
ADMINISTERING PERMISSIONS FOR 
DISTRIBUTED DATA: 
Factoring and Automated Inference 

Arnon RosenthaI and Edward Sciore 
The MITRE Corporation: Boston College and The MIT RE Corporation 

Abstract: We extend SQL's granUrevoke model to handle all administration of 
permissions in a distributed database. The key idea is to "factor" permissions 
into simpler decisions that can be administered separately, and for which we 
can devise sound inference rules. The model enables us to simplify 
administration via separation of concerns (between technical DBAs and 
domain experts), and to justify fully automated inference for some permission 
factors. We show how this approach would coexist with current practices 
based on SQL permissions. 

Key words: Access permissions, derived data, view, federation, warehouse 

1. INTRODUCTION 

We believe that security can be greatly improved if data access 
permissions are appropriately consistent across systems, and are at 
appropriate granularity. Today's enterprise and multi-enterprise systems 
rarely meet that goal. There is little connection between privileges on data 
available from multiple databases. Also, while finer grained protections 
provide better security, most organizations reduce administrative costs by 
using coarse granules (e.g., entire tables) [MaiOl]. A grand challenge for 
data security is to make large-scale administration easy enough that ordinary 
organizations will do it weIl. There are two main difficulties: 

Size: There are many object types (Le. tables and columns) to administer. 
SQL grants apply to a single physical table, so each copy or derived interface 
is administered separately. This complexity also makes it harder for planners 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2002
M. S. Olivier et al. (eds.), Database and Application Security XV

10.1007/978-0-387-35587-0_24

http://dx.doi.org/10.1007/978-0-387-35587-0_24


92 DATABASE AND APPLICATION SECURITY XV 

to determine whether their users have enough permissions to get their jobs 
done. 

Consistency: Permissions on derived products should, intuitively, be 
consistent with the sources, but the nature of the desired consistency is 
elusive (as discussed below). With the current model, there is little hope of 
giving clear guidance to data administrators. 

We believe that the current security model should be extended so that: 
- An administrator at a site should be able to infer permissions on 

derived information based on permissions granted on sources, 
wherever those sources reside. Moreover, the system should automate 
this inference and maintain consistency. 

- The permission-granting ability should be split among various experts 
(e.g., domain experts, DBAs, and security experts), to take advantage 
of their different expertise. 
In the subsections below, we argue that these capabilities are more than 

amenities. They are crucial. 

1.1 The problems with automating permission inference 

Many organizations have set the goal of capturing each fact just once (no 
redundant "fat-fingering") and making it available where needed. They must 
then provide the same fact as part of multiple interfaces, i.e., through 
multiple views, often materialized for performance, availability, and 
isolation. The goal is to have one steward responsible for each fact, who 
grants access permissions on it. 

But how do these locally defined permissions affect derived tables 
elsewhere in the system? For example, who grants access permissions on 
federation (or warehouse) tables? The current situation is to assume that the 
federation administrator is trusted enough and knowledgeable enough to 
make the appropriate grants. Automated permission inference would be 
helpful in three ways: 
- Permissions would be defined once and inferred where needed, 

eliminating the need for redundant grant specifications. 
- The system would be able to assist administrators with understanding 

how their grants affect the entire system. 
- Administrators of derived data would not need to be as trusted or 

knowledgeable. 
However, automated permission is not easily done. Consider the 

following example. A system consists of two databases. One database 
contains a source table T, and the other contains a derived table T', which is 
simply a copy of T. Should T' have all the permissions of T? More? Fewer? 
The answer depends on the circumstances shown in the following cases: 



Rosenthai & Sciore 

a) T holds non-sensitive information telling nations' capitals and national 
holidays. But T resides on a sensitive financial or military system, 
whereas T' resides on a public server. T' should have more 
permissions. 

b) T holds the same information as above, on a public web site. T' makes 
it available with a much better user interface and other amenities, but 
requires a subscription fee. T' should have fewer permissions. 

c) T contains genetic sequences, on abiochemist' s workstation, which 
has limited power and bandwidth. Gene publishers are allowed to 
access her data weekly to download changes to table T'. Table T is 
accessible only to local users plus the selected publishers; T' is public. 

d) T is part of an order-entry system that handles millions of small 
transactions. T' is in a data warehouse, used for large data-mining 
analyses that absorb the CPU and hold long-duration locks. Clerks are 
given permission on T, and Analysts on T'. 

