) y(n)=(x(n)-x(n-I»Z

Figure 4. Hardware reconfiguration

This kind of configuration can for example be illustrated by the Figure 4.
In this figure, the datapath is optimized at first in order to compute a filtering
based on Multiply-ACcumulate operations. Once this configuration has been
specified, the computation model is of dataflow type and no other instruction
memory readings are done during the time of the filtering. At the end of the
computation, after a reconfiguration step which needs 4 cycles, a new
datapath is specified in order to be in adequacy with the computation of the
square of the difference between x(n) and x(n-l). Once again, no control is
necessary to conclude this processing.

2.3.2 Software reconfiguration

On the other hand, all the processings in UMTS are not regular and
DART must be able to execute very different processings, from one cycle to
the following. The efficiency of the processing is thus less important since it
will be executed once. This property imposes to minimize the amount of data

A Reconfigurable Architecture for Multimedia Terminals 57

necessary to the reconfiguration and therefore, the flexibility of the DPRs. It
has been decided to adopt a calculation pattern of Read-Modify-Write type,
such as those that are used in conventional DSPs. rml Mem2

Config.l
16 16

+

I Reroof>
I cycle

S=A+B S=C*D

Figure 5. Software reconfiguration

This software reconfiguration thus concerns only the functionality of the
operators and the origin of the data handled by the application. Thanks to
these flexibility limitations, the DPR may be reconfigured at each cycle with
only one 52-bit instruction, as illustrated in Figure 5. Like in hardware
reconfiguration, the controller handles only one instruction per cycle which
is sufficient since irregular processings have little parallelism.

2.4 The address generation units

Since the controller task is limited to the management of the
reconfigurations, DART must integrate some dedicated resources for address
generation. These units must provide the addresses of the data handled in the
DPRs for each memory during the dataflow tasks. In order to be efficient in
a large variety of application, they support numerous addressing pattern (bit­
reverse, modulo, pre/post increment, ...). These units are built around a
module in charge of sequencing the accesses to an instruction memory
(64x16-bits). In order to minimize the energy consumption, these accesses
will take place only when an address has to be generated. For that, the
sequencer may be put in Wait State thanks to an instruction which will
moreover specify the number of Wait State. Another module is then in
charge of waking up the sequencer after the number of cycle specified in the
instruction. Even if this method needs some additional resources, its interest
is largely justified with the energy savings.

Once, the instruction has been red, it is decoded in order to control a
small datapath which will supply the addresses. On top of the four address
generation units of each DPR (one per memory), a module will provide a
zero-overhead loop support. Thanks to this module, up to four levels of
nesting will be supported, each loop kernel being able to contain up to eight
instructions, without any additional cycle for their management.

58 R. David, D. Chillet, S. Pillement, O. Sentieys

2.S System level architecture of DART

As it has been said below, DART is fully autonomous. Hence, DART
integrates a task controller which manage 4 clusters accessing a same data
memory space. At this system view (Figure 6), the clusters can now be
considered as the processing primitives of DART and the task controller is in
charge of assigning the different tasks to be executed on the clusters
according to urgency and resource availability constraints. It has to support a
Real-Time Operating System. The configurations ofthe clusters are realized
dynamically, since the task controller as only to specify to the cluster
controller, which task has to be executed. The configuration support is thus
only an address bound which corresponds to the location of the program in
the cluster memory. In the same time, the data have obviously to be loaded
into the cluster memories.

[Task controller I

(J(J
letrll

BBEJ8FJS

I I::::!r . Data memory .

Figure 6. System level architecture of DART

3. DART EVALUATION

In order to validate the architecture and to evaluate its potential, some
key applications of the UMTS have been implemented on DART. To
estimate the performance and the energy efficiency of DART, its main parts
have been synthesized on a 1.95V ST O.18#Lm technology thanks to the
Synopsys design tool framework. These synthesis have permitted to extract
the key features of our design and to integrate them into the DART simulator
which has been developed in systemC. The results described bellow are
coming from this simulator.

A Reconfigurable Architecture for Multimedia Terminals 59

3.1 Some key applications

Because of the complexity of W-CDMA [10], its implementation in a
multimedia terminal has to be very effective. In order to test DART for such
application, a subset of the norm has been implemented, a finger of a rake
receiver which realizes the complex de spreading, represented by the
equations 1 and 2, with a spreading factor of 256.

