
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

L. M. Camarinha-Matos (ed.), Collaborative Business Ecosystems and Virtual Enterprises
© IFIP International Federation for Information Processing 2002

10.1007/978-0-387-35585-6_68

@] DEVELOPING AN UNIFIED ENTERPRISE
MODELLING LANGUAGE (UEML) -

REQUIREMENTS AND ROADMAP

David Chen1, Bruno Vallespir1 and Guy Doumeingts1• 2

(1) LAPIGRAI, UMR CNRS 5131, University Bordeaux 1- ENSEIRB
351 Cours de Ia Liberation, 33405 Talence FRANCE

{Chen, Vallespir }@lap. u-bordeaux.fr
(2) GRAJSOFT, 33170 Gradignan, France, gdoumeingts@graisoft.com

In the area of Enterprise modelling and engineering, a research subject has
been initiated to develop the UEML (Unified Enterprise Modelling Language).
This paper starts by introducing the background information on the UEML
development. A problem statement is presented and possible benefits expected
from the UEML discussed. Then the paper tentatively presents a view on
necessary jimctionality that an UEML must provide and a possible roadmap to
follow to reach that goal.

1. INTRODUCTION

This paper intends to provide a view on the development of an UEML (Unified
Enterprise Modelling Language). It is based on some preliminary discussions taken
place within the French GRP (Groupement de Recherche en Productique) sub-group
5 on Enterprise Modelling and the IF AC-IFIP Task Force Interest group on UEML
(Vemadat, 1999) (Vallespir eta/., 2001).

Prior to these developments, some earlier initiatives such as for example the
International Conference ICEIMT'97, has identified the need for UEML and
proposed a development framework referred as 'The layered approach to UEML
design' (Petit et al., 1997). The European Standardisation Committee (CEN) has
also related the review of an experimental standard on enterprise modelling
constructs 'ENV 12204' (ENV 12204, 1995) to potential development on UEML.

The acronym UEML was inspired by UML (Unified object-oriented Modelling
Language) proposed by Rational Software Corp. UML can be seen as an extension
and improvement of the Entity-Relationship formalism. It was, at the origin,
developed for software engineering (in particularly for information systems) and not
well adapted for enterprise modelling (there have been some attempts but they do
not come up with a well formed metamodel). The development of an UEML in the
area of Enterprise Integration and Engineering is similar to what has been achieved
in developing UML in the domain of software engineering.

http://dx.doi.org/10.1007/978-0-387-35585-6_68

248 Collaborative Business Ecosystems and Virtual Enterprises

2. PROBLEM STATEMENT AND BACKGROUND

Since the ftrst development in the area of enterprise modelling started in the US in
the years of 70's (ex. SADT, SSAD, IDEFO, Data Flow Diagram, ...), a lot of
enterprise modelling languages have been elaborated world-wide. We can mention
for example, Entity-Relationship model, MERISE, NIAM, M*, GRAI grid and nets,
CIMOSA constructs and building blocks, OMT, IEM, ARIS method, IDEF3, ... It is
generally recognised that there are too many heterogeneous modelling languages
available in the 'Market' and it is difftcult for business users to understand and
choose a suitable one. "Moreover each of these languages has its own syntax be it
textural or graphical. More importantly, although they have a clearly deftned syntax,
most languages do not have a clearly defmed semantics" (Petit eta!., 1997).

However, this situation can be explained by :
(1) various theoretical basis upon which these modelling languages were

elaborated. For example the CIMOSA constructs were mainly developed by
people with a background of computer science while the GRAI decisional
approach (Doumeingts et a!., 1998) is based on system theory and control
theory as well as production management theory.

(2) speciftc application areas. For example, MERISE and M* were developed
speciftcally for designing information systems while IDEF3 is for business
process modelling and reengineering.

Main problems related to this situation are:
Difftculties (impossibility in some case) to translate one model built using a
language to a model expressed in another one;
Difftculties for an enterprise to use a software tool if it is based on languages
which are different from the ones adopted by the enterprise.

However, it seems that concepts behind these various languages are similar or
slightly differ in details.