93 

The proper behavior differs drastically in the above situations. So at first 
glance, it seems that even the most trivial cases may require human review. 

[Cap97, Cas97, Gud98] proposed the (optional) inference rule that be "if 
you have privileges on information used to derive a view, you get privileges 
on the view". The administrator could be asked to specify whether such 
inference should be allowed, Le., to say whether privileges on T should also 
apply to derived products. This intuition that privileges should sometimes 
propagate is a step in the right direction, but needs significant extensions: 

First, their formulation states that either all permissions propagate, or 
none do. For example, one cannot say "Employees' privileges propagate to 
the data warehouse, but Customers' privileges do not". Second, perhaps to 
keep the extra work modest, their proposal was just for Jederated 
architectures, not for views within a DBMS, or a data warehouse. Finally, 
their proposal asks administrators for an abstract decision about inference 
between two systems; there is no guidance on how to make the decision, 
e.g., by comparing specijic risks and needs. 

1.2 Problems with monolithic permissions 

An administrator must consider multiple factors to decide whether a 
permission should be granted, e.g., whether the user is allowed to see the 
data, and whether the user is allowed to access the data from a particular 
computer. Each factor requires a very different expertise: the former requires 
business domain knowledge, to determine tradeoffs between the benefits and 
risk of greater accessibility; the latter requires technical judgements about 
systems issues such as performance and intrusion vulnerability. 



94 DATABASE AND APPLICATION SECURITY XV 

Unfortunately, current permission specifications intertwine the various 
factors, without making them explicit. Often a11 the factors are hidden within 
a single decision; when the decision is changed, a11 must be reviewed. Other 
decisions are hidden from the database permission system, e.g., as 
permissions to logon to a platform or to connect to a DBMS. 

The example of Seetion 1.1 illustrated this intertwining. Viewed 
according to their information content, the two tables T and T' should have 
the same permissions; however, other factors (hacker risk, performance, etc.) 
also had an impact. Therefore, the ultimate permissions could not be inferred 
automatically. However, by treating each factor separately, a much clearer 
picture can arise. Information content is global in nature - if information in T 
is releasable, the information in copyOf(T) is the same. On the other hand, 
physical platform concerns are local - permission to execute an operation on 
your machine does not necessarily imply permission on mine. 

Current DBAs are required to have several kinds of understanding, wh ich 
has exacerbated the shortage of skilled personnel. By splitting a permission 
specification into its factors, it is possible for people with different expertise 
(business experts, security experts, and system administrators) to each 
contribute their portion to permission administration. 

1.3 Roadmap oftbe Paper 

Our theory explicitly provides for permissions to be split into two kinds 
of factors - information permissions and execution permissions. Section 2 
introduces permission factors and their inference rules. We discuss how 
permission factors should be specified, who should specify them, and 
provide inference roles. 

Section 3 considers how one might implement a multiple-factor 
permission system, without discarding today' s DBMSs. It outlines required 
capabilities and algorithms for aseparate Permission Manager (PM) that 
contains most of the intelligence for managing factored permissions. The PM 
communicates with DBMSs that may not support factoring. We also discuss 
how new factors are introduced. 

For simplicity, we assurne that a11 databases are relation al. Until Section 
2.5 and 2.6 respectively, we assurne that view logic requires no execution 
permissions to execute, and the code is public. FinalIy, we consider onIy 
policies for data access, not policies for delegating administrative authority 
[San99], i.e., SQL's grant option. 



