
DEVELOPING SECURE SOFTWARE 
A survey and classification of common software vul­
nerabilities 

Frank Piessens 
Dept. of Computer Science 
Katholieke Universiteit Leuven, Belgium 
Frank.Piessens«<cs.kuleuven.ac.be 

Bart De Decker 
Dept. of Computer Science 
Katholieke Universiteit Leuven, Belgium 
Bart.DeDecker«<cs.kuleuven.ac.be 

Bart De Win 
Dept. of Computer Science 
Katholieke Universiteit Leuven, Belgium 
Bart.DeWinOcs.kuleuven.ac.be 

Abstract More and more software is deployed in an environment with wide area 
network connectivity, in particular with connectivity to the Internet. 
Software developers are not always aware of the security implications of 
this connectivity, and hence the software they produce contains a large 
number of vulnerabilities exploitable by attackers. 

Statistics show that a limited number of types of vulnerabilities ac­
count for the majority of successful attacks on the Internet. Hence, we 
believe that it is very useful for a software developer to have a deep 
understanding of these kinds of vulnerabilities, in order to avoid them 
in new software. In this paper, we present a survey and classification of 
the most commonly exploited software vulnerabilities. 

Keywords: security, software vulnerabilities, software engineering 

M. Gertz et al. (eds.), Integrity, Internal Control and Security in Information Systems
© Springer Science+Business Media New York 2002



28 Integrity, Internal Control and Security in Information Systems 

1. Introduction 
At the root of almost every security incident on the Internet are one or 

more software vulnerabilities, i.e. security-related bugs in the software 
that can be exploited by an attacker to perform actions he should not 
be able to perform. 

Experience shows that a majority of these software vulnerabilities 
can be traced back to a relatively small number of causes: software 
developers are making the same mistakes over and over again. Looking 
for instance at the list of the ten most exploited software vulnerabilities 
(see: (11]), one can see that many of these vulnerabilities are actually 
buffer overflow problems. 

Hence, we believe that it is useful to try to survey and classify the 
most frequently occuring types of vulnerabilities. This paper identifies 
a number of categories of software vulnerabilities, and gives extensive 
examples of each of these categories. A software engineer familiar with 
these categories of problems is less likely to fall prey to these same prob­
lems again in his own software. 

The structure of this paper is as follows: in the next section, we 
present a structured classification of software vulnerabilities. In sec­
tion 3, we present a number of easily remembered guidelines a software 
developer can keep in mind to steer clear of most of the identified cat­
egories of problems. We conclude by discussing related work and sum­
marizing our results. 

2. An illustrated survey of software 
vulnerabilities 

2.1 Insufficiently defensive input checking 
A developer regularly makes (often implicit, and at first sight very 

reasonable) assumptions about the input to his programs. An attacker 
can invalidate these assumptions to his gain. It is important to realize 
that input should be interpreted in a broad way: input could be given 
to a program through files, network connections, environment variables, 
interaction with a user etc ... If method calls in a program can cross 
protection domains (as is the case for instance in Java}, even method 
parameters should be considered as non-trustworthy input that needs 
careful checking. 

Examples of this category include: buffer overflows and weak CGI 
scripts. 



Developing Secure Software 29 

2.1.1 Buffer overflows. One of the most successful attacks is 
certainly a buffer overflow in a server process. What happens is illus­
trated in figure 1. For every function call, the parameters, the return 
address1, and the local variables of the function are put on top of the 
stack, the so-called current stack frame. In figure l.a, the normal situa­
tion is sketched. The return address points to the correct instruction. If 
the function is not carefully programmed and does not take into account 
the actual sizes of the variables, then a buffer overflow might happen. 
For instance, many servers expect input from client processes, such as 
a name, a path, an email-address, etc. Often, the server has allocated 
a buffer for this input in the current stack frame. The buffer is usually 
oversized and is certainly large enough to accommodate all 'reasonable' 
input. However, if an attacker sends input that is much larger than ex­
pected, and if the server does not take appropriate precautions (e.g. it 
copies the input until a zero-byte is found), then part of the stack frame 
is overwritten (see also figure l.b): the return address is modified and 
points to code that has been sent as part of the input! Hence, the at­
tacker can make the server execute whatever code he wants to. Usually, 
the code that is sent as input will make the server spawn a new process 
that runs the command interpreter (the shell). That way, the attacker 
gets inside the system without a login procedure. Often, he has supe­
ruser privileges, since the command interpreter inherits the privileges of 
the attacked server. 

