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Abstract Traffic model based on the fractional Brownian motion (ffim) contains three 
parameters: the mean rate m, variance parameter a and the Hurst parameter H. 
The estimation of these parameters by the maximum likelihood (ML) method is 
studied. Explicit expressions for the ML estimates m and a in terms of Hare 
given, as well as the expression for the log-likelihood function from which the 
estimate iI is obtained as the maximizing argument. A geometric sequence of 
sampling points, ti = 0', is introduced in order to see the scaling behaviour of 
the traffic with fewer samples. It is shown that by a proper 'descaling' the traffic 
process is stationary on this grid leading to a Toeplitz-type covariance matrix. 
Approximations for the inverted covariance matrix and its determinant are in­
troduced. The accuracy of the estimation algorithm is studied by simulations. 
Comparisons with corresponding estimates obtained with linear grid show that 
the geometrical sampling indeed improves the accuracy of the estimate iI with 
a given number of samples. 

Keywords: Traffic modeling, fractional Brownian motion, Maximum Likelihood Estimation. 

1. INTRODUCTION 
One of the simplest and most studied models for aggregated data traffic is 

the fractional Brownian motion (fBm) model [7], which is a model for truly 
self-similar Gaussian traffic. An important feature of the fBm model is its 
parsimonity [3]: in its basic form the model contains only three parameters, the 
mean rate m, the variance parameter a and the Hurst parameter H describing 
the scaling behaviour of the traffic. The estimation of even a small number 
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of parameters poses a problem for long range dependent traffic. Some early 
work [7] suggested that to obtain a reasonable accuracy a very large number 
of sample points may be required. As H describes the scaling behaviour of 
the traffic variability, the sample points have to cover several time scales, i.e., 
the total time range must be several orders of magnitude greater than the finest 
time resolution in the measurement. 

In this paper we show that by an appropriate choice of the sampling instants, 
the number of sampling points can be considerably reduced. In particular, we 
will introduce a grid of geometrically distributed sampling points ti = ai-I, 

i = 1, ... , n where a is some constant less than one. The geometrical grid, 
being 'self-similar' fits well with the traffic process and gives rise to a simple 
structure in the covariance matrix. 

Throughout this work we apply the maximum likelihood estimation (MLE) 
method [1]. MLE method has previously been applied to this problem by 
Deriche and Tewfik [2] and Ninness [5] using ordinary linear sampling. Explicit 
formulas for the estimators of m and a are given along with the log-likelihood 
function for determining the estimator for H. A major difficulty in this method 
is the calculation of the inverse and determinant of the covariance matrix. For 
the original tBm process the increment process is stationary. We show that 
another stationary process is obtained from the tBm process by 'descaling' 
and changing the process index to logarithmic time, i.e., on the geometrical 
sampling grid the de scaled process is stationary. It turns out that the elements 
of the inverse covariance matrix far from the diagonal are small, enabling us 
to derive a simple approximation for the inverse matrix directly without using 
e.g. Whittle's method [1] based on the spectral analysis. 

We compare the effectiveness of the MLE estimator based on ordinary evenly 
spaced sampling grid with that obtained with a geometrical grid by simulations. 

The rest of this paper is organized as follows. In Section 2 we review the 
fractional Brownian motion traffic model with its three parameters. The general 
problem of the estimation of these parameters by the maximum likelihood 
method is considered in Section 3. The idea of geometrical sampling and the 
descaled process, along with an approximate form of the MLE, are introduced 
in Section 4. For comparison, in Section 5 we present the MLE method for the 
case of ordinary linear sampling. In Section 6, we present results for estimating 
the tBm parameters with the described methods from simulated realizations of 
the process. Section 7 concludes the paper. 

