
Automatic Code-Transformation and Architecture
Refinement for Application-Specific Multiprocessor
SoCs with Shared Memory

Samy Meftali, Ferid Gharsalli, Frederic Rousseau and Ahmed. A. Jerraya
TIMA laboratory, 46 avo Felix Viallet 38031 Grenoble cedex (France)

Abstract: Memory represents a major bottleneck in embedded systems. For multimedia
applications bulky of data in these embedded systems require shared memory.
But the integration of this kind of memory implies some architectural
modifications and code transformations. And no automatic tool exists allowing
designers to integrate shared memory in the SoC design flow. In this work, we
present a systematic approach for the design of shared memory architectures
for application-specific multiprocessor systems-on-chip. This work focuses on
the code-transformations related to the integration of a shared memory.

Key words: Shared memory, code transformation, architecture refinement.

1. INTRODUCTION

The design of modem digital systems is influenced by several
technological and market trends, including the ability to manufacture ever
more complex chips but with increasingly shorter time-to-market.

The choice of a shared memory architecture for a given SoC implies the
integration of some new modules in the application description (memory
and controllers) and many code transformations at several abstraction levels
in the design process.

The goal of transformations and code generation in the case of
multiprocessor SoCs with a shared memory is to adapt the code of the
application to a such memory architecture. In fact, we imperatively need to
replace the simple shared data accesses at a high abstraction level by explicit
requests to the shared memory block.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
M. Robert et al. (eds.), SOC Design Methodologies

10.1007/978-0-387-35597-9_40

http://dx.doi.org/10.1007/978-0-387-35597-9_40

194 s. Meftali, F. Gharsalli, F. Rousseau, A. A. Jerraya

Unfortunately, nowadays, there is not a complete and automatic method
allowing designers to integrate all these memory types (particularly the
shared memory) in the SoC from a high abstraction level. Our objective is to
provide designers with a global and fast method and tools to design such a
systems in order to satisfy the time-to-market constraints. We focus in this
work on the code-transformations due to the integration of the shared
memory into the SoC and on the automatic code generation.

Our approach is easily automatisable and allows a completely automatic
generation of an architecture level specification of the application. Now,
multiprocessor SoC integrate more and more elements, and the description
of such a system at the architecture level can reach 200k lines of code
(SystemC, C, VHDL), which makes this work very beneficial to the
designers from the time-to-market point of view.

This work is organized as follows: in Section 2, we give an overview of
related work on code transformations on SoC with shared memory. In
Section 3, we present our multiprocessor SoC design methodology, then our
three abstraction levels and the memory representations in section 4. Section
5 describes the code transformations. These transformations are illustrated
by an application in Section 6. We conclude this work in Section 7.

2. RELATED WORK

In this work we are only concerned with SoCs. These system
architectures are different from classic general purpose architectures [3]
because they target a specific application. This makes the memory
architecture and the communication network specific to the application and
then simpler. For instance, in most of these applications data regularity is
quite trivial or non existing and thus no sophisticated data cache is required.

In the literature three kinds of code transformations exist depending on
the level where they are performed.

The high level transformations concern the application code at the
system level. Their goal is to improve the code quality. In fact they consist
mainly in modifying loop structures in order to reduce the number of
memory accesses [2]. This kind of code-transformations does not take into
account the specificity of the memory architecture chosen for the
application, and these transformations are not generally needed when the
code is written by an experimented designer. Many research groups [13] [8]
[4] work on these high level transformations.

The low level transformations are generally very related to the low level
(RTL) characteristics of the architecture. Some of them are due to memory
characteristics. For example in [10] [11] they use fast access modes (read

Automatic Code-Transformation and Architecture Refinement ... 195

and write page mode) on a typical DRAM to improve memory cache
performances. Using these access modes, different data can quickly be read
or write in the same page. Moreover, a good scheduling of elementary
instructions (generated by compiler) which access to the memory allows to
obtain better performances. Unfortunately the low level transformations
appear at the end of the design flow. So, the integration of a shared memory
in the system is done manually, which is very time consuming.

Some code transformations in the literature concern more than one
abstraction level in the design flow. IMEC [2] works on the generation of
the optimized memory part for embedded systems (single process). The
main idea is to study the application and generate memory architecture, for
single process applications with a parallelizing compiler.

