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Abstract This paper explores the use of entropy for visualizing database struc­
ture. In particular, we show how visualizing the entropy of a relation 
provides a global perspective on the distribution of values and helps to 
identify areas within the relation where interesting relationships may 
be discovered. The type of structure we are interested in discovering 
is related to functional dependencies. Our approach is not dependent 
on the underlying domain of the data, providing a view of the depen­
dency landscape within a relation. Using these techniques, we describe 
comparative results for a wide variety of synthetic and real data. 
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pendency 

1. Introd uction 
Developing visualizations of database content is of extreme interest to 

the research community. There are numerous examples of applications 
developed around a graphical display of database content, including re­
lationship discovery, outlier detection, and trend analysis. 

Our approach to visualizing the structural, information content (which 
is distinct from the data content) of databases is motivated by the disci-
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pline of information theory. In particular, we utilize entropy as the basis 
for our visualizations. Within the field of information theory, entropy is 
the central concept, related to the encoding of messages. As such, en­
tropy is a statistic that provides a global description of the information 
content of data. This research utilizes entropy to visualize the structure 
of a database relation, independent of the underlying domain datatype. 
We defer to Section 2 for the definition of entropy, as well as other formal 
notions. 

When developing effective visualizations of database content there 
are three significant challenges that must be addressed. First, we are 
often faced with high-dimensional data. Second, databases are awash 
with categorical data, which often lack any meaningful order or scale. 
Thirdly, the sheer mass of data in even a moderately sized database may 
overwhelm the user when trying to simply display a two-dimensional 
scatter plot. 

There has, of course, been a great deal of research effort aimed at 
addressing these challenges. For example, a number of techniques have 
been applied to high dimensional data, such as parallel coordinate dis­
plays, worlds within worlds, dimensional stacking, and grand tour meth­
ods. {Inselberg and Dimsdale, 1987; Inselberg and Dimsdale, 1990; LeBlanc 
et al., 1990; Feiner, 1992) Likewise, the field of information visualization 
has many techniques for dealing with abstract, categorical data.{Card 
et al., 1999) For techniques dealing with visualizing the contents of large 
databases see (Keim et al., 1994; Keirn, 1996a; Keirn, 1996b). 

Whereas the goal of almost all other visualization techniques is to 
facilitate understanding of particular values, our approach specifically 
remains aloof from those values in two distinct ways. First, we are 
interested in large-scale properties of instances - properties that are 
related to attributes rather than values. For example, a relation with 
10 attributes requires 45 different 2D scatter plots to provide the same 
amount of information our technique provides in a single 2D scatter 
plot. Indeed, the axes for many of the visualizations we present are 
the collection of attributes in the relation, or characteristics of those 
attributes, rather than the values in a particular attribute. Second, 
even within a particular attribute, it is the distribution of values rather 
than the actual presented values that matter. Indeed, we typically code 
values as integers to simplify processing. 

This second distinction is a consequence of the notion that the struc­
ture of data is independent of data values. Formally, structure is generic, 
in that it is invariant under 1-1 substitution of data values (hence the 
encoding with integers). For example, functional dependencies describe 
a particular type of structure - independent of the actual values. The 
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definition of the functional dependency X --t Y, namely ""It 1 E r, Vt2 E 
r(tl[X] = t2[X] * tl[Y] = t2[YJ)", exhibits this formal genericity. In­
formation theory, which uses only probabilities associated with values 
and not the values themselves, therefore provides techniques that allow 
us to view value-independent structure. Because entropy-based visual­
izations show global properties, they are more in tune with natural uses 
of visualization, where global structure and detail through drill-down 
are most effective. 

Naive attempts at global visualization often fail when our perceptual 
mechanisms confront the above challenges. For example, Figure 1 il­
lustrates how our natural perception is sometimes misleading - a glance 
suggests that the left pane is more "function-like", while in fact the right 
pane exhibits the functional dependency A --t B while the left does not. 
While the presence or absence of these functional dependencies is easy 
to evaluate in Figure 1, with only eight data points, this task becomes 
increasingly difficult as the number of data points increases. In addi­
tion, determining when the data contains an approximate dependency 
(Kivinen and Mannila, 1992), in which a functional dependency holds 
except for a small number of violations, is equally difficult . 
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Figure 1. On the left, a scatter plot of data where the functional dependency 
A -+ B does not hold. On the right, a scatter plot where the functional dependency 
does hold. The dashed lines have been added to show the alignment of the points 
along the vertical dimension. 

This paper is structured as follows. Section 2 provides the formal 
notation and definitions used throughout the paper. Section 3 explores 
the use of entropy to visualize frequency distributions of attribute val­
ues in database relations. Section 4 demonstrates the use of entropy for 
visualizing dependencies, or relationships between attributes. Section 5 
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provides examples of these these techniques for making broad compar­
isons of different datasets. Lastly, Section 6 provides future directions 
and concluding remarks. 