2. FRACTIONAL BROWNIAN TRAFFIC 

A normalizedJractionalBrownianmotion with Hurst-parameter H E [0.5,1), 
denoted by Z(t), (t E lR), is characterized by the following properties [6]: 

1. Z(t) has stationary increments; 
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2. Z(O) = 0, and E [Z(t)] = 0 for all t; 

3. Var [Z(t)] = E [Z(t)2] = Itl 2H for all t; 

4. Z(t) has continuous paths; 

5. Z(t) is a Gaussian process, i.e., all its finite-dimensional marginal dis­
tributions are Gaussian. 

In the special case H = 0.5, Z(t) is the standard Brownian motion. It follows 
from the above properties that Z(t) is a self-similar process whose scaling 
behaviour is defined by the Hurst-parameter H as follows: 

Z(at) '" aH Z(t). (1) 

The covariance structure of the process is given by 

COY [Z(tl), Z(t2)] = ~ {tiH + t~H -lt2 - tI12H}. (2) 

Fractional Brownian motion is a popular model for long-range dependent 
traffic. Norros [6] has suggested the following model 

X(t) = mt + y'aZ(t), (3) 

where X(t) represents the amount of traffic arrived in (0, t). The model has 
three parameters, m, a and H with the following interpretations and intervals 
for allowed values: m > 0 is the mean input rate, a > 0 is a variance parameter, 
and HE [0.5,1) is the self-similarity parameter of Z(t). 

3. EXACT GAUSSIAN MLE 
We use the notation of Beran [1]. Assume the traffic has been observed at 

n time instants forming the vector t = (t I, ... , tn ) t where (-) t denotes the 
transpose. And let X = (X (tl), ... , X (tn )) t be the vector of observed traffic 
values at these instants. Since X(t) is Gaussian, the joint probability density 
function of X is 

(4) 

where x = (Xl, . .. ,Xn)t E 1Rn , m = mt, and Irl is the determinant of the 
covariance matrix 

r = COy [X, x t ] = E [xxt ] - E [Xl E [xt ] . (5) 

The MLE for m is obtained by maximizing log h(X; m) with respect to m, 
resulting in the estimator 

(6) 



54 

Note, that the estimate is unbiased, irrespective whether our estimate for H is 
correct or not. The variance of m can also be calculated with the assumption 
that H is known exactly, H = H. With straightforward calculations we get 

(7) 

The variance of our estimator is smaller than for the estimator based on the 
sample mean, by the factor in the denominator (which is close to one). 

Next, consider the estimator for a. r is a simple linear function of a, 
r = a r H, where r H is independent of a and is given by 

(8) 

The MLE of a is obtained by maximizing the log-likelihood function log h(X; a) 
with respect to a. If we do not know the mean input rate m in advance, m 
should be replaced by mt, and we get: 

1 (Xt r- 1 X)(tt r- 1 t) - (tt r-1 X)2 
a(H) = _ H H H 

n tt r 1/ t 
(9) 

Again, assuming for the time being that H is known correctly the expectation 
and variance of a can be calculated and finally we have 

E[a] = n-1 a, 
n 

"IT [ n A] _ 2a2 (n - 1) var --a - 2 . 
n -1 n 

(10) 

Thus a has the "normal" (n - l)/n bias. 
Finally, we are left with the maximization of the H -dependent part of the 

log-likelihood function, i.e., essentially we have to minimize 

L(X'H) =10 Ir I+nlo (Xt r 1/X)(ttr1/t)-(ttrj/X)2 (11) 
, g H g tt r-1 t 

H 

The minimum is obtained for some value H which is the MLE estimate; the 
corresponding MLE estimates for m and a are m = m(H) and a = a(H). 

4. GEOMETRICAL SAMPLING 
The Hurst parameter H describes the scaling behaviour of the traffic. There­

fore, in order to determine its value from measured traffic, the sample points 
have to cover several time scales, i.e., the total time range of the measurements 
has to be many orders of magnitude greater than the finest resolution (smallest 
interval between the sampling points). With the ordinary linear sampling, i.e., 
sampling points at constant intervals, this leads to the requirement of very large 
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number of sampling points. In order to use the measurements more efficiently 
we introduce a geometric sequence of sampling points, ti = ai, i = 1, ... , n, 
with some 0 < a < 1. 