The contribution of our work is the proposal of a full systematic
approach allowing a multi level automatic code transformations and
generation for application-specific multiprocessor SoCs with a shared
memory.

3. MP SOCS DESIGN WITH SHARED MEMORY

The methodology and tools we developed to design multiprocessor SoC
are described in [1]. It starts a system level specification (Figure 1).

Processors and communication components are allocated and system
behavior and communication (ports and channels) are mapped/scheduled on
processors and communication components of the architecture template (by
the designer). After the allocation/mapping step, an architecture level
specification is obtained.

System level application Architecture
Processoraand taska ____ platform

allocation

Micro-architeclure level specification

Figure 1. Our design flow

196 S. Meftali, F. Gharsalli, F. Rousseau, A. A. Jerraya

For each processor, the software code (Operating System and application
code of tasks) is assembled (from libraries). Communication interfaces
between processors and the communication network are also generated. We
obtain the micro-architecture of the system.

The choice of the processor was based on availability (only ARM? and
MC68K processors). The communication network is a point-to-point
network. Designers can modify some parameters such as the number of
CPUs, the memory size and 110 ports for each processor, interconnection
between processors, the communication protocols and the external
connections (peripherals).

One of the most important steps in our design flow is the memory
allocation. During this step, we try to choose an optimal memory
architecture for the SoC. Therefore, we use an integer linear programming
model generated from the system specification of the application. It allows
us to choose the best memory architecture for the design [9].

4. ABSTRACTION LEVELS IN OUR DESIGN FLOW

In this section, we define the three abstraction levels used in the design
flow [12]. As our objective is to integrate the shared memory into the SoC
from a high abstraction level, one will focus in the remainder of this work
primarily on the first two levels.

4.1 System level

At this level (Figure 2), modules communicate through abstract
channels. No assumption about communication implementation is made.
Hence, the abstract channels ensure independent protocol communication of
concrete generic data types by providing abstract level communication
primitives (c.g. send/receive). Such primitives encapsulate all the
communication details. Basic module behavior are described by tasks
communicating by sending and receiving messages. SDL is a typical system
level language.

r--..., Abstract !c!)J--..:= ..
...

Communication local
variables Variables

Figure 2. System level

Automatic Code-Transformation and Architecture Refinement ... 197

4.2 Architecture level

At this level (Figure 3), modules correspond to the architecture blocks.
Communication is modeled by logical interconnections encapsulating
architecture level protocols (e.g. handshake or finite FIFO). The
communication primitives on the module ports are read/write fixed data
types in conformity with a certain protocol (e.g. read-handshake or
write-handshake). SystemCl.O is an example of languages that describe
systems at this abstraction level.

In our design flow, the architecture level description is automatically
generated. It is obtained after the memory blocks allocation step. In fact, if
we decide for example to integrate a shared memory into the SoC, we have
to insert a block into the application description. This block will mainly
contain two modules:
- The memory matrix: it is a generic code describing the memory block. It

is independent of the application which permits an easy automation. At
this level, this module is connected only to the controller by the address
channel, data read and data write channels. So it does not depend at all
on the number of processors, accessing the shared data.

- The memory controller: it is built of two parts connected to the memory
matrix: one input and one output controller. The input controller is also
connected to all the processors writing data in the shared memory and
the output controller is connected to those which read data from the
shared memory. These controllers will be the memory adaptator at the
micro-architecture level.
The fact of separating the shared memory into 3 modules (matrix, input

and output controllers) at this level gives a better modularity to the SoC. For
example, if we decide to reuse the SoC for an other application with an
additional processor accessing to the shared data for writing, we do have to
modify neither the description of the matrix nor the output controller.

Comm. Global

variables ' variables

"""' .. /'
Shared

memory

Lo leal Bus "" '--___ =a.:.::;=..::=.::....-__,.,,'. local

',- Variables

Figure 3. Macro-architecture level

198 S. Meftali, F. Gharsalli, F. Rousseau, A. A. Jerraya

4.3 Micro-architecture level

At the micro-architecture level, the modules are physical blocks (DSP,
CPU, IP ...) Communication is modeled by physical signals and
communication primitives are consequently set/reset of signals [1].
Communication time is based on the clock cycle. VHDL and Veri log are
languages permitting to describe systems at the micro-architecture level.

