
REGULATING ACCESS TO XML DOCUMENTS

Alban Gabillon and Emmanuel Bruno

Alban Gabillon. gabillon@univ-pau.jr
L/UPPAlCSYSEC. Universite de Pau. /UT Antenne de Mont de Marsan. 37/ rue du Ruisseau
BP 201,40004 Mont de Marsan Cedex France.

Emmanuel Bruno. bruno@univ-tln.fr
SIS - Equipe Infonnatique. Universite de Toulon et du Var. 83957 La Garde, France.

Abstract: In this paper, our objeetive is to define a seeurity model for regulating aeeess
to XML documents. Our model offers a seeurity poliey with a great expressive
power. An XML document is represented by a tree. Nodes of this tree are of
different type (element, attribute, text, comment...etc). The smaIlest protection
granularity of our model is the node, that is, authorisation rules granting or
denying access to a single node can be defined. The authorisation mIes related
to a specific XML document are first defined on aseparate Authorisation sheet.
This Authorisation sheet is then translated into an XSLT sheet. If a user
requests access to the XML doeument then the XSLT processor uses the XSLT

sheet to provide the user with a view of the XML document which is
eompatible with his rights.

Key words: Seeurity Model, Subject, Object, Authorisation Rule, Access Controls, XML,
XPath, XSLT.

1. INTRODUCTION

XML is a mark-up language standardised by the World Wide Web
Consortium (W3C) [1]. XML has become a standard for describing
information distributed on Internet. Since Internet is a public network,
internet applications need security mechanisms to protect sensitive data
against unauthorised access. Standardisation activities for XML digital
signature and element-wise encryption have already started [2]. However, a

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
M. S. Olivier et al. (eds.), Database and Application Security XV

10.1007/978-0-387-35587-0_24

http://dx.doi.org/10.1007/978-0-387-35587-0_24

300 DATABASE AND APPLICATION SECRUITY XV

standardised authorisation mechanism for XML data still remains an open
issue although some proposals have already been made [3][4][5].

In this paper, our objective is to define a security model for regulating
access to XML documents. In [6], due to space limitations we only managed
to present the basics of our model. In this paper we present the complete
model. An XML document is represented by a tree. Nodes of this tree are of
different type (element, attribute, text, comment ... etc). The smallest
protection granularity of our model is the node, that is, authorisation mIes
granting or denying access to a single node can be defined. The semantics of
an authorisation rule is unique regardless of the node type. We show that our
model allows us to define complex security policies including cover story
management.

A prototype implementing our model is available online at
http://sis.univ-t!n. fr/XML-secu. Our prototype is based on XSLT
[7]. The authorisation rules related to a specific XML document are first
defined on aseparate easy-to-read Authorisation sheet. This Authorisation
sheet is then translated into an XSLT sheet. If a user requests access to the
XML document then the XSLT processor uses the XSLT sheet to provide the
user with a view of the XML document which is compatible with his rights.

Our model uses the XPa th language. Therefore, section 2 of this paper
briefly summarises the main characteristics of the XPa th language. Seetion
3 presents our model. Section 4 sketches a straightforward implementation
of our model using an XSLT processor. Section 5 discusses related work.
Finally, section 6 concludes this paper.

2. XPATH

XPa th [8] is a language for addressing parts of an XML document.
XPa th models an XML document as a tree of nodes. The following XML
document represents a file of medical records which contains only one
record. This XML document can be represented by the tree of Figure 1.

Nodes preceded by "/" are element nodes. Nodes preceded by "@" are
attribute nodes and nodes preceded by "textO" are text nodes l .

The following express ions are examples of absolute XPa th loeation
paths (see [8]):
- / files / record. This path addresses each record element which is a

child of the files element.

I The XPa th data model includes three other types of node namely namespace node,
processing instruction node and comment node. For a concise presentation, we do not
include such nodes in our example.

Gabillon & Bruno

1 files 11 text () .This path addresses each text node which is a
descendant of the files element.