In addition to distributing the sampling points in a better way on different 
time scales, geometric sampling fits neatly with the self-similar behaviour of the 
mm traffic. We show first that by a simple transformation we can obtain from 
the mm process another process which is a stationary process of logarithmic 
time. As a geometric sequence corresponds to equidistant points in logarithmic 
time, it follows that the samples of the modified process constitute a stationary 
sequence. This leads to a simple Toeplitz-type structure of the covariance 
matrix and allows us to develop approximations to the inverse and determinant 
of the covariance matrix. 

4.1 DESCALED PROCESS 
Z(t) has the self-similar property Z(at) '" a H Z(t). Now consider the 

'descaled' process Z(t) 4: t-H Z(t) which has the scaling property 

Z(at) '" (at)-H Z(at) = C H Z(t) = Z(t). (12) 

Further let us take a new time variable u = - log t and denote Z (u) 4: 
Z(e-U) = Z(t). Now we have 

Z(u -loga) = Z(e-u+loga) = Z(ae-U) = Z(at) '" Z(t) = Z(u). (13) 

Thus the process Z (u) is stationary and has the following covariance structure: 

COY [Z( ut}, Z( u2)] = ~eH(U2-Ud { 1 + e-2H(U2-ud _ (1 _ e-(U2-Ul») 2H} , 

(14) 
so the descaled process Z ( u) is short range dependent. 

If we 'descale' the process X(t) by the factor C H and use u as the process 
index, the covariance matrix f of the descaled samples X = (X(ut), X(U2), 
... ,X(un))t with Ui = -logti = (1 - i) log a can be written as 

f = E [XXt] = a . E [zzt] . (15) 

Note, that our geometric~1 grid js now equally spa~ed wit~ regard to~. Thus, 
if we use the notation Zi = Z(ud the process Z = (Zl' Z2, . .. , Zn) is a 
stationary process in discrete time with zero mean and unit variance and its 
auto-correlation function p( k) can be defined as 

p(i - j) = ~a-Hli-jl { 1 + a2H!i-jl _ (1 _ a1i-jl) 2H} , (16) 

and thus 
fij=ap(i-j), i,j=1,2, ... ,n. (17) 
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4.2 APPROXIMATE MLE 
In practice, the exact MLE poses computational problems. And this is not 

just because of the computation time needed in case of large data sets, but 
because of the evaluation of the inverse and the determinant of the covariance 
matrix may be numerically unstable. To avoid these problems, one can use 
approximate methods for the calculations. In [1], several possible approaches 
are discussed, among them the well known Whittle's approximate MLE. 

In our case we focus on the properties of the covariance matrix r H, trying 
to take advantage of the stationarity and short range dependent properties of 
the descaled process._ Using the 'descaling matrix' D = diag(t1H , ... , t:;;H) 
we can easily derive r = Dr D, and from this we get 

(18) 

The elements of the autocorrelation matrix r H can be written as 

with 

(20) 

It is interesting to note, that g(x) is nearly completely linear for x E (0,1). 
Figure 1 shows the difference of g(x) - x for different values of H. It can 
be seen from the plot that the largest absolute difference is less than 0.02 for 
each value of H. This observation gives us the idea to use the approximation 
g(x) ~ x. So f H can be approximated as f H ~ R, where R is a Toeplitz-type 
matrix of the form [RJij = ,Ii-jl, i,j = 1,2, ... n, with, = a)-H. 

The inverse of R can be easily calculated as [8] 

,-1 -1 ° ° 
-1 , + ,-1 -1 

R- 1 __ 1_ 

° -1 , +,-1 ° (21 ) - 1 --, 
-1 , 

° ° -1 ,-1 

and the determinant ofR is given as IRI = (1 - ,2)n-l [8]. 
Using the fact ttDR- l Dt = 1 and ttDR-1D = (1,0, ... ,0), we get 

m = X (1) so using the above approximation the MLE estimate for m reduces 
simply to the sample mean. As for the estimate for a we get 

a(H) ~ (XtDR-1DX - Xl). (22) 
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Figure 1 Error of approximation g(x) ~ x for H = 0.6.0.7.0.8 and 0.9. 