1.1. User Interaction 

In order to visualize database structure we have developed a system 
to support interactive displays of database visualizations. Based on an 
architecture we proposed in (Groth and Robertson, 1998), the system 
supports the specification of database queries and the mapping of the 
query results to a graphical representation. These mappings are entirely 
under the control of the user. 

The system is implemented in Java, using JDBC for query processing. 
The visualizations are implemented using Java 3D, allowing the user to 
manipulate the display for standard actions such as rotating, scaling and 
translating. In addition, the user is able to drill down at any data point 
to see the raw data values, as well as identifying datapoints that are 
particularly interesting to them. These selected points can be utilized 
in subsequent visualizations for comparative purposes. 

2. Definitions 

This section provides the formal notation and definitions used in this 
paper. Our focus is on visualizing database information, so we begin 
with the basics of the relational model. Let R = {A, B, C, ... } be a 
relation schema for instance r. For attribute A E R, A denotes {A}. 
Sets of attributes are denoted by X, Y, Z ~ R. For X and Y ~ R, 
XY denotes xu Y. The notation we use for tuples is t E f, with t.A 
representing the value for attribute A in tuple t. 

With its genesis in message theory, entropy is defined over a set 
of messages M = {ml, ... ,mn }, with associated probabilities PM = 
{PI, ... ,Pn}. The entropy of M is 1tM = 2:i=IPilog;;. Entropy pro­
vides us with an average cost (in bits) for each message. The upper 
bound on the entropy of M is log n, which occurs when each message 
has equal probability. Additional details on entropy, as well as other 
information theory topics, are covered in (Cover and Thomas, 1991). 

For databases, the message set we are interested in is taken from 
the relation instance r. When projecting attributes from R, we do not 
eliminate duplicate values, which allows us to compute the probabilities 
using the counts of each value in the active domain. For example, the 

b b·l·t P(A ) count U A=a r pro a 11 y = a = count(r . 
For any set of attributes X ~ R, we can compute 1tx using an SQL 

aggregate query. The query is shown in Figure 2 for the case of A E R. 
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For the purposes of the visualizations generated for this research, we 
pre-compute 1tA for each A E R, as well as 1tAB for each A, B E R. 
Note that 1tA ::; log IAdom(A)I, where Adom(A) is the active domain 
of A. When 1tA = log Irl, A is a key. 

Select SUM((Ri.frequency/R2.rovcount) * 
LOG(2,1/(Ri.frequency/R2.rovcount))) 

From (Select A, COUNT(*) as frequency 
From R 
Group By A) as Ri, 

(Select COUNT(*) as rovcount 
From R) as R2 

Figure 2. SQL query to calculate the entropy of A 

2.1. Information Dependencies 
Within the database research field, the concept of functional depen­

dencies is well understood. The functional dependency A -+ B holds in 
instance r, when for any two tuples tll t2 E r, tl.A = t2.A ===> tl.B = 
t2.B. While functional dependencies always hold for an instance, a par­
ticular functional dependency may be specified as a constraint over in­
stances of a relation and commercial database management systems have 
mechanisms for entering such constraints. 

As is often the case, however, large, complex data rarely exhibits many 
functional dependencies beyond those specified as constraints. As shown 
in (Dalkilic and Robertson, 2000), an Information Dependency Measure 
is defined using entropy. The information dependency measure 1tx-+y 
provides a measure indicating the average number of bits we need to 
use to determine Y if we know a value for X. Another way to look at 
this measure is in terms of surprise. In other words, how surprising is a 
particular value for Y when we know X. 

The information dependency 1tx-+y defined as 1tXY -1tx. For more 
details on information dependencies, as well as an equivalent definition, 
see (Dalkilic, 2000). When 1tx-+y = 0, the functional dependency X -+ 

Y holds. The upper bound on 1tx-+y is 1tx + 1ty, which is the case of 
independence of X and Y. 

Another weakness of using a traditional approach for identifying de­
pendencies is shown in the right pane of Figure 1. We can verify by 
checking across the display that there are no violations of the depen­
dency A -+ B. However, as the number of datapoints increase the task 
becomes increasingly difficult. In addition, determining when the data 
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contains an approximate dependency (Kivinen and Mannila, 1992), in 
which a functional dependency holds except for a small number of vi­
olations, is equally difficult. Figure 1 may be used to illustrate the 
applicability if the information dependency measure: '}-{A->B is 0.25 in 
the left pane and 0 in the right. Whereas a visual estimation of ap­
proximate functional dependencies does not scale, estimation via '}-{A->B 

does. 