<files>
<record id="mrobert">

<name>Martin Robert
</name>
<diagn osis>

<item>Pneumonia</item>
</diagnosis>

</record>
</files>

Figure 1 : Tree representation 0/ an XML document

301

The following expressions are examples of relative XPa th location
paths (we assume the context node is the diagnosis element)(see [8]):

i tern/node () .This path addresses all the child nodes (element or text
node) of the itern element.
. .I@*. This path addresses all the attribute nodes of the context node's
parent element, that is, this path addresses alt the attributes of the
record element.
In addition to its use for addressing, XPath is also designed so that it has

a natural subset that can be used for matching (testing whether or not anode
matches a pattern). This use of XPath is made by XSLT [7]. A pattern
specifies a set of conditions on anode. Anode that satisfies the conditions
matches the pattern. Anode that does not satisfy the conditions does not
match the pattern. Location paths that meet certain restrictions can be used
as patterns (see [7]).

The following expressions are examples of patterns:
i terno Each i tern element matches this pattern.
i ternl text () . Each text node of each i tern element matches this
pattern.
record/@*. Each attribute of each record element matches this pattern.
record [1] / node () Irecord [1] /@ *. Each child node and attribute
of the first record element matches this pattern ("1" is the union
operator).

- i tern [contains (text () , I Cancer I)] • Each i tern element
containing the string I Cancer I matches this pattern.

302 DATABASE AND APPUCATION SECRUITY XV

3. ACCESS CONTROL MODEL

The development of an access control system requires the definition of
subjects and objects for which authorisation rules must be specified and
access controls must be enforced.

3.1 Subjects

A subject is auser. Each user has an identifier which can be the login
name. Each user is the member of one or several user groups. For the sake of
simplicity we assume that groups are disjoint but they can be nested.

The subject hierarchy is described in aseparate XML Subject Sheet (XSS).
The document below shows a simple exam)le of such a sheet.

<aubjecta>
<uaera>

<1II8mber id="dupont">
<a.me>Pierre Dupont</aame>

</lIIeIIIIber>
<lllellllber id="durand">

<name>Jacqueline Durand</name>
</mambar>
<lllellllber id="frobert">

<a.me>Francine Robert</name>
</m.mber>
<lllellllber id="mrobert">

<Dame>Martin Robert</name>
</m.mber>
<lllellllber id="beaufort">

<Dame>Colette Beaufort</name>
</lII*Dber>

</uaera>
<groupa>

<Staff>
<Secretary>

<member idref="beaufort"/>
</Secretary>
<Doctor>

<lII8mber idref="dupont"/>
</Doctor>
<Nurse>

<member idref="durand"/>
</Nurse>

</Staff>
<Patient>

<member idref="mrobert"/>
</Patient>

<Family>
<Robert>

<lll8mber idref="frobert"/>
idref="mrobert"/>

</Robert>
</Family>

</groupa>
</aubjecta>

Tbis XSS document describes a
subject hierarchy with four users. In
this example, each user is member
of at least one group. Tbere are
three groups: Staff, Patient and
Family. Tbe Stal! group is
subdivided into three subgroups:
Doctor, Nurse, Secretary. Tbe
Family group contains only the
Robert family sub-group.

Users registered in this XSS

sheet are selected with location
paths relative to the subj ects
element. If a location path
addresses anode n then we say that
all users who are referenced in the
sub-tree of which n is the root are
selected. Examples of such a path
are the followings:

users. This path selects all
users.
users/member[@id='mrobert']

. This path selects user Martin
Robert.
groups/ /Secretary. This path
selects all secretaries
groups/*[name() !='Staff'].

This path selects all the users
who are not staff members.

Gabillon & Bruno 303

3.2 Objects

In seetion 3 we have seen that an XML document ean be represented by an
XPath tree. An objeet ean be any node of an XPath tree.