Finally, to get an estimate for H we have to minimize the function 

L(X; H) = n: 1 log (a,nH (1 - a,2-2H)) + log (X t D R- 1D X - Xl) . 

(23) 

It should be noted that though the linear approximation to g(x) is rather 
accurate, the resulting inverse matrix R -1 of Eq.(21) is rather poor an approx­
imation to f-1 for large n. Nevertheless, the use ofR-1 in the log-likelihood 
function (23), as we will see, yields a good estimate for H, while the accuracy 
of the estimate a suffers more from this approximation. 

4.3 IMPROVED APPROXIMATION 

Since the matrix f is a Toeplitz-type matrix with decreasing elements as we 
go farther from the diagonal, we expect that its inverse can be well approximated 
with a band matrix of the form: 

C1 cp 0 0 

C1 cp 

c= cp C1 0 (24) 
0 cp Cl C P 

0 0 cp C1 

so that fii ~ C. Our aim is to set the p parameters C1, .•. , cp to get cf H ~ E. 
For example, this can be achieved by solving the equation 
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where G = (l'H)(2p-l)X(2P-l) and from this we have 

G-1 
Ci = p(p+i-l)' i=1,2, ... ,p. (26) 

With this approximation we only need to calculate the inverse of a (2p - 1)­
by-(2p - 1) matrix. I (To improve the approximate inverse, its elements in the 
upper-left and lower-right comers can be further corrected.) 

5. LINEAR SAMPLING 
LetX = (X(tt), X(t2)"" , X(tn))t be the vector of observed traffic values 

at instances 
Z 

ti = -, i = 1,2,00' ,no 
n 

(27) 

The increment sequence (Y1 , Y2, ... ) with Yi = X(ti) - X(ti-d (substi­
tuting X(to) == X(O) = 0) is a strongly correlated stationary sequence with 

COY [Yi, YJ] = ~an-2H (Ii - j + 112H + Ii - j - 112H - 21i - j12H) (28) 

for i,j = 1,2, ... , n. The formulas for the exact Gaussian MLE for this 
increment process are nearly the same as in Section 3, we only need to replace 
the covariance matrix r with E = [COy [Yi, YJ]kj=1,2,oo.,n, and the vector t 
with the vector (l/n, l/n, . .. , l/n)t. After some minor simplifications we get 
an estimate for m 

A A (H) I t E- 1 y 
m=m = ·n It E-1 1 

(29) 

where 1 is a vector of ones, and E = aE H. For a we have the estimator 

(30) 

Again, finally we have to minimize 

(31) 

The minimum is obtained for some value if which is the MLE estimate. 
However, to calculate the inverse and the determinant of E H the same 

eroblems arise as in the case of geometrical sampling with the covariant matrix 
rHo Since EH is also a Toeplitz type matrix, the same method as described in 
Section 4.3 can be used to approximate Eli with C of Eq.(24). 

I To be more exact, because of the symmetric structure we only need to calculate the inverse of a p-by-p 
matrix using slightly more complicated formulas. 
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Figure 2 Estimates of H using geometrical and linear sampling. 

6. SIMULATION RESULTS 

The ffim samples were generated using the fact Z "" r~2N where N is 
a vector of independent standard Gaussian variables. The model parameters 
were set as m = 1, a = 1 and H = 0.8 as an example. but similar results 
were obtained using different values of the parameters. The parameter a for 
the geometrical grid was chosen so that the difference between the nearest two 
measurement time instants (the 'resolution' of the measurement) was 10-6 . 

Figure 2 shows the results of H estimates as a function of the number of 
sample points using both geometrical and linear sampling. In the geometrical 
case Eq.(23) was minimized while for the linear sampling we used the formula 
Eq.(31) where the inverse of EH was approximated with a band matrix of 
Eq.(24) with p = 2. The 95% confidence interval was obtained by repeating 
the simulations 100 times and calculating the sample variance of the estimates. 
The results show that the estimates using geometrical sampling have much 
smaller variance and are unbiased for sample sizes larger than 25. However, 
the variance of the estimates is always higher than in the geometrical case. For 
example. the variance for 800 samples using linear sampling is nearly the same 
as for only 50 geometrically sampled points. 