3. Visualizing Distributions 
Using the measures defined in Section 2, we turn to the visualization 

problem addressed in this research. The data we use in our visualization 
is drawn from a variety of sources, including the U.S. Census (cen, 2000), 
the U.C.1. Machine Learning Repository (Blake and Merz, 1998), and the 
Wisconsin Benchmark (DeWitt, 1993). The specific dataset we used for 
the Census was the 1990 Indiana Public Use Microdata Sample (PUMS), 
which has 125 attributes. 

Our first application is the visualization of frequency distributions. 
An obvious technique for visualizing frequency distributions is to use 
histograms, with the height of each bar representing the frequency. Fig­
ure 3 shows the log of the size of the active domain for each attribute in 
the U.S. Census (Left) compared to the calculated entropy value for each 
attribute value (Right). The leftmost bar in each display corresponds to 
a key in the relation; otherwise, the attributes are arbitrarily ordered. 

Adom(A) H(.4) 

Figure 3. Comparing the size of the active domain for each attribute (Left) to the 
entropy of each attribute (Right) in the U.S. Census dataset. 

Note that the height of the bars varies according to the probabilities 
associated with each value in the active domain, resulting in differences 
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in the heights for the same attribute in each display. To highlight these 
differences, consider Figure 4, which shows the same information for a 
subset of the attribute space. The attributes displayed include: Hours 
Worked Per Week, Immigration Year, Income, Non-farm Income, Farm 
Income, Interest and Dividend Income, Social Security Income, Public 
Assistance Income, and Retirement Income. In this case, we can see that 
certain attributes that have dominant values have their corresponding 
entropy values reflect this dominance. 

H(A) 

Figure 4. A view of the differences between the size of the active domain for (Left) 
compared to the entropy values for the same attributes (Right). 

In order to gain an overall view of the attribute space, we can compare 
?-lA to log ladom(A)1 using a two-dimensional scatterplot. This visual­
ization is shown in Figure 5, in which the attribute that is a key has 
been omitted. In the visualization, points that lie on the diagonal have 
an (approximately) uniform distribution. The further a point is from 
the diagonal, the less uniform is the associated distribution. 

4. Visualizing Relationships 
While the previous section demonstrated the use of entropy to gain 

insight into frequency distributions within database relations, this sec­
tion extends the technique in order to explore relationships between 
attributes. In particular we utilize the information dependency measure 
described earlier to visualize these relationships. 

While we have formally described the concept of an information de­
pendency, we have not yet discussed visualizing them. The left pane of 
Figure 6 characterizes the space of ?-lA-+B x ?-lB, which is encountered 
when visualizing the values in a 2D scatter plot. This type of visual-
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Figure 5. Comparing the entropy of each attribute in the census data to the log of 
the size of the corresponding active domain. 

ization allows us to get an overall view of all possible attribute pairs 
in a compact space, A critical advantage of this approach is that the 
visualizations do not depend on the actual values or types of data. 
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Figure 6. On the left, characterizing the space 'H.A .... B x 'H.A. On the right, a 
visualization of this space for the census data. 

The dark area in the figure represents functional dependencies in the 
relation. Above the diagonal the space is empty, since the upper bound 
of7tA-+B is 'HB. As you move away and below the diagonal, the structure 
becomes more like a functional dependency. There is an area of poten­
tial interest close to the horizontal axis, in which the space represents 
approximate functional dependencies that are almost a pure functional 
dependency. The space closest to the diagonal contains attribute pairs 



165 

where B does not significantly depend on A (we cannot say that A and 
B are independent since B ~ A is not ruled out). 

The right pane of Figure 6 shows a scatter plot comparing HA-+B to 
HB for the census data. We can easily see individual attributes, which 
correspond to the vertical bands (since of course HB is determined only 
by B. Unfortunately, a black-and-white rendition of this image does 
not indicate points that lie exactly on the horizontal axis - points that 
correspond to true functional dependencies. Certain points close to that 
axis are of obvious interest. In addition, one isolated point about 1/3 
up and 2/3 right begs investigation in detail. However, we cannot tell 
whether points on the upper right merely correspond to A's with small 
entropy. 

This suggests a more detailed examination using three dimensions, 
comparing HA-+B, HA and HB. Figure 7 shows two perspectives on 
this visualization - the left image looks out along the 7iA axis with HB 
vertical and HA-+B going off to the right and the right image rotates the 
left around the vertical axis. Both images are zoomed somewhat, as is 
evident by the axis labels. The origin is zero for each axis. The fact that 
HA-+B ::; HB is clearly shown by the empty space in the lower right of 
the image. 

, ;, 
...... 