The last decade, many server programs have been found to be vulner­
able to this kind of attack (the finger daemon, bind daemon, ... ). Often, 
these servers used a getstring function that did not limit the length of 
the string to be read. However, newer attacks do not use 'oversized' 
input, but cause buffer overflow by other means. For instance, inputs 
with special characters (wildcards, ... ) are sometimes expanded (global­
ized) by the server, leading to buffer overflow. Also, incomplete inputs 
may divert (temporarily) the flow of control inside the server; after this 
diversion, assumptions about the sizes of the variables may no longer be 
true. 

2.1.2 Weak CGI scripts. CGI, an acronym for Common Gate­
way Interface, is a mechanism for extending the webserver. Instead of 
sending a webpage in response to a client request, the server starts a 
new process which will handle the request. Typically the subprocess 
runs a script (e.g. Perl, Tel, ... ). These languages offer pattern-matching 

1The return address is the address of the instruction that must be executed after the function 
call. 



30 

Stack 

Integrity, Internal Control and Security in Information Systems 

- ~ 
'· 

Program 
Cod 

Local Variables 

Return Address ·~ 

Parameters 

Previous 
tack 

Frames 

(a) Before buffer overflow 

Program 
Code 

,. 

Retum Address 

Previous 
Stack 
Frames 

--

( b I After buffer overflow 

Figure 1. Buffer overflow attack 

and many other features, that are useful in this context. However, the 
expressions are even more powerful than those supported by command 
interpreters (shells). Since the user inputs are passed to the script, insuf­
ficient checking of these inputs may lead to disaster. Figure 2 illustrates 
the CGI-mechanism. Often, CGI scripts are used to process 'forms' in­
cluded in certain web pages. The users completes the input fields and 
submits the form to the server. The server spawns a new process that 
runs the script, and passes the user inputs either through environment 
variables, or via standard input. Assume that one of the inputs is an 



Developing Secure Software 31 

email-address, that will be used to send a confirmation message to the 
user, and that the Perl script contains the following lines of code: 

$emailaddress • ... ; I fetch the email address 

system("echo \"Your form has been processed\" I mail $emailaddress"); 

If the email address is not checked by the script, then a user has the 
ability to have the script execute whatever command the user wants. In 
this case, if the user gave as email address: j useddot. com; rm -rf 11 
then, eventually the following commands will be executed: 

I echo "Your form has been processed" I mail userGdot. com; rm -rf I I 
that is, the acknowledgement is sent to the user, and the file system 
may be wiped out if the web server is running with superuser privileges! 
Instead of this denial of service attack, the malicious user could also try 
to add an extra line to the password file and thus create for him an 
entrance gate to the system. 

1 user mput ... I 

I I HTI'P 
Web Server 

l submitl 

User browser 

\. 
CGJ 

Figure 2. CGI Scripts 

2.2 Reuse of software in more hostile 
environments 

lip I 

Software written for use in a relatively friendly environment (like a 
mainframe or an intranet) is often reused later in a more hostile en-



32 Integrity, Internal Control and Security in Information Systems 

vironment (like the Internet). Because the software developer made 
certain assumptions about the environment in which his program would 
be running, this change in environment can lead to major security holes. 
Typical examples include programs using password authentication, and 
document processing software reused as content viewers on the Internet. 

2.2.1 Password authentication. Under the assumption that 
passwords are well chosen, and well guarded by their owners, password 
authentication is relatively secure in an environment where the com­
munication between the user typing in the password and the computer 
verifying the password can not be eavesdropped on by attackers. Typ­
ically, for a terminal connected to a mainframe by a dedicated line, a 
password mechanism is sufficiently secure. 

