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Abstract: Memory represents a major bottleneck in embedded systems. For multimedia 
applications bulky of data in these embedded systems require shared memory. 
But the integration of this kind of memory implies some architectural 
modifications and code transformations. And no automatic tool exists allowing 
designers to integrate shared memory in the SoC design flow. In this work, we 
present a systematic approach for the design of shared memory architectures 
for application-specific multiprocessor systems-on-chip. This work focuses on 
the code-transformations related to the integration of a shared memory. 
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1. INTRODUCTION 

The design of modem digital systems is influenced by several 
technological and market trends, including the ability to manufacture ever 
more complex chips but with increasingly shorter time-to-market. 

The choice of a shared memory architecture for a given SoC implies the 
integration of some new modules in the application description (memory 
and controllers) and many code transformations at several abstraction levels 
in the design process. 

The goal of transformations and code generation in the case of 
multiprocessor SoCs with a shared memory is to adapt the code of the 
application to a such memory architecture. In fact, we imperatively need to 
replace the simple shared data accesses at a high abstraction level by explicit 
requests to the shared memory block. 
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Unfortunately, nowadays, there is not a complete and automatic method 
allowing designers to integrate all these memory types (particularly the 
shared memory) in the SoC from a high abstraction level. Our objective is to 
provide designers with a global and fast method and tools to design such a 
systems in order to satisfy the time-to-market constraints. We focus in this 
work on the code-transformations due to the integration of the shared 
memory into the SoC and on the automatic code generation. 

Our approach is easily automatisable and allows a completely automatic 
generation of an architecture level specification of the application. Now, 
multiprocessor SoC integrate more and more elements, and the description 
of such a system at the architecture level can reach 200k lines of code 
(SystemC, C, VHDL), which makes this work very beneficial to the 
designers from the time-to-market point of view. 

This work is organized as follows: in Section 2, we give an overview of 
related work on code transformations on SoC with shared memory. In 
Section 3, we present our multiprocessor SoC design methodology, then our 
three abstraction levels and the memory representations in section 4. Section 
5 describes the code transformations. These transformations are illustrated 
by an application in Section 6. We conclude this work in Section 7. 

2. RELATED WORK 

In this work we are only concerned with SoCs. These system 
architectures are different from classic general purpose architectures [3] 
because they target a specific application. This makes the memory 
architecture and the communication network specific to the application and 
then simpler. For instance, in most of these applications data regularity is 
quite trivial or non existing and thus no sophisticated data cache is required. 

In the literature three kinds of code transformations exist depending on 
the level where they are performed. 

The high level transformations concern the application code at the 
system level. Their goal is to improve the code quality. In fact they consist 
mainly in modifying loop structures in order to reduce the number of 
memory accesses [2]. This kind of code-transformations does not take into 
account the specificity of the memory architecture chosen for the 
application, and these transformations are not generally needed when the 
code is written by an experimented designer. Many research groups [13] [8] 
[4] work on these high level transformations. 

The low level transformations are generally very related to the low level 
(RTL) characteristics of the architecture. Some of them are due to memory 
characteristics. For example in [10] [11] they use fast access modes (read 
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and write page mode) on a typical DRAM to improve memory cache 
performances. Using these access modes, different data can quickly be read 
or write in the same page. Moreover, a good scheduling of elementary 
instructions (generated by compiler) which access to the memory allows to 
obtain better performances. Unfortunately the low level transformations 
appear at the end of the design flow. So, the integration of a shared memory 
in the system is done manually, which is very time consuming. 

Some code transformations in the literature concern more than one 
abstraction level in the design flow. IMEC [2] works on the generation of 
the optimized memory part for embedded systems (single process). The 
main idea is to study the application and generate memory architecture, for 
single process applications with a parallelizing compiler. 

The contribution of our work is the proposal of a full systematic 
approach allowing a multi level automatic code transformations and 
generation for application-specific multiprocessor SoCs with a shared 
memory. 

3. MP SOCS DESIGN WITH SHARED MEMORY 

The methodology and tools we developed to design multiprocessor SoC 
are described in [1]. It starts a system level specification (Figure 1). 

Processors and communication components are allocated and system 
behavior and communication (ports and channels) are mapped/scheduled on 
processors and communication components of the architecture template (by 
the designer). After the allocation/mapping step, an architecture level 
specification is obtained. 