INB = *Cp(j +'r j) + QWB(j) * CQ(j +'r j) (1)

(2)

To illustrate the video processings we also have implemented a Discrete
Cosine Transform, which is working on 8x8 pixels MacroBlocs, since this
kind of algorithm is nearly systematic in video compression's standards like
MPEGx or H.26x [7]. The 2 loop kernels of this algorithm are based on a
Multiplication-ACcumulation. For MacroBloc Raws, the loop kernel is:

value[y] = L:=ocoef[y][x]*bloc[j +x*8] (3)

The multimedia terminals of third generation will still be used for the
transmission of speech between two distant persons and so need very
effective speech coders [2]. To illustrate these kind of processings, we have
implemented an autocorrelation, on a signal of 240 samples, preamble of
Levinson-Durbin algorithm which permits the adaptation of the prediction
filter coefficients in speech coders such as the EFR or the AMR. The
mathematical description of this processing is given by equation 4.

r(p) = £.Jo x(n) * x(n- p) for pE [0 .. 239] (4)

3.2 Experimentation results

The Table 2 resumes the implementation results and reveals the potential
of DART in two ways. The columns of this table specify for each
application: the number of DPRs needed for the implementation; its number
of operation; the number of execution cycles; the number of accesses to the
instruction and to the data memories and finally the energy consumed for the
execution of the algorithm.

A lication DPR C cles Inst. Read Data read ener
Complex Despreading 2 258 4 1032 435.8nJ
DCT2-D 4 85 6 1088 6O.3nJ
Autocorrelation 6 2543 43 5040 3.15j.LJ

Table 2. Implementation results on DART

60 R. David, D. Chillet, S. Pillement, O. Sentieys

3.2.1 Performance analysis

A synthesis of the DPR estimate the operating frequency of DART at 130
MHz. Running at 130 MHz, DART is thus able to provide 260 MMACS
(260.106 Multiplication-ACcumation per second) on each DPR when
handling 16 bits data. Integrating 6 DPR per cluster, 1.56 GMACs/cluster
can be achieved and these figures are doubled when handling 8-bits data as
in video-coding [6]. From an instruction point of view, DART may deliver
up to 520 MIPSIDPR or 3.12 GIPS/cluster. As an instruction includes an
address generation, a memory access and up to 2 operations per multiplier (1
shift + 1 multiply) or 3 operations per ALU (2 shift + 1 ALU operation), this
may be translated in 10.9 16-bit OOPS/cluster or 18.7 8-bit OOPS/cluster.

On each application previously quoted, the flexibility of the DPRs
permits to obtain very good performances. The Table 2 shows for example
that a finger of a rake receiver may be implemented on 2 DPRs which is
allowing us to integrate 3 fingers in each cluster for a processing power
bigger than 3.6 OOPS.

The connection of the DPRs being made thanks to a segmented mesh
network, they can work independently or together. This property may be
particularly useful. For example, to compute simultaneously a 2-D DCT and
a finger of a Rake Receiver, within a same task, it would be possible to have
the two elementary computations running concurrently on a single cluster.
On the hand, the massively parallel processings such as the
autocorrelation should occupy all the DPRs, for a very effective execution.

3.2.2 Energy consumption analysis

If there are several architectures that can reach such level of performance
e.g. the Chameleon [3], DART differs from its competitors by allowing a
very significant energy saving thanks to the data sharing and the memory
accesses minimization. In fact, the energy efficiency of ASIC is obtained by
integrating operators that are not any larger or more complicated than they
need to be and so, that consume a minimum of energy. Moreover, since they
realize only one operation, the energy overhead of the instruction
distribution is avoided. On the contrary, to be flexible, the programmable
processors need general-purpose circuit blocks that are more complex to
support the execution of several operations. Moreover, to control these
general-purpose units, an instruction has to be red and decoded at each cycle.
Since the instructions and the data are stored in very large memories, the
energy waste in data access and control distribution widely exceed that
which is useful to perform a computation. These two points are however,
much less problematic in DART as shown in Table 2.

A Reconfigurable Architecture for Multimedia Terminals 61

This table shows that only 43 instructions permit the control of the
autocorrelation. On a conventional DSP processor more than 57,000
readings from the instruction memory would have to be done. Given the cost
in energy of a memory access, the gain in energy consumption is therefore
very important.

The second source of energy savings in DART is the data sharing. For
example, on the autocorrelation, DART allows to divide by 12 the number of
accesses to the data memory and so the energy waste due to this accesses
(which is typically very high). This data sharing is made easier by the high
degree of flexibility of the interconnection network and the use of the
registers in data flow oriented applications.

In addition to the minimization of the memory accesses, the energy
consumption of DART is lowered by the minimization of transistor activity.
This point is essential in an architecture like DART since it must integrate,
in order to be effective, a large amount of resources. However, all these
resources will not be used at every cycle. DART has so to avoid making
them to work when they are not in use to the execution thanks to guarded
clocks. The energy is also saved in DART by optimizing the operators at the
bit level and by scaling the voltage and the operating frequency of the
clusters according to the complexity of the task to be implemented.