However, in a context where the password is communicated over the 
Internet, password authentication is extremely weak: eavesdropping on 
connections is commonplace on the Internet, and once a password has 
been seen by somebody else, the security of the mechanism is completely 
broken. Still, many popular programs like telnet and ftp rely on this 
mechanism to authenticate connections over the Internet. 

2.2.2 Document processing software reused as Internet con­
tent viewer. If word processing software is used to create, edit and 
view documents authored by the owner of the software, or a small set 
of trusted colleagues, then the security requirements of this software are 
relatively low. If the software contains buffer overflow problems, it might 
crash occasionally, but it does not represent a major security problem. 

This situation changes completely if the same word processing soft­
ware is reused as a viewer for Internet content. The same buffer overflow 
problem can now be maliciously exploited: an attacker places a carefully 
constructed document on the Web, and tries to lure victims into viewing 
this document. By exploiting the buffer overflow problem, the attacker 
can do anything he wants on the victims computer. 

Since it is difficult to predict in advance in which contexts your soft­
ware will be used, it is good practice to strive for secure software de­
velopment even for software that will initially only be used in a friendly 
environment. 

2.3 Trading off security for convenience or 
functionality 

It is well-known that there is a trade-off between security and con­
venience (i.e. functionality or user-friendliness of the software). Most 



Developing Secure Software 33 

security measures tend to add some user-annoyance, and often very pow­
erful and convenient features are easy to abuse. Software developers, 
tending to think of functionality in the first place, usually emphasize 
convenience over security. This problem is often an attitude problem: 
software developers tend to spend a lot of time thinking about how to 
make things possible. From a security point of view it is as important 
to spend time thinking about how to make certain things impossible. 

Examples of vulnerabilities in this category include: executable at­
tachments and powerful scripting languages for applications. 

2.3.1 Executable attachments. Many browsers maintain a 
table which is used to determine how the browser should handle MIME 
types when it encounters MIME parts in a HTML document, be it an 
email message, a newsgroup posting, a web page, or a local file. Some 
of these entries may cause the browser to open the MIME part without 
giving the end user the opportunity to decide whether the MIME part 
should be opened. Hence, an intruder may construct malicious content 
that, when viewed in the browser (or any program that uses the browser's 
HTML rendering engine), can execute arbitrary code. It is not necessary 
to run an attachment; simply viewing the document in a vulnerable 
program is sufficient to execute arbitrary code. 

2.3.2 Powerful scripting in applications. More and more 
applications include an interpreter for a scripting language, which can 
be used to support 'dynamic' content. Examples are word processors, 
spreadsheets, web browsers, etc. The problem with these scripting lan­
guages is that they are very powerful, and often allow access to local 
system resources, such as the file system. Although a technique, called 
sandboxing, can shield off the local system, dynamic content can still 
mislead the user, and possibly capture confidential information, such as 
credit card numbers, passwords, etc. 

The following attack against web browsers that support JavaScript has 
been described by Felten, Balfanz, Dean and Wallach ([5]). See also fig­
ure 3. An unsuspecting user is lured to the attacker's website2 . The web 
document shown to the user is 'booby-trapped': it contains a JavaScript 
program, which disables the normal functioning of the browser's buttons 
(by covering the browser with an invisible window), and all URLs are 
rewritten in order to direct requests to the attacker's site. From now 

2This is probably the easiest part of the attack. It suffices to offer something for free, to 
attract many possible victims. 



34 Integrity, Internal Control and Security in Information Systems 

on, the browser is actually captured by the attacker. There is no way to 
escape. Every URL in the document is of the form: 

http://wwv.attacker.com/http://www.real.com/page.html 

Hence, the request is sent to www. attacker. com, which will forward 
to request to wwv. real. com. The web document that is returned by 
that server is then rewritten by the attacker's website, i.e. all URLs 
are rewritten and a JavaScript program is added to the document. The 
modified document is finally sent to browser. Note that the JavaScript 
program can hide these modifications to the user: if the browser is asked 
to show the 'HTML source' of the document, the script will remove the 
malicious code and show the original URLs. Since all requests are sent 
to the attacker's website, including input fields of forms, the site may 
acquire and abuse confidential information. 