At this level, memories are physical (SDRAMs). In order to connect the
shared memory to the communication network, we insert between them one
memory adaptator which adapts the access protocol of the memory to that of
the network. The memory interface is independent of the processors, which
increases the flexibility of the target architecture. It depends only on the
communication network and the memory. The memory interface is
assembled using basic components in our libraries [5].

5. APPLICATION CODE-TRANSFORMATIONS

In this section, specific code-transformations are presented. Some of
them are related to memory accesses, when a shared memory is added, and
some others concern memory controllers refinement.

5.1 Architecture level transformations

At the system level we have only processors communicating by messages
passing, and we do not find any shared memory or any memory controller
blocks in the application description. The data exchange between the blocks
at this level is made by simple SendlReceive primitives.

After deciding which data would be in the shared memory block at the
memory allocation step, we have to deal with two kinds of shared data. In
fact, we distinguish global variables and communication data. Each one of
these types needs an appropriate code-transformation in order to generate a
new application specification taking into account the shared memory.

5.1.1 Synchronization signals (binary type)

We assume in our applications that the data consistency problems are
entirely resolved by the system level designer, by synchronization. So, we
choose in our tools to never modify such signals. In fact, synchronization
signals are boolean so, we do not put any binary variable/signal in a shared
memory. This does not decrease the performances of our SoC due to the
small size of such a type of data.

Automatic Code-Transformation and Architecture Refinement ... 199

S.1.2 Non-binary communication variables

When we decide in the allocation step to insert a shared memory in the
SoC, we have to modify all accesses to the variables that we decide to put in
such a memory by explicit accesses to the shared memory. We insert the
shared memory into the application, and we generate an abstract allocation
table that contains for each shared variable, in which memory it will be
placed. So, at this level each data in the shared memory must be
characterized by a logical address (index in the memory matrix) and a name
in the abstract allocation table.

Suppose that at the system level "X" is a shared data between the
processors PI and P2. The system level code in the two processors
corresponding to the exchange of "X" will be as in Figure 4

Send(X,Pl);
Send(synch_signaJ,P 1);

WaitO;

Wait for synch_signaJ_P2

Receive(X);

Figure 4. System level communication

In order to send "X" to PI, the processor P2 has just to send the variable
value then a synchronization signal informing PI. This later waits on the
synchronization signal from PI, then receives "X" through the channel
connecting it to P2.

At the architecture level, if we decide to insert a shared memory into the
system, the shared data "X" will be into this memory and not in the PI
and/or P2 local memories.

S.1.2.1 Sending data
The primitive Send(X) in P2 behavior code will be transformed in a

writing request to the input shared memory controller as shown in the
following code (Figure 5).

200 S. Meftali, F. Gharsalli, F. Rousseau, A. A. Jerraya

InpuC Controller
(

write_SM_inpu,-ctr("X" .X); ind = allocation_table ("X");
write(synch_signal); write_value(ind.X);
wait(); wait();
.. ..
j j

Figure 5. Sending data at macro-architecture level

After receiving a such request, the input memory controller takes the
data index in the memory matrix from the abstract allocation table. Then
writes the data value in the corresponding memory cell.

5.1.2.2 Receiving data
As in the case of sending a data, the primitive Receive(X) in PI behavior

code will be transformed as in Figure 6

Notes:

OutpuCController
I

Wait for synch_signal; Ind = allocation_table ("X");
AskJor_data_in_shared_memory ("X"); X = ReacCvalue(ind);
Wait(); Write_data_2]\(X);
Read_data(X); Wait();

Figure 6. Receiving data at macro-architecture level

For the architecture level transformation of the Send primitive, the
processor sender must give the variable value (X) and its label ("X").
All the instructions corresponding to a write or read operation in the
memory controller code are executed in one clock cycle.

5.1.3 Global variables

In the system level application code, we find some accesses to the global
data in some expressions/assignments in the behavioral part of processes. In
fact, if "X" is a global variable, we can find in a process in the system level
description an expression as: Y = X + 2, or X = Y/2;

The first instruction correspond to a read access and the second one to a
write access to "X".