System level application Architecture 
Processoraand taska ____ platform 

allocation 

Micro-architeclure level specification 

Figure 1. Our design flow 
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For each processor, the software code (Operating System and application 
code of tasks) is assembled (from libraries). Communication interfaces 
between processors and the communication network are also generated. We 
obtain the micro-architecture of the system. 

The choice of the processor was based on availability (only ARM? and 
MC68K processors). The communication network is a point-to-point 
network. Designers can modify some parameters such as the number of 
CPUs, the memory size and 110 ports for each processor, interconnection 
between processors, the communication protocols and the external 
connections (peripherals). 

One of the most important steps in our design flow is the memory 
allocation. During this step, we try to choose an optimal memory 
architecture for the SoC. Therefore, we use an integer linear programming 
model generated from the system specification of the application. It allows 
us to choose the best memory architecture for the design [9]. 

4. ABSTRACTION LEVELS IN OUR DESIGN FLOW 

In this section, we define the three abstraction levels used in the design 
flow [12]. As our objective is to integrate the shared memory into the SoC 
from a high abstraction level, one will focus in the remainder of this work 
primarily on the first two levels. 

4.1 System level 

At this level (Figure 2), modules communicate through abstract 
channels. No assumption about communication implementation is made. 
Hence, the abstract channels ensure independent protocol communication of 
concrete generic data types by providing abstract level communication 
primitives (c.g. send/receive). Such primitives encapsulate all the 
communication details. Basic module behavior are described by tasks 
communicating by sending and receiving messages. SDL is a typical system 
level language. 

r--..., Abstract !c!)J--..:= .. 
... .. .............. 

Communication .......... local 
variables Variables 

Figure 2. System level 



Automatic Code-Transformation and Architecture Refinement ... 197 

4.2 Architecture level 

At this level (Figure 3), modules correspond to the architecture blocks. 
Communication is modeled by logical interconnections encapsulating 
architecture level protocols (e.g. handshake or finite FIFO). The 
communication primitives on the module ports are read/write fixed data 
types in conformity with a certain protocol (e.g. read-handshake or 
write-handshake). SystemCl.O is an example of languages that describe 
systems at this abstraction level. 

In our design flow, the architecture level description is automatically 
generated. It is obtained after the memory blocks allocation step. In fact, if 
we decide for example to integrate a shared memory into the SoC, we have 
to insert a block into the application description. This block will mainly 
contain two modules: 
- The memory matrix: it is a generic code describing the memory block. It 

is independent of the application which permits an easy automation. At 
this level, this module is connected only to the controller by the address 
channel, data read and data write channels. So it does not depend at all 
on the number of processors, accessing the shared data. 

- The memory controller: it is built of two parts connected to the memory 
matrix: one input and one output controller. The input controller is also 
connected to all the processors writing data in the shared memory and 
the output controller is connected to those which read data from the 
shared memory. These controllers will be the memory adaptator at the 
micro-architecture level. 
The fact of separating the shared memory into 3 modules (matrix, input 

and output controllers) at this level gives a better modularity to the SoC. For 
example, if we decide to reuse the SoC for an other application with an 
additional processor accessing to the shared data for writing, we do have to 
modify neither the description of the matrix nor the output controller. 

Comm. Global 

variables ' variables 

"""' .. /' 
Shared 

memory 

Lo leal Bus "" '--___ =a.:.::;=..::=.::....-__ ....,.,,'. local 

',- Variables 

Figure 3. Macro-architecture level 
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4.3 Micro-architecture level 

At the micro-architecture level, the modules are physical blocks (DSP, 
CPU, IP ... ) Communication is modeled by physical signals and 
communication primitives are consequently set/reset of signals [1]. 
Communication time is based on the clock cycle. VHDL and Veri log are 
languages permitting to describe systems at the micro-architecture level. 

At this level, memories are physical (SDRAMs). In order to connect the 
shared memory to the communication network, we insert between them one 
memory adaptator which adapts the access protocol of the memory to that of 
the network. The memory interface is independent of the processors, which 
increases the flexibility of the target architecture. It depends only on the 
communication network and the memory. The memory interface is 
assembled using basic components in our libraries [5]. 

5. APPLICATION CODE-TRANSFORMATIONS 

In this section, specific code-transformations are presented. Some of 
them are related to memory accesses, when a shared memory is added, and 
some others concern memory controllers refinement. 