3.3 Authorisation rules

An authorisation rule is a 4-tuple of the form,
<set-oJ-subjects, set-oJ-objects, access, priority>
We have seen in sections 3.1 and 3.2 that a subject is a user and an objeet

is anode of an XPath tree. set-oJ-objects is expressed with a pattern. set·
oJ-subjects is a location path relative to the element subjects of the Xss sheet
(see section 3.1). The value of access is either grant or deny. priority is
optional. It is used to fix the priority of the authorisation rule (see section 3.4
for more details). The default priority is O.

In our model the semantics of an authorisation rule is unique regardless
of the node type (element, attribute, text ...):

If access to node n is granted to user u then u is permitted to see the sub­
tree of whieh n is the root.

If access to node n is denied to user u then u is forbidden to see the sub­
tree of which n is the root.

The Security Administrator writes the authorisation rules on an XML
Authorisation Sheet (XAS). Tbe following XML document is an example of
XAS sheet. This sheet contains the rules which apply to the document
described in section 2 and refers to the XSS sheet defined in section 3.1.

<1-- D • rAU L T R 0 Sill TAL 11 0 L I C Y -->
<1-- Rule 1 -->
<xa. DefaultPolicy="open" DefaultSubject.:rile="subjects.xss">
<1-- Rule 2 -->
<rule acae •• ="deny" object="record"

.ubject="groups/*[name() 1='Staff'!"/>
<1-- Rule 3 -->
<rule acae •• ="deny" object="diagnosis" .ubject="groups//Secretary"/>
<1-- Rule 4 -->
<rule aace •• ="grant" object="record[@id=$user!"

.ubject="users/member[@id=$user!"/>
</xa.>

The first element of an XAS sheet determines whether the default poliey
is open or closed[9]. If no authorisation rule is specified regarding a user u
and anode n then u is permitted to aeeess to n in ease of the open poliey and
is forbidden to aeeess to n in ease of the elosed poliey. Rule 1 says that the
default poliey is open. Rule 2 says that non staff members are forbidden to
see the records. Rule 3 says that secretaries are forbidden to see the diagnosis
of a patient. Rule 4 says that a patient is permitted to see his personal

304 DATABASE AND APPLICATION SECRUITY XV

medical record. $user is a variable whieh is instantiated with the id of the
user accessing to the XML source document. Rule 4 overrides roles 2 when a
user is accessing to his personal data. None of the authorisation roles of our
example includes the priority attribute. Therefore, the priority of each role is
set by default to O.

3.4 Compute View Aigorithm and Conßict Resolution
Policy

If a user requests to see the XML source document then he has to be
provided with the view of the document which is compatible with his rights.
The aim of this section is to present the algorithm for eomputing such a
view. Before presenting the algorithm itself we have to perform the
following preliminary task in order to obtain an easy-to-read algorithm2•

We replace each grant role of the form,
<rule acce •• ="grant" object=n .uhject=u priority=p>,

by the following three consecutive grant roles:

<rule acce •• ="grant" object=n .uhject=u priority=p>
<rule acce •• ="grant" object=n/ /node () .uhject=u priority=p>
<rule acce •• =" grant" object=n/ /@* .uhject=u priority=p>

The first rule is the same as the original role. All the descendant nodes of
the node n match the object pattern of the second rule. All the attributes of n
and the attributes of the deseendant nodes of n match the objeet pattern of
the third role.

Note that this replacement does not change the security poliey. Recall
that granting aceess to node n to user u means that u is permitted to see the
sub-tree of which n is the root (see previous seetion 3.3).

Finally, ifthe default poliey is closed then we insert the following role:

<rule acce •• ="deny" object="/" .uhject= "users" priority="-l">

and if the default poliey is open then we insert the following roles:

<rule access="grant" object="/" subject="users" priority="-l">
<rule acce.s="grant" object="//node()" suhject="users" priority="-1">
<rule acce •• ="grant" object=" / /@*" subject="users" priority=" -1 ">

The roles implementing the default poliey all have a negative priority.
Path, users, selects all the users registered in the xss sheet.