If "X" is in the shared memory, we must generate explicit accesses to
this variable in the new application code. So, in the two cases (read and
write) we replace the occurrence of "X" in the code as in Figure 7.

Automatic Code-Transformation and Architecture Refinement ... 201

The instruction (1) consists in sending a signal through the channel
connecting process to the shared memory output controller, to ask for the
variable "X". After receiving a such signal (after the synchronization
instruction (2», the controller finds the index corresponding to "X" in the
abstract allocation table then reads the variable in the memory matrix, and
sends it to the processor. In the code, this value is read and copied in a local
variable "var" (3). Then the expression is performed in (4).

For the second instruction (write) "X = Y/2", the instruction (5) consists
in sending a writing message from "A" to the input shared memory
controller. This message contain two parameters: the name of the shared
variable "X" and its new value (Y /2).

"Y=X+2"

Sig...to_re8lUhared_mem(X) ; -- (1)

waitO; --- (2)
var = read_shared_mem(X); --- (3)
Y = var + 2; --- (4)

''X=Y/2''

writejhare<Unem("X", YI2); --- (5)
waitO; -- (6)

Figure 7. Code transformation for global variables

5.2 Architecture level application-code generation

One of the main contributions of our work is the systematic and
completely automatic generation of the architecture level description of the
application. This step consists in inserting the high level memory matrix
block in the application specification, then generating the application
specific code of the input and output memory controllers in order to connect
the memory with other modules of the SoC. After that we perform the
necessary code-transformations described in this work in order to adapt the
accesses to the shared memory architecture.

5.3 Micro-architecture level transformations

At this level, read and write operations in the shared memory become
very explicit and dependent of the shared memory characteristics.

The input and output controllers of the architecture level are refined to
be a communication adapter between the memory and the communication
network. In our case we consider that the memory adaptator is a slave
processors adaptators. The adaptator receives an access request containing
the address and the data in the case of a writing request. If there is any

202 S. Meftali, F. Gharsalli, F. Rousseau, A. A. Jerraya

competitor access, the controller performs the address decoding while using
an allocation table more detailed than that of the previous level, and updates
the memory signals (in read or write modes). After a certain memory
latency, the adaptator sends an acknowledge to the processors adaptator
allowing it to ask for new accesses.

In the case of several simultaneous accesses, the memory adaptator does
the same thing while respecting mutual accesses exclusion to the memory.

6. APPLICATION

In order to illustrate the efficiency of the proposed code-transformations
and code generation methodology, we detail in this section the flow steps on
a packet routing switch. It constitutes a powerful solution for large-frame or
cell-switching systems [7]. The version we present here consists of two
input controllers and two output controllers. Each of the controllers handles
one communication channel. The communication links by tween input and
output controllers are configured by an external signal to be direct or
switched. Figure 8 shows the block diagram of the packet routing switch.

Figure 8. Block diagram of the packet routing switch

6.1 Architecture level code-transformations

In this application, after the memory allocation step, we decide to put
two variables in the shared memory block. This stage modifies the
application code by taking into account the shared memory architecture.

At this step a shared memory module, an input and an output memory
controllers are generated and integrated to the application as shown in the
Figure 10. The memory input controller is connected to controller! and
controler2 because these later access memory to write data. The memory
output controller is connected to controller3 and controller4 as they access
the memory to read the shared data. We generate also an abstract allocation
table which contain label, type, index in memory of each shared data.

Automatic Code-Transformation and Architecture Refinement ... 203

II Implementation of Ctril \II

void ctrll :: entryO
(

if(ordre.readO=true)
(
dataCtriCmem_in.write(x);
dataCtrll_mem_in.write(''x'');

signaiCtrICC3.write(lrue);

WaitO;

/Implementation of Ctrl 3 II

void ctr13 ::entryO
(

if (si/LCtrll_O.readO==true)
(

Signal_mem_out.wrtite(''X'');

WaitO;
y = data_mem3_out.readO;
oUlput3.write(y)

Figure 9. Communication between Ctrll and Ctrl2 using a global shared memory

Figure 10. Packet routing switch description at macro-architecture level

6.2 Analysis

This application was described at the functional level mainly in 4
interface files and 4 implementation files. Automatic refinement adds 4 files
to the specification (2 interfaces and 2 implementations) corresponding to
the memory body and to the memory controller (200 lines at the functional
level). The interfaces of the 4 processors were modified automatically in
order to connect them to the global shared memory, and all the accesses to
the data resident in this memory were modified (Figure 9). We obtained the
application code at the architecture level with a shared memory architecture
in a complete automatic way.