Rosenthal & Sciore 95 

2. SPLITTING PERMISSIONS INTO FACTORS 

2.1 Permissions on Operations 

Each database request is submitted under the rights of some subject. The 
subject may be an individual, a process, or a role. (We expect the roles to be 
most common form of subjects in distributed systems [San99]). Issues such 
as how one authenticates users, assigns users to roles, and manages the role 
hierarchy (especially across organizations) are outside our scope. 
Increasingly, they are also out of the DBMS's scope, and performed in 
middleware security servers and directories. 

A subject submits requests to the system. Arequest is expressed as in 
SQL, and may be a query, update, or stored procedure invocation. An 
operation is an abstract action at a particular granularity; example operations 
at table granularity might be Read(T) and DeleteFrom(T). AfuU permission 
authorizes an operation. Full permissions may be explicitly granted, or may 
be inferred from other perrnissions. The full perrnission (s,9) denotes that 
subject s is authorized for operation 9. 

Explicit permissions can be granted as individual pairs (s,9), or in bulk 
(by a predicate on the operation description, e.g., all read-only operations on 
warehouse database DW h or all operations marked as inexpensive on 
operational data store ODS2). While support for such predicates can be an 
implementation burden for vendors, many authors have recognized the 
desirability of capturing knowledge wholesale. 

Arequest is implemented as some native code plus calls to additional 
operations, each of which requires a perrnission. Suppose that request R 
deterrnines operations {9h ... ,9n }. Then subject s is allowed to execute the 
request R if each full perrnission (s,9j ) exists. 

For example, consider the two relations EMP(E#, EName, D#) and 
DEPT(D#, DName). The operation set associated with the request: 

deletefrom DEPTwhere DName= 'sales' 
would likely be {Delete(DEPT), Read(DEPT), Update(EMP)}, assuming 
that the related EMP records will be reassigned to adefault department. 

SQL, and hence our model, supports perrnissions on view operations by 
subjects who lack perrnissions on the base table. This is equivalent to 
defining several stored procedures, one for each action on the view (Read, 
Insert, etc.), and granting execute perrnission on these procedures. (If there 
are several interpretations of view update, each is treated as aseparate stored 
procedure; resolution occurs before the security system is invoked.) 



96 DATABASE AND APPLICATION SECURITY XV 

2.2 Permission Factors 

The existence of a full permission (s, 9) allows s to execute 9 on demand. 
As discussed in Section 1, it is not always easy to specify, propagate, and 
administer permissions in a large database. The question "should this user 
have full permission" requires that a judgement be made, based on a range of 
issues. This paper' s main thesis is that it is hetter to treat a full permission as 
the conjunction of several independent, specialized permission factors. 
Compared to the full permission, each permission factor typically 

Presents a simpler problem to the administrator. Tbe question posed 
by each permission factor is more concrete. Tbe answer typically 
depends on a narrow slice of technical or domain knowledge. 

- Possesses an explicit definition of "consistency" that is amenable to 
automated maintenance. 
We assume that the system has a set of factor types {fh ... ,fn}. A 

permissionfactor is a tripie (s, 9, fi), which specifies that subject s is allowed 
to execute 6 with respect to fi. Permission factors are related to full 
permissions by the definition (s, 9) == (s, 9, f\) " ... ,,(s, 9, fo) 

That is, s is allowed to execute 9 iff s has a permission factor for 9 with 
respect to every factor type. We do not need a new model for administrative 
authority - permission factors (like conventional full permissions) are 
managed by Grant and Revoke. 

Factor types are partitioned into information factor types and execution 
factor types. Information factor types are concemed with "what is the 
result", Le., what information is to be released or altered. Execution factor 
types are concemed with how the result is obtained - more specifically, with 
"which machine does which operation?" The followingsubsections give 
examples of several factor types. 

The change from full permissions to permission factors increases the 
amount that administrators specify explicitly, but not the amount that they 
must consider. We contend that it can actually reduce the specification 
effort. The explicit split simplifies each decision, lets some decisions be 
handled very coarsely (e.g., on a per system basis), and reduces maintenance 
effort and errors by letting a single permission factor be modified without 
revisiting the others. It also makes it more likely that every factor type will 
indeed be considered. Meanwhile, storage is cheap and permission factors 
can usually be combined at Grant time rather than for each user request. 