Figure 7, 3D plot comparing 1tA_B, 1tA and 1tB, 

We can observe several properties of the space. The vertical line of 
data points at the far end of the HA axis (Z dimension) arises when 
A corresponds to the key of the relation, which of course functionally 
determines every attribute. The rotation from the left to right image 
also shows that most points lie near the HA-+B = HB plane, althought 
this is less evident with still images than when image manipulation is 
possible. 
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Two bands along the edge of the 'HB = 'HA_B plane, corresponding 
roughly to 'HA ::; 0.5 or 'HB ::; 0.5, line very close to the plane. This indi­
cates the surprising fact that each low entropy attribute is independent 
of other attributes except each other 

In addition to identifying potentially interesting relationships between 
attributes, the visualizations also highlight additional information. For 
example, when 'HA is low and 'HAB -'HA = 0, it is possible to decompose 
the original relation into smaller sub-relations, taking advantage of space 
savings. When the difference is very near to zero, you may decide to 
ignore the noise entirely and clean the data by removing the noisy data. 

4.1. Drilling Down 

The discussion thus far has involved global characterizations of at­
tributes, but information-based visualization can also drill-down to re­
veal local structures. This makes use of the fact that the functional 
dependency A ~ B holds iff 'HA_B = 0 and thus the quantity 'HA_B 
is a measure of how close A ~ B is to holding in an instance. The 
characterization of 'HA_B as L:aEAP(a) x 'HB(O"A=a(r)) suggests that 
the "landscape" ofp(a) and 'HB(O"A=a(r)) might reveal something about 
local structure related to A ~ B. Indeed this is the case, as we see in 
examples from the census data. 

The first example examines AGE ~ DEPART (with AGE as A and DEPART 
as B). The plot ofp(a) versus 1{B(O"A=a(r)), shown in the first panel of 
Figure 8, has several interesting features: 

1 AGE values with low probability have low diversity of associated 
DEPART, and this holds uniformly 

2 the relationship of 'HB(O" A=a(r)) versus p(a) is essentially a smooth 
function for low p( a) values 

3 whenp(a) exceeds a certain value, the corresponding 'HB (O"A=a (r)) 
is typically close to the maximum; this cutoff is surprisingly sharp 

4 there are a few higher probability AGEs which differ from the typical 
by having 'HB(O"A=a(r)) values that are lower or 0; these AGEs are 
interesting in themselves. Indeed, further investigation of these 
values seems to indicate anomalies in the way the census data was 
collected. 

5. Visual Comparisons Of Datasets 
In previous sections we have demonstrated the use of entropy to vi­

sualize the information content of database relations. In this section we 
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Figure 8. Comparing p(a) to 'HB(UA=a(r)) for census data. In this example, A is 
AGE and B is DEPART. 

show how multiple, diverse datasets can be compared within the same 
display in order to understand the degree to which the datasets might 
be similar in terms of their structure. 

We have used this particular technique to compare various bench­
mark datasets in order to evaluate their structure. Although bench­
mark datasets are used for a variety of applications, a primary use is the 
performance evaluation of new algorithms. For example, the Wisconsin 
benchmark (De Witt, 1993) has been used to test various join algorithms. 
Within the machine learning community a large number of benchmark 
datasets are available.(Blake and Merz, 1998) Many of these datasets 
have been used for evaluating various data mining techniques. 

Ariom(A.) 
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Figure 9. 'HA compared to log ladom(A)I for the Wisconsin benchmark data (Left). 
The same comparison from the census data (Right). 
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Figure 9 (Left) shows 1tA compared to log ladom(A)I for the Wiscon­
sin benchmark data. The Wisconsin data can be seen to have a nearly 
perfect uniform distribution within each attribute. When compared on 
the census data, seen in Figure 9 (Right), it is clear that this syntheti­
cally generated data demonstrates significant differences from real data, 
which has much more complexity to its structure. 

As another example, Figure 10 shows a number of datasets from the 
machine learning repository displayed for comparison. We can see in 
this visualization that these datasets have different structure as well, 
although the sparseness of the data does have an effect. In addition, 
these datasets tend to have a large number of boolean valued attributes. 
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Figure 10. 1tA compared to log ladom(A)I for datasets taken from the machine 
learning repository. Clockwise from top left - Hepatitis, Tic Tac Toe, Agaricus, SetQ. 
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6. Conclusion 
In this paper we have shown how entropy, a central concept in infor­

mation theory, can be used for visualizing the structure of information 
within database relations. The technique simplifies the display of com­
plex relationships, allowing for dependencies to be spotted. Our use of 
entropy is independent of the underlying datatypes, handling all in a con­
sistent fashion. Furthermore, we have demonstrated the technique on a 
wide variety of data, some of which are quite large. The census dataset, 
for instance, contains 125 attributes and approximately 300,000 rows of 
data. 

While this particular research is reported in terms of database visu­
alization problems, the techniques we have employed are applicable to 
several areas. Within data mining we envision that these techniques can 
be used to assist an expert in exploring their particular problem space. 
In addition, database designers can use the visualization to assist in the 
construction of decompositions, either for OLTP systems, or for OLAP 
data warehouses. 
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