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Abstract This paper proposes an optimal method for allocating buffer and bandwidth to 
different classes of a forwarding engine within a Differentiated Services domain 
in the Internet. The optimality criterion is based on the cost of the buffer 
and bandwidth. Based on this criterion, the best class that matches a certain 
traffic with a certain statistical characteristics and the maximum packet delay 
corresponding to this class is found. The results are general and can be applied 
to other networks such as ATM. 
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1. INTRODUCTION 

The current Internet 'best effort' service does not provide any guarantee for 
packet loss or delay and is therefore not suitable for demanding applications 
such as high quality voice and video. The 'Differentiated Services' model [1], 
or diffserv, is a recent proposal to solve the above problem and with its simple 
architecture is particularly appealing for high speed routers carrying a large 
number of connections. 

In diffserv, packets are differentiated based on the contents of the 'DS field' 
[2]. The DS field of a packet indicates the treatment or the so-called 'per hop 
behavior' (PHB) that this packet will receive at each diffserv node. Like ATM 
networks, it is desirable to define different classes of traffic and different loss 
priorities within each class. Each class and priority can then be associated with 
a certain PHB. A possible classification of PHB's is described in [3]. 

This paper focuses on matching different traffic to different classes. Using a 
simple mathematical model, we obtain a relationship between the characteris­
tics of the traffic and the diffserv class that is optimum for serving this traffic. 
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Figure I Illustration of the model 

The optimality criterion is based on the cost of the buffer and the bandwidth 
available at a diffserv node. To model the traffic, we use both exponential and 
Pareto distributions for the burst size and the inter-arrival time. The Pareto 
distribution is a heavy-tail distribution which can simulate the fractal behavior 
present in the Internet traffic [4]. 

The rest of the paper is organized as follows: In section 2 we describe our 
mathematical model and assumptions. The method used for the analysis of 
the model is then explained in section 3. In section 4 we discuss and interpret 
numerical results. Finally in section 5 we summarize our findings. 

2. DESCRIPTION OF THE MODEL 

We consider a diffserv node allocating a certain amount of bandwidth and 
buffer to a diffserv class C. It is assumed that each diffserv class has a separate 
queue for incoming packets. The incoming traffic of class C is modelled as a 
sequence of bursts which arrive at the node as shown in figure 1. It is assumed 
that when the first bit of a burst arrives at the node, the whole burst is instantly 
loaded into a buffer with capacity X. if there is enough space available in the 
buffer, otherwise the fitting part of the burst is buffered and the excess part is 
lost. In practice, bursts are not transferred into the buffer instantly; the transfer 
time is equal to the burst size divided by the arrival rate of the burst. However, 
given that the average incoming rate of a single class is a small percentage of 
the whole traffic rate, the peak rate of a burst can be very high as compared to 
the average incoming rate. Therefore bursts can be considered to arrive almost 
instantly. This assumption is especially true when the input port of the node is 
connected to a high speed LAN. 

It is furthermore assumed that the size of the burst is a continuous random 
variable with probability density function u (x), independent of other bursts 
and the inter-arrival time between bursts. The inter-arrival time is also assumed 
to be a continuous random variable independent of other random variables. 
The buffer is depleted at constant rate during the inter-arrival time according 
to the bandwidth allocated to the class C. One can imagine an equivalent 
model in which there is an infinite sequence of 'pump up' and 'pump down' 
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Figure 2 An equivalent representation of the model 

cycles taking place at the buffer, as shown in Figure 2. The buffer content is 
increased or pumped up by a random number with probability density function 
u(x) (to not more than X, the buffer size,) immediately followed by a pump 
down or decrease by a random number with probability density function v(x) 
(to not less than zero) associated with the inter-arrival time and the allocated 
bandwidth for the class. Our model is therefore similar to the fluid flow model 
in [5] in that it does not capture the discrete nature of packets. This however 
has been shown to have negligible effect when the input buffer is large. 

Two different distributions for u{x) and v(x) have been studied: The expo­
nential and the Pareto distributions. It has been shown that using the Pareto 
distribution for the burst size [6] or the packet inter-arrival time [7][8] effec­
tively simulates a self-similar behaviour which has been observed in many 
practical networks. 