2.2.1 Information Factor Types 

The information content of the database consists of a single copy of each 
fact (e.g., a patient's drug prescription). Tbat fact may be physically 



Rosenthai & Sciore 97 

replicated, and may be available through multiple interfaces. Information 
factor types enable permissions to be granted only on information content. 

An information-factor Read permission says tbe data may be released to a 
subject. An information-factor Update permission authorizes an update that 
will (eventually) affect all physical copies. These permissions are technology 
independent - unaffected by how many systems have the information, or 
wbich system first receives the request. If we reorganize from centralized to 
distributed servers, no changes are needed. Administrators of information 
factor permissions are business experts, concemed with the business value of 
data sharing and data protection. They do not need to be technology experts. 

We have identified two useful information factor types - ordinary and 
overriding. They differ in usage, rather than in semanties. Ordinary 
permissions are generally fine grained, and the right to grant them may be 
widely delegated to business experts. The union of all administrators' 
ordinary grants will eonstitute the ordinary information permissions for the 
entire system. 

A danger in any administration system, but especially a large one, is that 
administrators lost in the weeds will grant permissions that violate 
organizational policies. Overriding-poliey permissions may be used by a 
high level, seeurity eonscious administrator to unilaterally limit the effeet of 
ordinary permissions granted by others. We anticipate very coarse-grained 
administration for overriding permissions. (An organization that does not 
wisb to differentiate can ignore them by adopting the default of Public for all 
overriding privileges). 

As an illustration, suppose that there exist only two factor types: ordinary 
and overriding. By definition, s may execute 9 if and only if, both factors (s, 
9, ordinary) and (s, 9, overriding) are granted. Suppose administrator x 
grants ordinary permissions on 9 to subjects sI and s2, and administrator y 
grants ordinary permissions on 9 to s3. Tbe permission factors granted are 
{(sI, 9, ordinary), (s2, 9, ordinary), (s3, 9, ordinary)}. 

Now suppose administrator z grants the overriding policy permission 
factor (sI, 9, overriding). The net result is that only sI can execute 9 because 
it was granted both factor types. 

Overriding-policy factor types can thus be used as a simple negative 
permission facility [Ber99] (but without the power and potential confusion 
of multiple levels of strength). Negative permissions are too broad brush -
they limit permissions even from unrelated grantors. In [RosOOb] we 
explored a more fine-grained approach in which one limited permissions 
granted to a partieular user (who might be an onward grantor). Tbis enables 
any grantor to limit their own grants (and grants derived from theirs), 
without violating the rights of other grantors. 



98 DATABASE AND APPLICATION SECURITY XV 

2.2.2 Execution Factor Types 

Execution factor types concern whether it is appropriate to execute an 
operation at a particular server (site. machine. DBMS. middleware server. 
etc.). These permissions are the result of autonomous. local decisions - the 
fact that compensation analysts can read employee salaries on a budgeting 
machine says nothing about them having rights on the payroll machine. An 
organization can apply consistency eonstraints among the servers it eontrols. 
but these are organization-specific and outside our model. 

We have identified several exeeution factor types. These correspond to 
physical-access limitations such as allowing only paid subscribers. keeping 
potential hackers off the machine. and controlling workload. A DBA or 
security officer might administer a "hacker risk" faetor type. A DBA who 
tunes database performance might administer a "small transaction" faetor 
type (where predicates only allow operations certified as not being resouree 
hogs). A DBA and sales manager might negotiate the permissions associated 
with a "paid subscriber" faetor type. Finally. we again want an overriding 
factor to act as a eatchall for other types of restrietions. 