Consequently, our previous example of XAS sheet can be interpreted as
the following list of roles:

2 We could define the conflict resolution policy and write the a1gorithm without performing
this prelirninary task. However the definition of both the contlict resolution policy and the
algorithm would be less straightforward (a1though the complexity would be unchanged).

3 or, of each node of the set n, if n is a set of nodes (cf section 3.3)

Gabillon & Bruno

<1-- D B rAU L T B 0 S P I TAL POL I C Y -->
<!-- Rules la, Ib and lc -->

305

<rule acce •• ="grant" object="/" .ubject="users" priority="-1">
<rule acce •• ="grant" object="//node()" .ubject="users" priority="-l">
<rule acce •• = 11 grant " object="//@*" .ubject="users" priority="-1">
<!-- Rule 2 -->
<rule acce.. = "deny· object = "record"

.abject="groups/*[name()!='Staff'l" priority = "0"/>
<!-- Rule 3 -->
<rule acce.. = "deny" object = "diagnosis"

.abject = "groups//Secretary" priority = "0"/>
<!-- Rules 4a, 4b and 4c -->
<rule acce.. "grant" object "record[@id=$userl"

.ubject "users/member[@id=$userl" priority = "0"/>
<rule acce.. "grant" object="record[@id=$userl//node() "

.abject "users/member[@id=$userl" priority = "0"/>
<rule acce.. "grant" object="record[@id=$userl//@*"

.abject "users/member[@id=$userl" priority = "0"/>

There is a conflict between a deny rule and a grant rule for anode n and a
user u if n matches the two set-oJ-object patterns and u is addressed by the
two set-oJ-subjects.

In our example, Rule 2 conflicts with Rule 1 b for each record element
and each user who is not a staff member. Rule 3 conflicts with Rule 1 b for
each diagnosis element and each secretary. Rule 4a conflicts with Rule 2
for the current user's record element (in case the user is a patient).

The conflict resolution policy of our model is very simple:
1. If, for anode n and a user u, there is a conflict between a set of rules then

the rules with the highest priority are selected.
2. If the selected rules are more than one then the last rule in the XAS sheet

is elected.
Step 2 explains why Rule 4a of our example overrides Rules 2 in the

conflicting cases. Considering this policy, we can now present our algorithm
for computin2 the views:
ComputeVi_ Algoritbm.
Let U be the user for which the view has to be computed
Let L be an empty list of nodes
Insert the root element into L
Let R be an empty list of nodes
While L is not empty 00

N +- the first node of L
Select all the rules such as N matches the object pattern and U is
selected by the subject path
Apply the conflict resolution policy defined above
If the elected rule is a deny rule then

Remove N from L
Else

Append N to R
Replace N into L by the attributes and child nodes of N

306 DATABASE AND APPLICATION SECRUlTY XV

After the algorithm finishes R contains the pre-order list of the nodes
which belong to the view. Using this algorithm we can easily compute the
view for each user

View for P. Dupont (Doctor) and J. Durand (Nurse) and M. Robert (Patient)
<files>

<record id="mrobert">
<name>Martin Robert</name>
<diagnosis>

<item>Pneumonia</item>
<!diagnosis>

</record>
</files>

View for C. Beaufort (Secretarv)

<files>
<record id="mrobert">

<name>Martin Robert</name>
</record>

</files>

View for F. Robert (Robert Family)
<files!>

Pierre Dupont and Jacqueline Durand
are permitted to see everything.
Martin Robert is permitted to see
everything because the file contains
only one record: his own record.

CoZette Beaufort is forbidden to see
the diagnosis element.

The default hospital policy says that non staff members are
forbidden to see the medical records. This role applies to family
members. Therefore, Francine Rohert is forbidden to see the
medical records, including Robert's record.