5.1 Architecture level transformations 

At the system level we have only processors communicating by messages 
passing, and we do not find any shared memory or any memory controller 
blocks in the application description. The data exchange between the blocks 
at this level is made by simple SendlReceive primitives. 

After deciding which data would be in the shared memory block at the 
memory allocation step, we have to deal with two kinds of shared data. In 
fact, we distinguish global variables and communication data. Each one of 
these types needs an appropriate code-transformation in order to generate a 
new application specification taking into account the shared memory. 

5.1.1 Synchronization signals (binary type) 

We assume in our applications that the data consistency problems are 
entirely resolved by the system level designer, by synchronization. So, we 
choose in our tools to never modify such signals. In fact, synchronization 
signals are boolean so, we do not put any binary variable/signal in a shared 
memory. This does not decrease the performances of our SoC due to the 
small size of such a type of data. 
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S.1.2 Non-binary communication variables 

When we decide in the allocation step to insert a shared memory in the 
SoC, we have to modify all accesses to the variables that we decide to put in 
such a memory by explicit accesses to the shared memory. We insert the 
shared memory into the application, and we generate an abstract allocation 
table that contains for each shared variable, in which memory it will be 
placed. So, at this level each data in the shared memory must be 
characterized by a logical address (index in the memory matrix) and a name 
in the abstract allocation table. 

Suppose that at the system level "X" is a shared data between the 
processors PI and P2. The system level code in the two processors 
corresponding to the exchange of "X" will be as in Figure 4 

Send(X,Pl); 
Send(synch_signaJ,P 1); 

WaitO; 

Wait for synch_signaJ_P2 

Receive(X); 

Figure 4. System level communication 

In order to send "X" to PI, the processor P2 has just to send the variable 
value then a synchronization signal informing PI. This later waits on the 
synchronization signal from PI, then receives "X" through the channel 
connecting it to P2. 

At the architecture level, if we decide to insert a shared memory into the 
system, the shared data "X" will be into this memory and not in the PI 
and/or P2 local memories. 

S.1.2.1 Sending data 
The primitive Send(X) in P2 behavior code will be transformed in a 

writing request to the input shared memory controller as shown in the 
following code (Figure 5). 
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InpuC Controller 
( 

write_SM_inpu,-ctr("X" .X); ind = allocation_table ("X"); 
write(synch_signal); write_value(ind.X); 
wait(); wait(); 
.. .. 
j j 

Figure 5. Sending data at macro-architecture level 

After receiving a such request, the input memory controller takes the 
data index in the memory matrix from the abstract allocation table. Then 
writes the data value in the corresponding memory cell. 

5.1.2.2 Receiving data 
As in the case of sending a data, the primitive Receive(X) in PI behavior 

code will be transformed as in Figure 6 

Notes: 

OutpuCController 
I 

Wait for synch_signal; Ind = allocation_table ("X"); 
AskJor_data_in_shared_memory ("X"); X = ReacCvalue(ind); 
Wait(); Write_data_2]\(X); 
Read_data(X); Wait(); 

Figure 6. Receiving data at macro-architecture level 

For the architecture level transformation of the Send primitive, the 
processor sender must give the variable value (X) and its label ("X"). 
All the instructions corresponding to a write or read operation in the 
memory controller code are executed in one clock cycle. 

5.1.3 Global variables 

In the system level application code, we find some accesses to the global 
data in some expressions/assignments in the behavioral part of processes. In 
fact, if "X" is a global variable, we can find in a process in the system level 
description an expression as: Y = X + 2, or X = Y/2; 

The first instruction correspond to a read access and the second one to a 
write access to "X". 

If "X" is in the shared memory, we must generate explicit accesses to 
this variable in the new application code. So, in the two cases (read and 
write) we replace the occurrence of "X" in the code as in Figure 7. 
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The instruction (1) consists in sending a signal through the channel 
connecting process to the shared memory output controller, to ask for the 
variable "X". After receiving a such signal (after the synchronization 
instruction (2», the controller finds the index corresponding to "X" in the 
abstract allocation table then reads the variable in the memory matrix, and 
sends it to the processor. In the code, this value is read and copied in a local 
variable "var" (3). Then the expression is performed in (4). 

For the second instruction (write) "X = Y/2", the instruction (5) consists 
in sending a writing message from "A" to the input shared memory 
controller. This message contain two parameters: the name of the shared 
variable "X" and its new value (Y /2). 