For updates. the required permissions depend on the meehanism. If a 
user' s update transaction updates all source and materialized derived 
products. the updating subject needs exeeution permission on all the objeets. 
However. if a replication process provides the synchronization. then the 
updater needs execution permission on one source objeet. and the 
Replication needs it on the others. In eaeh ease. the permission is 
given to whoever runs code on a maehine. 

Systems sometimes achieve the effect of execution permissions by 
imposing controls external to the DBMS. e.g., in an operating system or 
middleware server. In such cases, both the external system and our 
permission manager would keep a copy; changes in either environment 
would create changes to the other (in loeal syntax). In this way, a permission 
manager can present an administrator with an integrated. unified interface. so 
the answers to questions like "who ean aceess table T?" will take all faetor 
types into account. 

2.3 Inference Rules 

Our first inference rule is structural, stating that users have a permission 
factor for arequest if they have the eorresponding permission factors on the 
actions made by the request: 

Inference Rule 1: Suppose request R is defined by actions {8to •••• 8n}. 

and that for each i. (s. 8i• 0 is a permission faetor. Then we ean infer the 
permission factor (s. execute(R). O. 



Rosenthai & Sciore 99 

This rule can be used, for example, to infer a permission factor on a view, 
based on appropriate pennission factors on the underlying tables in the 
view's definition. 

Our second inference rule applies only to information factor types. We 
say that two requests are information-equivalent if, for every population 
instance of the database, they produce the same result (i.e., queries return the 
same data, and updates produce the same changes). A user who has an 
information-factor pennission for arequest should therefore also be allowed 
to perform any information-equivalent request: 

Inference Rule 2: Suppose requests R1 and R2 are information­
equivalent requests. Then (s, execute(R2), f) if and only if (s, execute(R1), f) 

The theory of information-equivalence is mature, and widely used in 
query optimization. We explicitly decline to extend the theory as part of a 
security system - extensions have wider and better-funded applicability in 
query optimization. Security facilities should be modular, and not require 
changes as functions are added to the query language. 

Information equivalence is often detennined by query rewrite, and can 
include expanding a view reference by its definition (as in rule 1), rewriting 
a query in terms of views, or performing query simplification based on 
constraints [Ros99, RosOOa]. 

Inference is used in two ways. First, one can lnfer Permissibility of a 
Request: Given arequest and a set of pennissions granted, infer whether the 
permissions are sufficient to do the request. Second, one can lnfer 
Permissions on Object: Given an object, infer the set of permissions on it. 
One uses this information to establish permissions to be imposed on a data 
warehouse, and to compare available permissions with business needs. 

2.4 Some Examples 

We revisit the four cases of Section 1.1, showing permission factors that 
capture each case. Here, limited will denote a role narrower than public. 
a) Sensitive server: (public, Read(T), info); (employee, Read(T), 

execution); (employee, Read(T'), execution). 
b) Free versus subscription service (public, Read(T), info); (subscriber, 

Read(T'), execution); (limited, Read(T), execution). 
c) Biologist who wants to publish only via community servers: same as 

case a). 
d) Warehouse, short and long transactions: (employee, Read(T), info); 

(clerk, Read(T), execution); (analyst, Read(T'), execution). 
We now present an example taken from [Ber99]. Suppose a federation 

supplies a view, to be used only by employees. Actual permissions on the 
view, however, are determined by the underlying source databases. 



100 DATABASE AND APPL/CATION SECURITY XV 

To handle this case, we need not change the model; instead, we augment 
the representation of each federation operation by an explicit operation 
9mn_fed that represents running code on the federation server. Now to execute 
a query 9 that references Tl. and T2, one needs full permissions for Read(T1), 

Read(T 2), and 9mn_fed' The desired effect is obtained by using whatever 
permissions exist on the Ti plus (EMP, full, 9mnJed). Any EMP who has 
access to the underlying data can access it through the federation. 

2.5 Soundness and Completeness 

We now examine the relevance of theoretical criteria of completeness 
and soundness. Incompleteness is tolerable - even weak inference is better 
than what we have today. It is also inevitable. Inference algorithms are 
difficult, and some problems are undecideable. Equally bad, they rely on 
declarations of constraint and operator identities, which incompletely 
describe the real situation. 