3. ANALYSIS METHOD 

Given u(x) and v(x) in the model described in section 2, we wish to find the 
loss rate of incoming bursts. The loss rate is defined as the average of that part 
of a burst which does not fit into the buffer, divided by the average of a burst 
size: 

E(Ioss) 
Loss rate = E(burst) 

E(!oss) and E(burst) are given by: 

E(burst) = fooo xu(x)dx 

E(loss) foX f(x)Ec(X - x)dx + qEc(X) 

(1) 

(2) 

(3) 
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where: 

f (x) Equilibrium buffer state pdf 

def roo 
Ec(x) ix (y - x)u(y)dy 

q Equilibrium probability of buffer being empty 

X Buffer size 

with f (x) and q being observed at the time just prior to an incoming burst. 
Finding f (x) and q is not trivial. They satisfy the following integral equation: 

f(x) = foX K(x, y)f(y)dy + qK(x, 0) (4) 

where K (x, y) is the equilibrium pdf of the buffer state just prior to an incoming 
burst, given that the state of buffer just prior to the previous burst is y. K (x, y) 
is given by the following formula: 

f·X foo 
K(x, y) = u(z - y)v(z - x)dz + v(X - x) u(z)dz 

max(x,y) X-y 
(5) 

Equation 4 is a Fredholm integral equation of the second kind [9]. As an 
approximation, one can assume that the buffer is infinite and that loss happens 
when the buffer state is greater than X. In this case, Equation 4 becomes similar 
to the Wiener-Hopf equation [10] for which a closed form solution exits when 
u(x) and v(x) are both exponential. However, since we are interested in the 
Pareto distribution as well, we shall focus on a numerical solution to Equation 
4. 

By sampling f(x) at N discrete points, Equation 4 can be transformed into 
a set of linear equations: 

N 

Ii L Aijfj + qDi (6) 
]=1 

1 
X N 

q+ NLfi (7) 

i=l 

Equations 6 and 7 can then be solved using any linear algebra software package. 
The coefficients Aij and Di can be computed using a numerical integration 
package such as [11]. E(loss) can therefore be approximated using discrete 
samples of f(x) obtained from Equations 6 and 7. Simulation results showed 
that for N = 50, a fair approximation can be obtained. 
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Figure 3 Comparison of the analysis with simulation, ExplPareto case 
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Figure 4 Buffer/Bandwidth tradeoff for different loss rates 

4. RESULTS AND DISCUSSION 

Consider a class C with a certain allocated bandwidth and buffer. Let B be 
the normalized allocated buffer, i.e. the ratio of the buffer size to the average 
input burst. Let W be the normalized allocated bandwidth, i.e. the ratio of 
the bandwidth to the average input rate. Given B and W, u(x} and v(x} can 
be determined for the exponential or Pareto distributions and the loss rate can 
be computed using the analysis of Section 3. Figure 3 shows the result of 
this analysis for u(x}/v(x} being Exponential/Pareto and N = 50. Marks 
correspond to simulation results and lines correspond to the analysis. 

Given a certain required loss rate, there is a tradeoff between buffer and 
bandwidth. The tradeoff between buffer and bandwidth has been previously 
examined in other contexts in the literature [12] [13] [14] [15]. In this paper, 
we are interested in the effect of this tradeoff on the optimal configuration of a 
diffserv node. 

Figure 4 explicitly shows the tradeoff between buffer and bandwidth for the 
Exp/Pareto distribution case and for different loss rates. It is not economical 
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Figure 5 Buffer/Bandwidth tradeoff for different distributions 

to push the (W, B) operating point toward the limits. If the buffer is too small, 
the cost of the bandwidth becomes very high without much gain in the buffer 
cost. Conversely, if the bandwidth is too low, the cost of the buffer will be 
too high without gaining much on the cost of the bandwidth. Therefore, the 
optimal operating point must be around the knee of the B(W) tradeoff curve. 

Let de be the maximum queueing delay of a diffserv class defined as: 

de ~ buffer size 
output rate 

Let d i be the 'input delay' defined as: 

d, ~f average input burst 
. average Input rate 

Then the 'normalized maximum delay' 6" is defined as: 

_ def de B 
6 = -=-

eli W 
(8) 

The dotted lines in Figure 4 correspond to different values of the normalized 
maximum delay <5. This figure shows that for the ExplPareto case, the knee of 
the curve corresponds to the value of <5 :::::: 5, regardless of the desired loss rate 
value. Figure 5 compares different distributions with the same loss rate. 

The BufferlBandwidth optimization can be made more precise. Let C be 
the normalized cost of allocating a normalized bandwidth Wand a normalized 
buffer B. i.e. 

C = K:W + B (9) 

where K: is the factor by which bandwidth costs more than buffer, i.e.: 

cost of unit W 
K: = -----::_ 

cost of unit B 
cost of unit bandwidth 1 
------------------ x --

cost of unit buffer di 
(10) 
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Figure 6 Maximum delay for different loss rates 

To find the optimal point, we set the derivative of the cost function to zero: 

de = 0 =? K, + oB = 0 =? I oB I = K, 

dW oW oW 
(11) 

If the absolute value of the slope of the B(W) tradeoff curve in Figure 4 or 5 
is called the 'tradeoff rate' T, i.e. 