(d) 
modify page.html 

www.attacker.com 

user's browser www.real.com 

Figure 3. A webspoofing attack 

2.4 Relying on non-secure abstractions 
Many abstractions offered by a programming language or by an oper­

ating system are "complexity-hiding" abstractions more than "tamper­
proof" abstractions. Software developers often (implicitly or explicitly) 
assume that these abstractions are tamper-proof anyway, leading to se­
curity breaches. Examples include: buffer overflows (see section 2.1.1), 
type confusion problems in Java, attacks against smartcards, considering 
TCP /IP connections as reliable communication channels, unanticipated 
object reuse,etc ... We discuss two examples in more detail. 



Developing Secure Software 35 

2.4.1 Type confusion in Java. To allow untrusted code lim­
ited access to objects, it seems reasonable to use object oriented access 
specifiers (like private or protected) on methods or fields that should 
not be accessible to the untrusted code. The programmer relies on the 
information hiding aspects of the object oriented language he is working 
in to achieve a security related goal. 

However, it is important to realize that access specifiers are by no 
means "tamper-proof" in most object oriented languages. For example, 
in C++, untrusted code can scan the entire memory range in use by a 
process by casting integers to pointers, and hence untrusted code can 
also access the private fields of any object. In other words, the 00 
abstractions offered by C++ are not secure, or C++ is not memory safe 
or type safe. 

The designers of Java tried to make the Java Virtual Machine memory 
safe and type safe by disallowing pointers, and by checking casts even at 
runtime. But for many versions of the JVM, bugs in the implementation 
of the VM have led to breaches in memory and type safety. For example, 
the well-known classloader-attack (see: [8]), breaks the type safety of all 
JVM's upto version 1.1.8. 

Even in the absence of type safety problems, untrusted code may try 
to access private fields of an object by serializing the object, and reading 
the resulting file as a byte array. 

2.4.2 Unanticipated resource reuse. The problem here is 
that the software developer disposes of some object or resource (e.g. 
deletes a file), and assumes that by disposing of the object, its informa­
tion content becomes inaccessible. In many cases the object will only 
be "logically" deleted, and the actual content is still retrievable by an 
attacker. 

2.5 Insecure defaults and difficult configuration 
The default configuration of general purpose software is often not se­

cure to guarantee that the majority of customers is able to use it without 
experiencing too many restrictions. Especially for operating systems, 
this is common practice. Clearly, the users impression about the sys­
tem is important and security restrictions might annoy him. However, 
this should not be a reason to lower the level of security or it should be 
explicitly and very well documented. And even in this case, system ad­
ministrators typically do not take the time to read this documentation. 
They tend to make a default install, and if that works leave it at that. 
Hence, if the default configuration is an insecure one, many installations 
will be in an insecure state. 



36 Integrity, Internal Control and Security in Information Systems 

As an example, Microsoft Windows NT 4.0 is a reasonably secure 
operating system as proven by the ITSEC E3/F-C2 label it received 
after independent evaluation. However, a default install of the system 
disables many of the security features. Several documents (see: [4, 2]) 
provide checklists of tasks an administrator should perform to enable 
important security features and as such augment the overall security 
level of the system. However, it is highly questionable how many users 
will follow all the guidelines described in these checklist documents. 

As another point of attention, configuration procedures are sometimes 
complex and error-prone. For example, securing Windows NT requires 
changing certain keys in the registry by editing them by hand. Complex 
configuration procedures must be avoided, since they lead to configura­
tion errors, and a configuration error often introduces a security problem. 