Hence, DART provide more than 9.2 MIPS for each mW consumed for
16-bit operations and about 15.8 MIPS for Sub-Word Processings. In an
operation point of view, DART may deliver up to 32 MOPS for each mW
consumed during the 16-bit operations and up to 55 MOPS for the Sub­
Word Processings. It has to be noted that these 9.2 MIPSlmW are obtained
in the worst, i.e. when at each cycle, each memory is accessed, 4 addresses
are generated, and where the functional units realize an arithmetic operation
on 16-bit data. This is however not the typical case since one of the main
advantages of this architecture is to allow a large amount of data sharing.
Practically, the energy consumption of the implementations described below
are between 11.6 and 16.7 MIPSlmW.

4. CONCLUSION AND FUTURE WORKS

This paper has described a dynamically reconfigurable architecture for
portable multimedia terminals developed within the framework of a project
associating the University of Brest and ST Microelectronics, funded by the
industry and research French ministry. We have shown, thanks to our
implementation examples, that the use of a massively parallel architecture
can be compatible with low-energy considerations. The next stage is to
provide tool support for the development flow. This tool, which is in

62 R. David, D. Chillet, S. Pillement, O. Sentieys

development, is built around a retargetable compiler developed at the IRISA,
CALIFE [14], able to supply the software configurations and on a
behavioural synthesis framework, GAUT [15], developed at the laboratory
which is in charge of generating the Hardware configurations. The codes
provided by this tool can then be validate on athe DART systemC simulator.

5. REFERENCES

[I] A. Abnous and 1. Rabaey. Ultra low-power specific multumedia processors. VLSI
Signal Processing IX, pages 459-468, November 1996

[2] T. Amada, K. Miseki and M. Akamine. CELP speech coding based on an adaptative
pulse position codebook. In IEEE International Conference on Accoustics, Speech and
Signal Processing (ICASSP), 1999

[3] Chameleon Systems. Wireless Base Station Design Using Reconfigurable
communications Processors. Technical report, 2000.

[4] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling. Archi-tecture
Design of Reconfigurable Pipelined Datapath. In Advance Research in VLSI, 1999.

[5] E. Dinan and B. Jabbari. Spreading Codes for Direct Sequence CDMA and Wideband
CDMACellular Network. IEEE Communications Magazine, 1998.

[6] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor.
PipeRench: A Reconfigurable Architecture and Compiler. IEEE Computer, April 2000.

[7] L. Hanzo and E.-L. Kuan P. Cherriman. Interactive cellular and cordless video
telephony : State-of-the-art system design principles and expected performance.
Proccedings of the IEEE, 2000.

[8] R. Hartenstein. A Decade of Reconfigurable Computing: A Visionary retro-spective. In
Design Automation and Test in Europe, 2001.

[9] 1. Hauser and 1. Wawrzynek. GARP:A MIPS processor with a reconfigurable
coprocessor. In IEEE Symposium on FPGA-based Custom Computing Machines
(FCCM), June 1997.

[10] T. Ojanpera and R. Prasard. Wideband CDMA For Third Generation Mobile
communication. Hartek Publishers, 1998.

[II] 1. Rabaey. Reconfigurable Processing : The Solution To Low-Power Pro-grammable
DSP. In ICASSP, April 1997.

[12] C. Rupp, M. Landguth, T. Graverick, E. Gomersall, and H. Holt. The NAPA Adaptative
Processing Architecture. In FCCM, April 1998.

[13] X. Tang, M. Aalsma, and R. Jou. A compiler directed aproach to hiding configuration
latency in chameleon processors. In International Conference on Field-Programmable
Logic and Applications, April 2000.

[14] F. Charrot and V. Messe. A Flexible Code Generation Framwork for the Design of
Application Specfic Programmable Processors. In International Symposium on
Hardware/Software Co-Design, 1999.

[15] o. Sentieys, J.P. Diguet and J.L. Philippe. GAUT : a High Level Synthesis Tool
Dedicated to Real Time Signal Processing Application. EURODAC, September 1995.

	A Dynamically Reconfigurable Architecture for LowPowerMultimedia Terminals
	1. INTRODUCTION
	2. THE DART ARCIDTECTURE
	2.1 Processing primitives
	2.2 Cluster organisation
	2.3 Dynamic Reconfiguration
	2.4 The address generation units
	2.S System level architecture of DART

	3. DART EVALUATION
	3.1 Some key applications
	3.2 Experimentation results

	4. CONCLUSION AND FUTURE WORKS
	5. REFERENCES