As we have seen above, the conflict resolution policy of our model is
based on priorities (whether they are implicit or explicit). Conflict resolution
policies based on priorities are usually considered as difficult to manage and
understand. We agree that in some cases it might be difficult for a human to
figure out the output of conflicting roles. However, we have decided to use
priorities for the following two reasons:
1. We do not see what are the advantages of using conflict resolution

policies based on principles like "the most specific object takes
precedence" or "the most specific subject takes precedence" (see [3] for
instance). These policies which were first used in Object-Oriented
environments are not weil adapted to XML. Indeed, in many cases it is
impossible for a human to predict wh ich XPa th expression is going to
be the most specific. As a matter of facts let us consider the following
two roles:

<rule acce •• ="deny"
object="diagnosis [item= 'Cancer , or item='pneumonia']
.ubject="groups//Nurse"!>

<rule acce •• ="grant"
object="diagnosis [item= 'Pneumonia' or item='Ulcer']
.ubject="groups//Nurse"/>

Gabillon & Bruno 307

The first rule says that nurses are forbidden to see the trees the root of
which is a diagnosis element which includes an item equal to Cancer or
Pneumonia.
The second rule says that nurses are permitted to see the trees the root of
which is a diagnosis element which includes an item equal to Ulcer or
Pneumonia.
Clearly none of the XPa th expressions for the obj ect attribute is more
specific than the other making difficult to predict what is going to happen
if a nurse asks for an access to a diagnosis element which includes an
item equal to Pneumonia.
We could show many examples like this where a human cannot possibly
predict which rule is going to preempt the others.

2. Our prototype of security processor is based on XSLT (see section 4). The
conflict resolution poHcy of XSLT processors mainly uses priorities and
has been proved to be efficient.
In any case, whatever the conflict resolution policy is, we think that the

Security Administrator has to be provided with some graphical policy
debugging tools. Indeed defining and debugging security policies for tree
data structures is not an easy task.

3.5 Highly Expressive Security Policy

The example that we used in the previous section is very simple and does
not completely show the power of our model. The aim of this section is to
show that our model allows us to express complex security policies easily. In
particular we can define security policies supporting the concept of
exception, the definition of content-based authorisation mIes and the
insertion of cover stories in the source document.

Consider our previous source document into which a new record has been
inserted:

<record id="pfranck">
<name>Patricia Frank</name>
<diagnosis>

<item>Cancer</item>
<item coverstory="yes">Ulcer</item>
<comments>life expectancy is limited to two years</comments>

</diagnosis>
</record>

Patricia Franck is a new patient. She has a cancer. Her life expectancy is
limited to two years. The item saying that she has an ulcer is a cover story. A
cover story is a He inserted in the source document in order to hide the
existence of a sensitive information. Attribute coverstory= "yes" informs

308 DATABASE AND APPLICATION SECRUlTY XV

users who are permitted to see everything that ulcer is a lie (see [10] for
more information about cover stories and cover story management).

The xss subject sheet is extended as folIows:

<u.er.>

<member id="pfranck"><name>Patricia Franck</name></member>
<member id="gfranck"><name>Georges Franck</name></member>

<Patient>
<member idref="pfranck"/>
<member idref="mrobert"/>

</Patient>
<Family>

<Franck>
<member idref="gfranck"/>
<member idref="pfranck"/>

</Franck>
</Family>

Patricia Franck and Georges Franck are new users. The Franck family is
a new group. The XAS sheet is extended as folIows:

<1-- POL X C Y P 0 R P A T R X C X A r R A N C K -->
<!-- Rule 5 -->
<rule acce.. "grant" object = "record[@id='pfranck'l"

.ubject = "groups/Family/Franck" />
<!-- Rule 6 -->
<rule acce.. "deny" object = "record [@id= 'pfranck ' I / / comments"

.ubject = "groups/Family/Franck" />
<!-- Rule 7 -->
<rule acce.. "deny"

object="record[@id='pfranck' 1/ /comments/text () "
.ubject = "groups//*[name()='Nurse'I"/>

<!-- Rule 8 -->
<rule acce.. "deny" object = "i tem [contains (text () , 'Cancer')) "

.ubject = "users/member[@id='pfranck')" />
<!-- Rule 9 -->
<rule acce.. "grant" object = "item[@coverstory='yes'l"