Soundness (that the witness is equivalent to the original) is more crucial, 
since violations can lead to improper approvals. If the inference mechanism 
is untrustworthy, then a subject can choose to manually submit the witness 
for processing, in place of the original request. If the replacement was 
malicious, it will be able to misuse the subject's privileges, but no others. 

Information equivalence cannot be trusted if an attacker can declare 
constraints. For example, if an attacker has permission (s, Read(TD, info) 
and declares the false constraint T1=T2, the system will incorrectly infer (s, 
Read(T2), info). One can frustrate such attacks by ensuring that only subjects 
possessing read and update access can declare new constraints. Most systems 
restrict constraint creation even more tightly, e.g., to table owners. 

2.6 Controlling Use of View Definitions 

Inference rule 2 stated that when two requests are information-equivalent, 
a subject who lacked permission for the first request could run the other. To 
do this substitution, however, the subject (or some process) must be able to 
read the view definitions. 

When the view' s source text is protected, generation of information­
equivalent expressions can use only the subject's allowable knowledge of the 
view query. Severallevels of information hiding are likely. The worst case is 
a black box where we cannot predict what tables are in the From list, i.e., 
what operations are invoked. Even rule 2 (implementation) rewrites are 
impossible. The next level allows a subject to know the view's inputs, (i.e., 
to know it is of the form f(T" "., T nJ), but gives no insight into f. Next,one 
might see the query text, but some functions caIled from the query are 



Rosenthai & Sciore 101 

opaque (e.g., secret constants can be opaque functions). The final level 
makes the entire query text is available for query simplification and rewrite. 

3. THE PERMISSION MANAGER 

We now suggest an approach to creating systems that support factored 
permissions. Section 3.1 discusses requirements, and argues that the best 
first step is creation of apermission manager. We sketch the interfaces and 
responsibilities of this manager, and how it interacts with a (possibly 
distributed) DBMS. The bulk of this section tells how permissions might be 
administered with this manager. Section 3.2 briefly presents some ways to 
support administrators who issue factored permissions. Section 3.3 addresses 
coexistence with unfactored (or less factored) permission sets. 

3.1 Responsibilities of the Permission Manager 

Commercial database systems will not soon be extended to handle 
factored permissions. Thus, we are led to an approach based on metadata 
management tools. We envision a management tool, called the permission 
manager (PM), to be added to a system management framework. The 
permission manager would work with other security-related modules, such 
as an authentication manager and a directory server. 

The PM has access to metadata of each local DBMS (schemas, view 
definitions, and grants), and perforrns the following funetions: 
- It receives grant commands (of both full and factored permissions), 

either directly from administrators, or indirectly, replicated from 
permissions that were gran ted within a DBMS. 

- It perforrns inference and installs inferred full permissions into each 
loeal DBMS. Inference has two modes: "is a given request allowed?" 
and "what are all the requests that should be allowed on table T?" 

- It allows administrators to add new factor types, and supports the 
retrofitting of legacy full permissions to the new factor type. 

- It provides reports on who can do what operations. This lets 
administrators see if the permissions protect data sufficiently, and yet 
enable users' work to proeeed. 
Permissions are maintained in a single logical PM (which may be 

physically distributed and replicated). Administrators have the same Grant­
option privileges as they do in the DBMS(s). Table names are assumed 
unique (eoncatenated with schema names), so arequest can reference either 
source-system tables or derived tables (which may be materialized or 



102 DATABASE AND APPLICATION SECURITY XV 

virtual). The metadata manager is aware of database boundaries, so it can 
offer the options to establish execution permissions at database granularity. 

Although the PM takes responsibility for permission inference and 
maintaining global consistency, each local DBMS retains the main 
responsibility for enforcement on run-time transactions, for several reasons. 
First, we do not want to tamper with code that is already running 
satisfactorily. Also, a DBMS checks all the interfaces to data (query, update, 
call level interfaces, usage of indexes, and so forth). It also uses tricks to 
improve efficiency, such as early binding of permission checks into object 
code modules. This coverage and efficiency would be costly to duplieate. 