"Y=X+2" 

Sig...to_re8lUhared_mem(X) ; -- (1) 

waitO; --- (2) 
var = read_shared_mem(X); --- (3) 
Y = var + 2; --- (4) 

''X=Y/2'' 

writejhare<Unem("X", YI2); --- (5) 
waitO; -- (6) 

Figure 7. Code transformation for global variables 

5.2 Architecture level application-code generation 

One of the main contributions of our work is the systematic and 
completely automatic generation of the architecture level description of the 
application. This step consists in inserting the high level memory matrix 
block in the application specification, then generating the application 
specific code of the input and output memory controllers in order to connect 
the memory with other modules of the SoC. After that we perform the 
necessary code-transformations described in this work in order to adapt the 
accesses to the shared memory architecture. 

5.3 Micro-architecture level transformations 

At this level, read and write operations in the shared memory become 
very explicit and dependent of the shared memory characteristics. 

The input and output controllers of the architecture level are refined to 
be a communication adapter between the memory and the communication 
network. In our case we consider that the memory adaptator is a slave 
processors adaptators. The adaptator receives an access request containing 
the address and the data in the case of a writing request. If there is any 
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competitor access, the controller performs the address decoding while using 
an allocation table more detailed than that of the previous level, and updates 
the memory signals (in read or write modes). After a certain memory 
latency, the adaptator sends an acknowledge to the processors adaptator 
allowing it to ask for new accesses. 

In the case of several simultaneous accesses, the memory adaptator does 
the same thing while respecting mutual accesses exclusion to the memory. 

6. APPLICATION 

In order to illustrate the efficiency of the proposed code-transformations 
and code generation methodology, we detail in this section the flow steps on 
a packet routing switch. It constitutes a powerful solution for large-frame or 
cell-switching systems [7]. The version we present here consists of two 
input controllers and two output controllers. Each of the controllers handles 
one communication channel. The communication links by tween input and 
output controllers are configured by an external signal to be direct or 
switched. Figure 8 shows the block diagram of the packet routing switch. 

Figure 8. Block diagram of the packet routing switch 

6.1 Architecture level code-transformations 

In this application, after the memory allocation step, we decide to put 
two variables in the shared memory block. This stage modifies the 
application code by taking into account the shared memory architecture. 

At this step a shared memory module, an input and an output memory 
controllers are generated and integrated to the application as shown in the 
Figure 10. The memory input controller is connected to controller! and 
controler2 because these later access memory to write data. The memory 
output controller is connected to controller3 and controller4 as they access 
the memory to read the shared data. We generate also an abstract allocation 
table which contain label, type, index in memory of each shared data. 
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II Implementation of Ctril \II 

void ctrll :: entryO 
( 

if( ordre.readO=true) 
( 
dataCtriCmem_in.write(x); 
dataCtrll_mem_in.write(''x''); 

signaiCtrICC3.write(lrue); 

WaitO; 

/Implementation of Ctrl 3 II 

void ctr13 ::entryO 
( 

if (si/LCtrll_O.readO==true) 
( 

Signal_mem_out.wrtite(''X''); 

WaitO; 
y = data_mem3_out.readO; 
oUlput3.write(y) 

Figure 9. Communication between Ctrll and Ctrl2 using a global shared memory 

Figure 10. Packet routing switch description at macro-architecture level 

6.2 Analysis 

This application was described at the functional level mainly in 4 
interface files and 4 implementation files. Automatic refinement adds 4 files 
to the specification (2 interfaces and 2 implementations) corresponding to 
the memory body and to the memory controller (200 lines at the functional 
level). The interfaces of the 4 processors were modified automatically in 
order to connect them to the global shared memory, and all the accesses to 
the data resident in this memory were modified (Figure 9). We obtained the 
application code at the architecture level with a shared memory architecture 
in a complete automatic way. 

The automatic code-transformation and generation is surely very 
profitable to the designer in time-to-market point of view because of the 
huge size of the SoC descriptions especially at micro-architecture level. 
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7. CONCLUSION 

ill this work, we presented an automatic architecture refinement and 
code-transformations flow for application-specific SoC with a shared 
memory, starting from a parallel system-level description of a given 
application. We focus on the shared memory representation at different 
abstraction levels and the code-transformations. The proposed methodology 
permits a systematic code-transformation and the generation of a generic 
memory architecture for multiprocessor embedded SoC, from a high 
abstraction level distributed specification of the application. We have seen 
the effectiveness of our approach on an example. 
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