.ubject = "users/member[@id='pfranck')" />
<!-- Rule 10 -->
<rule acce.. "deny" object = "i tem/@coverstory"

8ubject = "users/member[@id='pfranck'l" />
</xas>

Rule 5 says that the Franck family is permitted to see the data of Patricia
Franck. Rule 6 says that the Franck family (including Patricia) is forbidden
to see the comrnents element of Patricia Franck's medical record. Rule 7
says that nurses are forbidden to see the text of the comrnents element of

Gabillon & Bruno 309

Patricia Franck's medical record. Note that rule 6 addresses the comrnents
element itself. This means that the sub-tree of which the comrnents element
is the root is protected. Rule 7 only protects the text of the comrnents
elements. Rule 8 says that P. Franck is forbidden to see the i tem which says
that she has a cancer. Rule 8 is a perfect example of a content-based
authorisation rule. Rule 9 says that P. Franck is permitted to see the i tem
which is a cover story ... but Rule 10 says that P. Franck is forbidden to
know that the i tem is a cover story.

Rules 5 to 10 show that P. Franck is not considered as a standard patient.
The default hospital poliey does not apply to her. Doctors consider that for
some psyehological reasons, Patricia Franck must not know that she has a
cancer. Therefore, doctors have decided to He to Patrieia Franck and to tell
her that she has an ulcer. The family are told about this lie and are granted
the permission to see the personal data of P. Franck. However the element
saying that the life expectancy of P Franck is limited to two years must
remain strictly confidential. Even nurses are forbidden to know this fact. The
views for some of the users are listed below:

View for J. Durand (Nurse)

<files>
<record id="pfranck">

<name>Patricia Frank</name>
<diagnosis>

<item>Cancer</item>
<item

coverstory="yes">Ulcer</item>
<comments/>

</diagnosis>
</record>
<record id="mrobert">

<name>Martin Robert</name>
<diagnosis>

<item>Pneumonia</item>
</diagnosis>

</record>
</files>

View for G. Franck (Franck Family)
<files>
<record id="pfranck">

<name>Patricia Frank</name>
<diagnosis>

<item>Cancer</item>
<item

coverstory="yes">Ulcer</item>
</diagnosis>

</record>
</files>

Jacqueline Durand is a nurse. She
can see everything except the content
of the comrnents element.

Georges Franck has access to the
medical file of Patricia Franck. He
knows that doctors have decided to
tell Patricia Franck a lie regarding
her illness. He is not aware of the
existence ofthe comrnents element.

310 DATABASE AND APPLICATION SECRUITY XV

View for P. Franck (Patient)
<files>
<record id="pfranck">

<name>Patricia Frank</name>
<diagnosis>

<item>Ulcer</item>
</diagnosis>

</record>
</files>

Patricia Franck believes that she has
an ulcer.

This example has shown us that we have the possibility of defining
default security policies which can be overridden by specific policies for
some particular cases.

Finally note that, in [3], authors define the concept of instance level and
DTD level authorisation sheet. An instance level authorisation sheet only
applies to a specific XML document. A DTD level authorisation sheet applies
to a set of documents which conform to a specific DTD. Our model allows
us to define such a DTD level authorisation sheet. If both a DTD level XAS
sheet and an instance level XAS sheet apply to a specific XML document then
the instance level authorisation rules are appended to the DTD level
authorisation rules in aglobai XAS sheet. In other words, the global XAS
sheet contains the authorisation rules expressed at the DTD level followed
by the rules expressed at the instance level. The global XAS sheet is then
used to compute the different views. We can mention that choosing relevant
priority levels allows us to define both DTD rules which can be overridden
(Iow priority) at the instance level and mandatory DTD rules which cannot
be overridden (high priority).

4. SKETCH OF IMPLEMENTATION

We have developed an XSLT-based prototype of a security processor
which implements our model. Our prototype is available online at
http://sis.univ-tIn. fr /XML-secu. Figure 2 describes the prototype.