The expected UEML would not be a new language to replace existing ones that are
currently used but rather, capable of interpreting them. In other words, the UEML
has no vocation to be integrated in a "tool box of analysts" so it is not constrained by
the criteria of user friendly and operational usability (Vallespir et a!., 2001). The
possible output of the UEML development is likely a language which is compatible
to operational languages widely used such as IDEF, GRAI, Entity-Relationship etc ..
Vemadat considers that an UEML could be an "Esperanto" in the area of enterprise
modelling and enterprise engineering. It is not the ultimate EM language to replace
all previous ones but a standard meta-model (and underlying ontologies) widely
accepted by business users and tool developers. It will be easy to learn and to use
with sufftcient descriptive capabilities (Vemadat, 1999, 2001).

It is generally agreed that the development of an UEML will contribute to:
a clearly deftnition of the common semantics of formalisms, and better delimit
the domain of enterprise modelling and engineering;
a better interoperability and communication between modelling agents in a
heterogeneous environment;

Developing an unified enterprise modelling language 249

a better defmition of scientific corpus of enterprise modelling and engineering
and thus increase its visibility within the scientific community;
a generally accepted vocabulary to be used by the standardisation bodies at
various levels (national, European and ISO) in the relevant domain.

3. REQUIREMENTS

An UEML can be viewed as a core interfacing with various enterprise engineering
and operation users. Expected functional requirements are tentatively stated as
follows (also see figure 1) :

Fonnalisms used %

Ex.: project edition

Ex.: simulation,
global evaluation

Specific
Programmes

Parameterisa
lion ofERP

Manual procedures
(ex.: quality)

Figure 1 -Potential functionality of the UEML

(1) Translator: UEML plays a role of "pivot" and avoids the one-to-one translation.
This functionality can be compared within the role played by STEP in the area
of product description data.

(2) Aid of decision: Data and information needed to support decision-making will
be stored in the UEML format so that they can be used by any software decision
support tool.

(3) Project edition: Like IDEFO/SADT that was used in the 70's by the US Air
Force to describe and define projects, UEML can be used to edit project
description so that it can inter-operate with other software tools.

(4) Formal verification: Like Petri nets, UEML with its formal definition of
syntactic and semantics can support property verification of models.

(5) Execution: Acted as a neutral model, UEML can support not only the execution
of enterprise model for process control, but also be used for parameterisation of
production management software such as MRPII or ERP as well as for quality
procedure edition, etc.

250 Collaborative Business Ecosystems and Virtual Enterprises

It is also considered in (Petit et a/., 1997) that UEML must have a clearly defined
graphical and textual syntax (grammar) so that models could be exchanged among
tools. Moreover, in order to overcome the complexity facing the important number
of concepts used in enterprise integration and engineering, a layered approach could
be an adequate answer. A core of UEML will contain the minimal set of constructs
necessary for modelling of any enterprise whereas a set of libraries built on top of
this core could contain additional, more expressive concepts, possibly specialised for
different application domains. To defme formally semantics of UEML, some
theories can be used such as situation calculus, state-transition diagrams, temporal
logic, process algebra, frrst order logic etc.

The precise defmition of functional requirements allows to identify modelling
concepts/constructs contained in the UEML core. The core interacts with external
users via various interfaces as shown in figure 1. In this sense, the UEML core can
be seen as a generic basis. Various existing modelling languages are operational
interfaces (i.e. the projections of UEML, see figure 2). This means implicitly that
UEML has a larger modelling coverage than any individual existing one. It is the
Union of existing languages.

Projection of a UEML
model in a given
operational formalism

Plan corresponding to a given operational formalism

Figure 2 - Position of the UEML (Projection)

We can remark that the same logic applies to the notion of view developed for
example in the CIMOSA approach. The UEML model contains in its neutral format
all necessary constructs/concepts for the description of enterprise functions,
decisions, processes, activities, resources and behaviours with all information/data
needed for its engineering and operations. A view (for example function view) is
only a projection of that UEML model according to the selected viewpoint.