The automatic code-transformation and generation is surely very
profitable to the designer in time-to-market point of view because of the
huge size of the SoC descriptions especially at micro-architecture level.

204 S. Meftali, F. Gharsalli, F. Rousseau, A. A. Jerraya

7. CONCLUSION

ill this work, we presented an automatic architecture refinement and
code-transformations flow for application-specific SoC with a shared
memory, starting from a parallel system-level description of a given
application. We focus on the shared memory representation at different
abstraction levels and the code-transformations. The proposed methodology
permits a systematic code-transformation and the generation of a generic
memory architecture for multiprocessor embedded SoC, from a high
abstraction level distributed specification of the application. We have seen
the effectiveness of our approach on an example.

8. REFERENCES

[1] A. Baghdadi, D. Lyonnard, N-E. Zergainoh, A.A. Jerraya, "An Efficient Architecture
Model for Systematic Design of Application-Specific Multiprocessor SoC", DATE'2oot.

[2] F. Cathoor & al, Custom Memory Management Methodology, Kluwer Academic
Publishers, 1998.

[3] D. Culler, 1.P. Singh, A. Gupta, "Parallel computer architecture: A Hardware/Software
approach", Maurgan Kauffman publishers, August 1998.

[4] A. Fraboulet, G. Huard, A. Mignotte, "Loop Alignment for Memory Accesses
Optimization", Proc. ofISSS 1999.

[5] F. Gharsalli, S. Meftali, , F. Rousseau, A.A. Jerraya, " Automatic Generation of Embedded
Memory Wrapper", Proc. of DAC 2002.

[6] 1. Hennessy, M. Heinrich, A. Gupta, "Cache-Coherent Distributed Shared Memory:
Perspectives on Its Development and Future Challenges", Special issue on distributed
Shared-Memory Systems, Match 1999.

[7] IBM, Inc. "28.4G Packet Rooting Switch", Networking Technology Data sheets,
http://www.chii)s.ibm.comltechlib/productslcommunldatasheets.html

[8] D. Kulkarni, M. Stumm, "Linear loop transformations in optimizing compilers for parallel
machines" in The australian computer journal, pp.41-50, May 1995.

[9] S. Meftali, F. Gharsalli, F. Rousseau, A.A. Jerraya, "An Optimal Memory Allocation for
Application-Specific Multiprocessor System-on-Chip", Proc. of ISSS 2oot.

[10] P. R. Panda, N. Dutt, A. Nicolau, Memory Issues in Embedded Systems-on-chip:
Optimization and exploration, Kluwer Academic Publishers, 1999.

[11] S. Rixner, W. 1. Dally, U. 1. Kapasi, P. Mattson, 1. D. Owens, "Memory Access
Scheduling", Proc. of ISCA 2000.

[12] K. Svarstad, G. Nicolescu, A. A. Jerraya, "A Model for Describing Communication
between Aggregate Objects in the Specification and Design of Embedded Systems",
DATE'200t.

[13] M. Wolf, "improving locality and parallelism in nested loops", Ph.D dissertation,
Stanford University, USA, August 92.

	Automatic Code-Transformation and ArchitectureRefinement for Application-Specific MultiprocessorSoCs with Shared Memory
	1. INTRODUCTION
	2. RELATED WORK
	3. MP SOCS DESIGN WITH SHARED MEMORY
	4. ABSTRACTION LEVELS IN OUR DESIGN FLOW
	4.1 System level
	4.2 Architecture level
	4.3 Micro-architecture level

	5. APPLICATION CODE-TRANSFORMATIONS
	5.1 Architecture level transformations
	5.2 Architecture level application-code generation
	5.3 Micro-architecture level transformations

	6. APPLICATION
	6.1 Architecture level code-transformations
	6.2 Analysis

	7. CONCLUSION
	8. REFERENCES