When the DBMS denies arequest, the user ean ask the permission 
manager to suggest possible alternative equivalent requests. The PM ean be 
shown the rejected query, and invited to find a rewrite that uses other 
resourees. In [Ros99], we gave several examples where either the user's 
query did not really need all the sourees, or could be rewritten to use a view 
that had additional permissions. (A view that is just a carrier of security 
metadata need not be visible in the query-formulation interface.) 

Some loeal systems may be file systems, with more primitive (non­
granular) security. In such cases, one might wish to enforee some 
permissions within the distributed query processor. We assurne that if the 
distributed query processor considers alternative tables as data sources (e.g., 
based on cost), then it is smart enough to look only at copies where the 
request has permission to execute. 

3.2 Administering Permission Factors 

Suppose that the permission factor p = (s, 9, f) has just been granted, 
where f is an information factor type. The permission manager should check: 
- whether p conflicts with any overriding-policy (negative) permissions. 

If so, the grantor of p should be warned that the grant is ineffectual. 
- whether appropriate execution permissions exist. If not, then the 

grantor should again be warned. The issue is whether the grantor 
intended p to mean "9 does not need to be protected for s", or "9 
should be available to s". If the latter is intended, then the grantor must 
negotiate with DBAs to get execution permission for s. 
When a new permission of any factor type is granted, the PM should: 

- check to see what other permissions are implied by the addition of p. 
This information should be made available to the grantor. 

- provide a convenient way to give the inJo-grantee permission on other 
factor types, to generate the full permission. If other factor types are 
handled by a different administrator, add the task to that 
administrator's In-Box. 



Rosenthai & Sciore 103 

It seems important not to impose restrietions on the order for 
administering permissions. For example, when a new role is defined, one 
might next negotiate machine access or else identify detailed information 
permissions, depending on personnel availability. 

3.3 Aggregated and SpUt Permissions 

The permission manager is responsible for dealing with legacy 
permissions. Whenever a factor is split into subfactors or new factor is 
introduced, we cannot instantly change existing permissions to use the 
factor. In fact, users may prefer not to change, but to use their old factors for 
quite a while. 

We assurne there is a tree of factor types, where the root node represents 
full permissions, the next level splits into info and execution, and each of 
these may be further refined. The following inference rule extends the 
definition of Section 2.2 to include a tree of factor types: 

Inference Rule 3: Suppose factor type fis partitioned into fh ... ,fm. Then 
for all s, 6: (s, 6, f) == (s, 6, f\) A ... A (s, 6, fn). That is, from (s, 6, f) one can 
infer all subsidiary (s, 6, fj), and vice versa. 

The permission manager tracks the explicit permission factors, and uses 
the inferred ones as needed. (We do not discuss implementation issues such 
as caching of inference results.) The following observation shows that by 
splitting a factor into subfactors, one does not lose expressive power: 

Observation: Suppose instead of granting a permission factor for f, one 
issues explicit grants for each child factor fj. Then any set of permissions 
gran ted on f can be simulated by permissions on the fj. 

There are actually several ways in wh ich one can perform the above 
simulation. Let (s, 6, f) be the permission factor to be simulated. One 
simulation is to grant (s, 6, f\), together with (PUBLIC, 6, fi) for all i> 1. 
Alternatively, one could grant (s, 6, fi) for all i. 

We do not try to guess which is "right". One might give a human a 
convenient interface for choosing among likely ways to elaborate (s, 6, f), 
but guesswork seems likely to give more error than benefit. 

4. SUMMARY 

Our goal is to reduce the labor and skill needed to administer access 
permissions, especially in enterprise and cross-enterprise databases. We 
explore the ramifications of a simple idea - to separate concerns and ask 
administrators to provide smaller decisions, each of which requires less 
broad expertise. Change becornes easier because one can revisit just one 



104 DATABASE AND APPLICATION SECURITY XV 

factor. Because information permissions are separate, we can exploit their 
more powerful inference theory. In all cases, inference is fully automated. 