4. THE TRANSLATION ISSUE

Among the various functionality mentioned previously, we will show a simplified
example to illustrate the problems and difficulties for the functionality 'Translation'.
Let us assume that there were only two existing languages available in the world:
SADT activity and GRAI activity as shown in figure 3. Each activity formalism uses
some concepts: SADT Activity (construct) = {Name, Number, Input, Output,
Control, Mechanism}, GRAI Activity (construct) = {Name, Number, Trigger,

Developing an unified enterprise modelling language 251

output, Support}. If one compares the two formalisms, one can conclude that the
term 'Activity' exists in both formalisms but it is not formally a common concept.

Control

SADT Activity

input output

Mechanism

GRAI Activity

Figure 3 - A simplified translation example

The search for common aspects of the two formalisms leads to the identification of
common attributes as shown in figure 4. They are: Activity.min = {Name, Number,
Output}. The second conclusion is that 'Activity' is not an elementary concept. An
elementary concept is a concept that will not be decomposed when elaborating a
model.

SADT

Figure 4 - Search for common concepts

Suppose that an UEML core contains all the concepts identified above. Having
applied union, these concepts are organised in a way as represented by figure 5. An
Input, a Control, a Mechanism could be a Support. Now let us consider the
translation from a SADT model to the GRAI Activity model.

GRAI Activity

SADT Activity

Figure 5 - Simplified illustration of a UEML core for SADT and GRAI Activities

252 Collaborative Business Ecosystems and Virtual Enterprises

The information is given in a SADT format as shown in figure 6 and the translation
is performed via the UEML core as defmed in figure 5.

l.lnput of Information by SADT

D

B c

E

l. Translation SADT-+ UEML

ACfiVITY.MIN
Name :=A
Nwnber :=X
Output :=C

Mechanism := E
luput :=B
Control :=0
Trigger
Support = :=(E. B, D)

3. Translation UEML -+ GRAI

E B D

Figure 6 -Translation from a SADT Activity to the GRAI Activity

c

The result is syntactically correct because 'Trigger' is optional in GRAI net
formalism. The GRAI activity has three supports E, Band D.

Now let us see the inverse process to translate a GRAI Activity into the SADT
Activity as shown in figure 7. One can fmd that "B" is eligible to be Input, or
Control, or Mechanism. Suppose that the choice is 'Control' than the "B" of GRAI
becomes the Control of SADT. This is syntactically correct because the input and
mechanisms are optional in the SADT model. However, "D" does not appear in
SADT activity but remains in the UEML model (projection).

I. loput of Information by GRAI l. Translatloo GRA.f.+ UEML 3. TranslatloliJE IL-+SADT
(lnltlal resul)

B

D c

ACflVITY.MIN
arne :• A
umber :• X

Ou1put :• C
Mechanism
Iuput
Control
Trigger :• D
Support :• B

?

4.Ciu IDeation of Information (contlnlted S. UpdatcUEML 6. TranslatlodJEML-+ SADT

B Quesrioll· 8 i3 eligible to be an
Input, Control, or Mechonism
Yourcholu?

A11swer. C.omrol

ACTIVITY.MJN
arne :• A
umber :w X

Output :• C
Mechanism
luput

Support :Tff-

be
Figure 7 - Translation from a GRAI Activity to the SADT Activity

This simplified example makes appear some specific points concerning the
translation process:

Problem of defmition of elementary concepts,
Concepts can be classes of other concepts,
There is a possibility that some pieces of information are not translated from an
UEML model to another one: projection.

Developing an unified enterprise modelling language 253

5. ROADMAP

Several approaches are possible to defme a roadmap for developing an UEML: top­
down, bottom-up and combined approaches (bottom-up for development and top­
down for consistency).

The bottom-up approach starts with an analysis and then synthesis of existing
enterprise modelling languages. The approach is structured in four steps as follow:

(1) Choice of existing modelling languages. It consists in carrying out a complete
state-of-the art study and identifying eligible formalisms among all available
ones in the domain. A representative set of formalisms will be selected
according to established criteria (such as usability, reconnaissance, etc.).

(2) Decomposition of each chosen formalism to elementary concepts as shown in
the illustration example.