2.6 Unanticipated (ab-)use of services and 
feature interaction 

Highly successful services are often used (and abused) in ways never 
imagined by the designers of the service. Hence, the designers failed to 
provide safeguards for these abuses. 

A typical example is e-mail. The Internet e-mail system, based on 
SMTP, was designed to provide a simple electronic messaging service for 
a relatively limited group of people. The unforeseen success of TCP /IP 
and the Internet has made SMTP a standard for a worldwide electronic 
mail system. Since sending e-mail is typically much cheaper than send­
ing paper mail, advertisers have been abusing the e-mail system since 
many years, sending out advertisements to millions of addressees at once. 
Because the designers did not anticipate the enormous success of their 
protocol, they did not think of safeguards for protecting against such 
spam e-mail. 

A special case of unanticipated abuse is feature interaction. As more 
and more features are added to a software product, they start interacting 
in unforeseen and insecure ways. An example is the telephone network, 
where the introduction of new services, like call-forwarding, conference 
calls and ringback have led to numerous security breaches ([1]). 

2. 7 Non-atomic check and use 
A typical scenario in a security relevant part of a program is: check if 

some condition is ok, and if it is, perform some action. Often attacks are 
based on invalidating the condition between the check and the action. 

A typical example is a so-called race condition. For example, a pro­
gram checks to see if a certain filename in the temporary directory is 



Developing Secure Software 37 

available (i.e. no file with that name exists already}, and if it does not 
exist, it opens a file with that name and starts writing information to 
it. An attacker can try to create a link with that specific name to a file 
he wants to alter between the check of existence and the actual opening 
of the file. As a consequence, the attacker causes the program to inad­
vertently add information to an existing file, where the program tried to 
enforce that it was really opening a new file. 

A second, very simple example is simply typing commands at an unat­
tended terminal: the operating system only checks the identity of the 
user at login-time, and from that moment on assumes that all commands 
from that terminal come from the authenticated user. A similar problem 
occurs with session hijacking of telnet sessions over the Internet. 

2.8 Programming bugs 
Finally, ordinary programming bugs, i.e. flawed algorithmic logic in 

security sensitive software, are much harder to detect during testing than 
bugs in the functionality of the software. Security related bugs only show 
up in the presence of malicious adversaries and hence can not be detected 
using automatic testing procedures. Moreover, the inherent complexity 
of cryptographic algorithms and other security related code makes it 
very hard to understand all relevant details and unfortunately wrong 
assumptions or small programming errors often introduce big security 
holes. Several famous examples of this problem exist. First, a weakness 
in the random generator of Netscape 1.1 where random numbers where 
based on the current time (which is not random at all!), made it possible 
to break the keys used in secure connections within seconds (see: [9]). 
Another example is known as the Java DNS bug. Here (see: (3, 6]), 
an error in the algorithm used to check whether two hosts are equal 
provided applets with the opportunity to connect to every computer on 
the Internet, which was not conforming to the rules of the restricted 
applet execution environment. 

3. Security guidelines for developers 
Many of the example software security weaknesses discussed in the 

previous section could have been avoided if the designers and implemen­
tors of the software had been more security-conscious during their design 
and programming. We feel it is very important for a software engineer 
to keep a number of security-related design guidelines in the back of his 
head at all times during the development of a software system. Every 
design or implementation decision should be verified against these "se­
curity rules of thumb". A good set of such guidelines is given below. 



38 Integrity, Internal Control and Security in Information Systems 

It is interesting to note that these guidelines still overlap significantly 
with the guidelines given in the 25 year old classic paper by Saltzer and 
Schroeder ([10]). 

1 Defensive programming. Treat any input your software gets from 
outside as potentially hostile. 

2 Secure defaults. While it may be a good idea to make security­
related parts of your program configurable, you should realize that 
many users will use the default configuration without thinking too 
much about it. Hence, the default configuration should be secure. 
Also, many security checks can be implemented in two ways: deny 
by default and allow access in selected cases, or allow by default 
and deny access in selected cases. It should be clear that the first 
approach is preferable. 