Our prototype is integrated into the framework of an Apache Web servet
which uses TomcatS as a server for Java Servlets. Views of a source
document are dynamically computed by using the Cocoon6 publishing
framework for XML data. In figure 2, the document to be protected is
Doc . XML. Doc. XAS is the global XAS sheet. Subj ects . xss describes the
subjects.

4 http://www . apache. org
Shttp://jakarta.apache.org/tomcat/index.html
6 http://xml.apache.org/cocoon/index.html

Gabillon & Bruno 311

1. Easy-to-read authorisation rules expressed in Doc . XAS are translated into
XSLT rules (tempLates) producing an XSL sheet (Doc. XSL). This
translation is performed by the XSLT processor by applying
xas2xsl.XSL. This translation is performed once. After this operation,
the XAS sheet is no longer used unless it is updated (in this case, it is
automatically retranslated). Doc . XSL is saved into the cache.

I xas2xsl.XSL

I

I ..
I Doc.XAS I""" Doc.XSL parser roeess

11' p

:,1'

I I(;1' : ,. ' Cocoon I '.
\

I Tornenl I
'.

\ .,
"

I ,
, Apache Web Server .. ' ,

........
...... •

User_id ..
Doc.XSL

Subjecls.XSS

I? 17

I

g 2 View.XML parser roce s
p

1-'

I I Cocoon
.... ,

I TnmCflI I
!

I I :v" Apache Web Server

Figure 2: Prototype

2. If a user requests access to Doc . XML then he is provided with a view of
the document wh ich is compatible with his rights. This view is produced
by the XSLT processor by applying Doc . XSL. Templates contained in

312 DATABASE AND APPLICATION SECRUITY XV

Doc . XSL are used by the XSLT processor to compute the view according
to the algorithm defined in section 3.4. Doc . XSL requires, as parameters,
the user id (transmitted as a parameter by the Web server after the user
has been authenticated) and Subj ects . xss. The view is also saved into
the cache.

5. RELATED WORK

Compared with other models, our model offers several advantages. Our
model allows us to write security policies with a high expressive power since
any node from an XML document can be independently protected (element,
attribute, text ...). The semantics of an authorisation rule is unique and
precisely defined. Our conflict resolution policy is simple, efficient and
adapted to an XSLT processor. Our model offers the possibility of defining
content-based authorisation rules. Our proposal fully respects the W3C
recommendation since we use the XPa th language to address XML
fragments and the XSLT language to compute the views. In [3], the
semantics of an authorisation varies. An authorisation can be local (in this
case it applies to an element and its attributes) or it can be recursive (in this
case, it applies also to the sub-elements). The expressive power is limited
since nodes like text nodes cannot be independently protected. Moreover, the
conflict resolution policy is quite complex. In [4] the semantics of an
authorisation is defined as polymorphie, that is, it varies according to the
protected object. The model does not include the possibility of protecting all
kinds of nodes. In [5], the model does not offer the possibility of protecting
attribute or text nodes independently. None of these three models fully
exploits the XPa th language.

Our prototype also offers many advantages compared with other
prototypes. We use a standard XSLT processor to compute the views.
Therefore, we can choose among existing XSLT processors (Apache7,

Oracle8, mM) the one with the best performances. If there is a new W3C
recommendation for the XML, XPa th, and XSLT languages, then the only
thing we have to do is to replace the XML parser and the XSLT processor
with an XML parser and an XSLT processor which conform to the new
recommendation. Integration of our prototype into the framework of an
existing Web Server is also straightforward. In prototypes [11][12][13]
which implement the models defined in [3][4][5], the views are produced by
proprietary processors written in Java. These processors do not have the

7http://xml.apache.org/xalan
8http://technet.oracle.com/tech/xml/

Gabillon & Bruno 313

power and the performances of an XSLT processor. Moreover these
processors need to be reprogrammed each time there is a new W3C
recommendation.