(3) Union of all elementary concepts.
(4) Fusion to establish syntactic

The advantages of the bottom-up approach are: (i) more rapid, (ii) avoid to "reinvent
the wheel". The inconvenience is that there is nothing to ensure that chosen
formalisms are representative.

The top-down approach is an analysis approach. It is also structured in four steps:

(1) Precise defmition of requirements and domain.
(2) Choice of a theoretical paradigm. For example: System theory
(3) Definition of elementary concepts
(4) Establishment of the syntactic between concepts

The advantage of the top-down approach is the theoretical consistency
(inconsistency is often undetectable a priori). The shortcomings are: (i) it could take
a long time to develop, (ii) rework of some existing formalisms.

To keep the advantages of top-down and bottom-up approaches and avoid their
shortcomings, a hybrid approach is proposed as shown in figure 8.

This approach starts by:

(1) Define precisely functional requirements (functionality) that UEML must
provide.

(2) The choice of existing languages will be done in consistency with required
functionality. At the same time the choice of a theoretical paradigm (2bis)
should allow to ensure some theoretical consistency.

(3) Then the set of elementary concepts can be obtained by decomposing chosen
languages.

(4) The union of elementary concepts allows to remove possible redundancy.
(5) Finally the syntactic will be defined to establish relationships between the

concepts.

254 Collaborative Business Ecosystems and Virtual Enterprises

5. Fusion (establislnnent
of the syntactic)

4. Union

3. Decomposition in
elementary concepiS

.. ' . ..
2. O:loice of existing • A
fonnalisms in consistency W' A
with the functionality

I. Definition of functionality

I. Definition of
functionality

2bis. of a
lllOdelling
paradigm

Based on a bottom-up
approach validated by
a top-down approach

Figure 8 - The proposed roadmap to develop the UEML

6. CONCLUSIONS

This paper presented a view on the development of an UEML taking into account
the state-of-the art in the domain. The starting point of a such project is to defme
functionality that the UEML must provide. The paper has tentatively identified a set
of functional requirements. It has been also discussed that neither bottom-up nor
top-down approaches can be an ideal methodological process to follow. As the
consequence, a roadmap that combines both top-down and bottom-up approaches
has been proposed.

7. REFERENCES

1. Doumeingts, G., Vallespir, B. and Chen, D. "Decision modelling ORAl grid". In Handbook on
architecture for Information Systems, Peter Bemus, Kai Mertins, Gunter Schmidt, ed. Springer,
1998.

1. ENV 12204. Advanced Manufacturing Technology • Systems Architecture • Constructs for
Enterprise Modelling, CEN TC31 0/WG I, 1995.

3. Petit, M. (Ed.), Goossenaerts, J., Groninger, M., Nell, J.N. and Vemadat, F. Formal Semantics of
Enterprise Models. Proceedings of ICEIMT'97 (edited by K. Kosanke and J. Nell), International
Conference on Enterprise Integration and Modelling Technology, Springer, 1997.

4. Vallespir, B., Doumeingts, G. and Chen, D. Problems and Research orientation for UEML: A point
of view, Slides presentation at the meeting of the IFAC·1FIP Task force Interest group on
UEML, Vienna, September 19, 2001 .

5. Vemadat, F. Unified Enterprise Modelling Language (UEML), Slides presentation at the meeting of
the IFAC·IFIP Task force Interest group on UEML, Paris, December 16, 1999.

6. Vemadat, F. UEML: Towards a Unified Enterprise Modelling Language. Proceedings of 3•
Conference Francophone de Modelisation et Simulation (MOSIM'01), Troyes, France, 25-27
Avril2001.

	27 DEVELOPING AN UNIFIED ENTERPRISEMODELLING LANGUAGE (UEML) -REQUIREMENTS AND ROADMAP
	1. INTRODUCTION
	2. PROBLEM STATEMENT AND BACKGROUND
	3. REQUIREMENTS
	4. THE TRANSLATION ISSUE
	5. ROADMAP
	6. CONCLUSIONS
	7. REFERENCES