Execution permissions can simulate the cases handled in [Ber99], but 
permit decisions to be as fine (or as coarse) as administrators wish - not just 
one decision for each database. The techniques also apply to view tables in a 
single DBMS, and to tables in a warehouse. If the DBMS administrators do 
not trust the mechanism, the user can (at her own risk) perform it herself. 

We then described how the theory could be implemented in a permission 
manager. When an administrator provides one factor's permission, we 
consider what is needed to further elicit the administrator' s intent. For 
example, when one says certain information is readable by Public, does that 
just mean it need not be protected, or that we want to take steps to make it 
actuaHy available? We also considered how to represent fuH permissions as 
factors, both to assimilate full permissions that a DBMS already has, and to 
support users who are uninterested in changing. 

We deliberately stated our inference rules at a high level. Properties of 
this inference system, and (especially) efficient evaluation algorithms remain 
an open research question. 

The outstanding pragmatic challenge is to implement tools to support our 
approach and make it attractive to administrators. Another challenge is to 
find ways to exploit the rewrite capabilities of query processors. 

REFERENCES 

[Ber99] E. Bertino, S. Jajodia, P. Samarati, "A Flexible Authorization Mechanism for 
Relational Data Management Systems," ACM Trans.lnfonnation Systems, Vol. 17, No. 2, 
April 1999, pp. 101-140. 

[Cap97] S. De Capitani di Vimercati, P. Samarati, Authorization Specification and 
Enforcement in Federated Database Systems, Journal 0/ Computer Security, vol. 5, n. 2, 
1997, pp. 155-188. 

[Cas97] S. Castano, S. Oe Capitani di Vimercati, M.G. Fugini, Automated Derivation of 
Global Authorizations for Database Federations, Journal 0/ Computer Security, vol. 5, n. 
4, 1997, pp. 271-301. 

[Gud98] Ehud Gudes, Martin S. Olivier: Security Policies in Replicated and 
Autonomous Databases. DBSec 1998: 93-107 

[MaiOl] W. Maimone, VP, Oracle Corporation (personal communication) 
[Ros99] A. Rosenthal, E. Sciore, V. Doshi, "Security Administration for Federations, 

Warehouses, and other Derived Data", IFlP 11.3 Working Con/erence on Database 
Security, Seattle 1999. (Kluwer, 2000). (Rosenthal papers are available at my homepage) 

[RosOOa] A. Rosenthai, E. Sciore, "View Security as the Basis for Data Warehouse Security ", 
CAiSE Workshop on Design and Management 0/ Data Warehouses, Stockholm, 2000. 

[RosOOb] A. Rosenthai, E. Sciore, "Extending SQL's Grant Operation to Limit Privileges", 
IFIP Workshop on Database Security, Amsterdam, August 2000 

[San99] R. Sandhu, V. Bhamidipati, Q. Munawer, ''The ARBAC97 Model for Role-Based 
Administration of Rotes", ACM Trans. Infonnation and System Security, Feb. '99. 


	ADMINISTERING PERMISSIONS FOR DISTRIBUTED DATA:
	1. INTRODUCTION
	1.1 The problems with automating permission inference
	1.2 Problems with monolithic permissions
	1.3 Roadmap oftbe Paper

	2. SPLITTING PERMISSIONS INTO FACTORS
	2.1 Permissions on Operations
	2.2 Permission Factors
	2.3 Inference Rules
	2.4 Some Examples
	2.5 Soundness and Completeness
	2.6 Controlling Use of View Definitions

	3. THE PERMISSION MANAGER
	3.1 Responsibilities of the Permission Manager
	3.2 Administering Permission Factors
	3.3 Aggregated and SpUt Permissions

	4. SUMMARY
	REFERENCES


		2017-09-14T11:01:03+0530
	Preflight Ticket Signature