3 Use secure languages where possible. From a security point of view, 
a garbage-collected language (like Java) is to be preferred over a 
language relying on manual memory management (like C or C++). 
In particular, a type safe language significantly reduces the number 
of potential security weaknesses in software. 

4 Security-oriented testing. Software engineers should realize that 
testing for security is fundamentally different from testing func­
tionality. Testing for security is a creative form of testing, where 
the testers have to come up with possible attack scenarios. 

5 Economy of mechanism. Security mechanisms should be as simple 
as possible (but not any simpler than that). A simple mechanism 
is easy to understand, easy to verify, and easy to apply. 

6 Need to know principle. If it is possible to give different parts of 
your software different privileges (as is possible in Java for exam­
ple), make sure that you give each part the minimal amount of 
privileges necessary. This leads to better containment of security 
breaches. 

As another instance of this rule: make sure your software can run 
with the minimal amount of privileges from the OS it is running 
on. Software written for Windows 9X for example, typically as­
sumes having full access to the entire file system, making it difficult 
to port this software to the more secure NT family of operating 
systems. 

7 No security decisions by end users. End users typically have little 
or no expertise in security, and asking them to do security relevant 



Developing Secure Software 39 

configuration easily leads to configuration errors. Also, attackers 
might try to convince end users to change their configuration to a 
nonsecure state through social engineering techniques. 

4. Related Work 
An influential paper surveying and categorizing software vulnerabili­

ties is the paper by Landwehr et al. ([7]). However, this paper is largely 
focused on system software vulnerabilities, whereas our paper mainly 
targets application software. A number of books ([1, 6]) give many ex­
amples of vulnerabilities, but without an attempt at classification. Also 
many websites publish lists of software vulnerabilities of varying quality. 
A column by McGraw and Viega on the IBM Developer Works website is 
of very high quality ([12]). Finally, our security guidelines were heavily 
influenced by the seminal paper by Saltzer and Schroeder ([10]). 

5. Conclusion 
A classification of the most common software vulnerabilities (with 

many examples) was presented. This classification shows that many 
software vulnerabilities can be avoided by keeping in mind a number 
of simple security-related guidelines during design and development of 
software. 

References 
[1] Anderson, Ross (2001) Security Engineering. A Guide to Building Dependable 

Distributed Systems. Wiley and Sons publishers. 

[2) Paul F. Bartock et a!., Guide to Securing Microsoft Windows NT Networks, 
National Security Agency 

[3] DNS based attack on Java, http:/ /www.cs.princeton.edu/sip/news/dns-spoof.html 

[4] Micheal Espinola Jr (Santeria Systems), The Hardening of Microsoft Windows 
NT, http://vww.networkcommand.com/docs/HardNT40rel1.pdf 

[5] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach, "Web Spoof· 
ing: An Internet Con Game", 20th National Information Systems Security Con­
ference (Baltimore, Maryland), October, 1997. 

[6] Gollmann, Dieter (2000) Computer Security. Wiley and Sons publishers. 

[7] CE Landwehr, AR Bull, JP McDermott, WS Choi, "A Taxonomy of Computer 
Program Security Flaws, with Examples", ACM Computing Surveys 26, no. 3 
(Sep 1994). 

[8] Sheng Liang, Gilad Bracha, "Dynamic Class Loading in the Java Virtual Ma­
chine", Proceedings of the Conference on Object-oriented programming, systems, 
languages, and applications (OOPSLA'98), pp. 36- 44. 

[9] Netscape (In)Security Problems, http:/ /www.demailly.com/ dl/netscapesec/ 



40 Integrity, Internal Control and Security in Information Systems 

[10] Jerome H. Saltzer and Michael D. Schroeder. "The protection of Information in 
Computer Systems", in Proceedings of the IEEE, vol. 63 no. 9 (Mar 1975), pp. 
1287-1308. 

[11] SANS Institute, The ten most critical security threats, 
http://www.sans.org/topten.htm 

[12] http:/ /www.ibm.com/developerworks/security/ 