6. CONCLUSION

In this paper, we have defined a model for regulating access to XML
documents. We plan to extend this model in several directions:

We are exploring the possibility of defining provisional authorisations. In
[5] a provisional authorisation rule is defined as a rule which teils the
user that his request will be authorised provided he or the system takes
certain security actions.

In the model described in this paper we implicitly assumed that users do
not have access to the DTDs. Further versions of our model will include
the possibility of protecting portions of DTDs or XML schemas.

In this paper, we restricted ourselves to the read privilege. Indeed, the
read privilege is the most important privilege to consider regarding
documents which are published on the WEB. However, we plan to extend
our model (and our prototype) with the write privilege.

REFERENCES

[I] T. Bray el al. "Extensible Markup Language (XML) 1.0". World Wide Web Consortium (W3C).
http://www.w3c.orgITRlREC-xml (October 2(00).

[2] M. Bartel el al. "XML-Signature Syntax and Processing". W3C Candidate Recommendation.
http://www.w3c.orgITRlxmldsig-core (October-2000).

[3] E. Damiani, S. Oe Capitani di Vimercati, S. Paraboschi, P. Samarati, "Securing XML Documents,"
in Proc. of the 2000 International Conference on Extending Database Technology (EDBT2000),
Konstanz, Germany, March 27-31, 2000.

[4] E. Bertino, S. Castano, E. Ferrari and M. Mesiti. "Specifying and Enforcing Access Control
Policies for XML Document Sources". World Wide Web Journal, vol. 3, n. 3, Baltzer Science
Publishers.

[5] M. Kudo and S. Hada. "XML Documenl Security based on Provisional Authorisation".
Proceedings of the 7th ACM conference on Computer and communications securily. November,
2000, Athens Greece.

[6] A. Gabillon, E. Bruno. "A Filtering Model for XML documents". WWWI0 Conference Workshop
on Information Filtering. Hong Kong, May 2001.

[7] J. Clark. "XSL Transformations (XSLT) Version 1.0". World Wide Web Consortium (W3C).
http://www.w3c.orgITRlxslt (November 1999).

[8] J. Clark et al .. "XML Path Language (XPath) Version 1.0". World Wide Web Consortium (W3C).
http://www.w3c.orgfTRixpath (November 1999).

[9] S. Jajodia, P. Samarati, V. Subrahmanian and E. Bertino. A Unified Framework for Enforcing
Multiple Access Control Policies. Ploc. of the 1997 ACM International SIGMOD Conference on
Management of Data, Tueson, May 1997.

314 DATABASE AND APPUCATION SECRUITY XV

[10] F. Cuppens, A. Oabillon. "Cover Story Management". Data and Knowledge Engineering Vol3712,
2001, pp 177-201.

[11] E. Damiani, S. Oe Capitani di Vimercati, S. Paraboschi, P. Samarati "XML Access Control
Systems: A Component-Based Approach" in Proc.1FIP WOll.3 Wodcing Conference on Database
Security, Schoorl, The Netherlands, August 21-23,2000.

[12] E. Berlino, M. Braun, S. Castano, E. Ferrari, M. Mesiti. "AuthorX: A Java-Based System for XML
Data Protection". In Proc. of the 14th Annua1lFlP WO 11.3 Wodcing Conference on Database
Security, Schoorl, The Netherlands, August 2000.

[13] AlphaWorks. XML Security Suite (xss4j). hup:/lwww.a1phaWorks.ibm.comltechlxm1securitysuite.

	REGULATING ACCESS TO XML DOCUMENTS
	1. INTRODUCTION
	2. XPATH
	3. ACCESS CONTROL MODEL
	3.1 Subjects
	3.2 Objects
	3.3 Authorisation rules
	3.4 Compute View Aigorithm and Conßict ResolutionPolicy
	3.5 Highly Expressive Security Policy

	4. SKETCH OF IMPLEMENTATION
	5. RELATED WORK
	6. CONCLUSION
	REFERENCES

		2017-09-14T11:00:35+0530
	Preflight Ticket Signature