The next question was how the two different sampling methods affect the 
estimates for the variance parameter a. Figure 3 displays the results. assuming 
that H is known. These simulations were useful to test whether our approxi­
mations in calculating the inverse and determinant of the covariance matrices 
are adequate or not. Figure 3 presents two different approximations for the 
geometrical sampling. First, we used the simple approximate inverse covari­
ance matrix of Eq.(21) in Eq.(9) using Eq.(l8) (denoted by light gray dots and 
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Figure 3 Estimates of a using geometrical and linear sampling and different approximations, 
assuming H is known. 

labeled 'linear approximation' in the figure). As can be seen, the estimates of 
a are strongly biased and the bias is getting larger as the number of samples 
increases. So this estimate is clearly inadequate, the approximation of Eq.(21) 
had to be refined. Next, we used the approximation of Eq.(24) for rj/ with 
five parameters (p = 5). As we see from Figure 3, the strong bias from the a 
estimates disappeared and the variance of the estimates is only slightly higher 
than the theoretical value that can be calculated using Eq.(10). (Note, however, 
that the bias for sample sizes of 400 and 800 seems to be slightly increased.) 
Finally, the linear sampling method was used. Its estimates are asymptotically 
unbiased and have approximately the same variance as expected. The approx­
imate inverse matrix used was as in Eq.(24) with only two parameters (p = 2). 
Figure 4 shows the MLE a estimates without any a priori knowledge about 
the model parameters. All the approximations used here were the same as in 
the previous cases. Since H is not known and can only be estimated with a 
given variance, the estimates of a have larger variances than in the previous 
simulations. The question is how robust those estimates are when iI can have 
a slight bias (see Figure 2). As for the geometrical sampling, the bias of a gets 
smaller and its variance is also decreasing rapidly as the sample size increases. 
On the other hand, for the linear sampling case the estimates seem to be biased 
for larger sample sizes and their variance does not seem to decrease. The reason 
for this behaviour lies in the fact that the linear sampling for estimating H is 
less accurate than the geometrical sampling. The bias in iI together with its 
higher variance is responsible for the bias and variance of a, even if the linear 
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Figure 4 Estimates of a (when H is also estimated) using geometrical and linear sampling and 
different approximations. 

sampling seems to be a better choice to estimate a than the geometrical one for 
known H (see Figure 3). 

As for the MLE estimates for m the geometrical sampling does not give 
any extra advantage or disadvantage compared to the linear sampling. In fact, 
the MLE estimate gives almost negligible reduction in the variance of m when 
compared to the sample mean as an estimate for m. 

7. CONCLUSION 

In this paper we have introduced the idea of using geometrical sampling 
for the ML estimation of the parameters of fractional Brownian traffic. The 
intention with this sampling is to reduce the number of sampling points required 
for a given predefined confidence level. Intuitively, the geometrical sampling 
distributes the sampling points advantageously at different time scales, whereas 
linear sampling stresses the finest time scale. 

We have derived expressions for the estimators of m and a and the log­
likelihood function from which the estimator of H can be derived. Approxi­
mations were developed for the inverse and the determinant of the covariance 
matrix, needed for the calculation of the estimates. With these approximations 
the evaluation of the log-likelihood function is fast and the maximization with 
respect to H can easily be made. 

The experiments with simulated traffic showed that the geometrical sampling 
does indeed give a better estimate for H leading to a reduction of sample points. 
In one example the number of required points was reduced from 800 to 50. For 
the estimation of a the geometrical sampling does not give any direct advantage, 
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but as the estimator a actually depends on the estimator if, the overall accuracy 
obtained is better. For the estimation of m, different sampling schemes give 
essentially the same result, the estimate is basically the observed average rate. 
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