(12) 

then Equation 11 shows that the optimal point on the B(W) tradeoff curve is 
the point where T = K,. 

Figure 6 shows T vs. 8 for the Exp/Exp case with different loss rates. It can 
be seen that different loss rates will cause almost the same delay at a diffserv 
node. It can also be seen that the 8 ( T) curve is a straight line in the log/log 
scale. This has some important implications which we will now investigate. 

Suppose that the slope of the line in Figure 6 is equal to 1/( 1 + a) (the slope 
in this figure is actually 0.5, corresponding to a = 1.) Also suppose that the 
line passes through the point (T = b, 8 = 1). Then one can write the equation 
for this line as follows: 

10g(T} = (1 + a) log(8) + log(b) 

Taking out the log and replacing 8 and T from Equations 8 and 12 yields the 
following differential equation for B as a function of W: 

dB = -b ( B ) 1 +a 
dW W 
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Figure 7 Maximum delay for different distributions 

Solving the above differential equation. one obtains the following equation for 
the B(W) tradeoff curve: 

with (13) 

A and I-L correspond to the asymptotes of the curves shown in Figure 5. Since 
the slope of the lines in Figure 6 is 0.5. Equation 13 in this case reduces to the 
well know bilinear function. A is always equal to 1 and I-L corresponds to the 
buffer size that gives the desired loss rate assuming that the buffer is completely 
empty. The B(W) tradeoff curve is therefore readily available for the Exp/Exp 
case. 

The linearity of the d ( T) curve has another important implication with respect 
to the delay of bursty traffic. Supposed that the burstiness of the traffic is 
increased by a factor of C!. Then given that the slope of the d (T) line is 
1/ (1 + a), it turns out that the optimal class delay de becomes C! 1 ~a times 
larger. For the Exp/Exp case where a = 1. the optimal class delay grows as the 
square root of the traffic burstiness. 

The function d ( T) is more complicated in cases other than the Exp/Exp 
case. Figure 7 compares different distributions for the same loss rate of 10-4 . 

According to this figure. all curves corresponding to different distributions are 
almost linear with the same slope at low tradeoff rates (when there is plenty 
of bandwidth available at low cost.) These lines however have a considerable 
difference in offset. This means that the BufferlBandwidth tradeoff curve 
equation is the same bilinear equation for all distributions near the B = f.l 
asymptote, with the value of f.l itself being considerably different for different 
distributions. 

Different diffserv classes are expected to have different maximum delays 
and loss probabilities in order to cover a wide range of traffic characteristics 
and quality of service requirements. Given a certain traffic burstiness, one can 
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use the above analysis to match the diffserv class (and the corresponding set 
of PHB's) which is 'best' for that traffic from an economical point of view. 
Assuming that di is know for the aggregate traffic as a measure of its burstiness, 
r;, can be determined from Equation 10. Therefore the optimal normalized delay 
8 can be obtained from a 8(7) curve such as in Figure 7 and the optimal class 
delay de can be computed from Equation 8. Then a class having a maximum 
delay close to this number can be assigned to that traffic. 

The converse problem is a bit more complicated. Here the class delay de is 
known and we are interested in finding the traffic burstiness that best matches 
this class from an economical point of view. The easiest way to solve this 
problem is probably by trial and error. Make an initial guess for di and insert it 
in Equation 8. Then use the obtained 8 to read the corresponding tradeoff rate 
7 which can be compared against the optimal value r;, obtained from Equation 
10 to make an adjustment for the initial guess. 

5. CONCLUSION 
A simple model for the aggregated traffic of a diffserv class was used to 

match the traffic with the best bufferlbandwidth configuration allocated to the 
class. The following results were obtained: 

• The value of the desired loss rate has significant impact on the amount 
of the required buffer and bandwidth, but has little effect on the resulting 
maximum delay if buffer and bandwidth are configured cost effectively. 

• A simple bilinear formula for the bufferlbandwidth tradeoff curve can be 
derived in the Exp/Exp distribution case. For other cases simple intuitive 
comparison with the bilinear formula can be made. 

• The maximum delay corresponding to the optimal bufferlbandwidth con­
figuration grows as the square root of the burstiness of the traffic if both 
the burst and the inter-arrival time are assumed to have exponential dis­
tribution. For other distributions, the exponent of the growth can be 
obtained from the slope of the 8 ( 7) curve. 

• Matching the traffic with the best class can be done using the 8 ( 7) curve. 
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