
Stress Testing of Distributed Multimedia
Software Systems

Jian Zhang', Shing-Chi Cheuni and Samuel T. Chanson2

1Lab. of Computer Sci., Inst. of Software, Chinese Academy of Sciences
2Dept. of Computer Sci., Hong Kong Univ. of Sci. and Tech.

Key words: Multimedia applications, stress testing, test case generation,
real-time systems, resource modeling, symbolic execution, constraint solving

Abstract:

With the advance in network technologies, the use of distributed multimedia
data has become very popular. Distributed multimedia systems are complex
and error prone. While there are well established testing techniques for the
functionalities of such systems, the technique of stress testing to improve test
efficiency has not received much attention. It has been argued that faults are
more likely to occur in situations where there is a fierce competition for
resources. When the system is heavily loaded, errors like mismanagement of
buffers can be easily identified. In this paper, we present several criteria for
selecting test cases, and describe two methods for generating test cases
which maximize system resource usage. Our approach is based on symbolic
execution and constraint solving. An example is given to illustrate the
concepts and techniques.

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems
© Springer Science+Business Media Dordrecht 1999

120

1. INTRODUCTION

Multimedia software systems systems are becoming popular in recent years.
In multimedia applications, various kinds of information media are involved,
including video, audio, image and text. The architecture of interactive
multimedia applications can be roughly divided into two classes: client­
server (like remote learning, video-on-demand and product presentations), or
peer-to-peer (like video phone and video conferencing).

Distributed multimedia software systems (DMSSs) are complicated and
error-prone. They have to be responsive to user events, and they often
require timely exchange of large amounts of media data. Furthermore, some
of the media objects have to be synchronized (e.g., a piece of text and a
speaker's voice reading the text). There can also be very complex user
interaction scenarios, as in the case of virtual shopping.

To facilitate the design and implementation of DMSSs, a Distributed
Multimedia System Environment (DMSE) was developed at the Hong Kong
University of Science and Technology [W97]. In this environment, the
programmer can specify the architecture of a DMSS in an object-oriented,
textual language. He/she may also describe different views of the system
using some graphical notations (including a variant of Petri net and an
extended time-line diagram).

A framework for testing DMSS is described in [MCC98], where only
generic testing methods are discussed. It is impractical and often infeasible
to test a complex software system exhaustively. A system is more likely to
misbehave when its resources are heavily utilized. In this paper, we focus on
the derivation of test data which drive the system to critical states where
almost all available resources are consumed. Experience tells us that in such
a situation the system is more vulnerable and some types of errors (like
mismanagement of buffers) can be easily identified. Testing is more
effective if we concentrate on these cases.

In this paper, we give some criteria for selecting test cases such that the
system is tested under more stressful conditions. We also describe two
methods for generating such test cases. The basic idea is to execute the
system's specification symbolically, and then use constraint solving and
optimization techniques to find the timings of events which maximize
system resource usage. The paper is organized as follows. In the next section,
we briefly describe our specification formalism, with emphasis on a variant
of Petri net. Then in Section 3, we discuss test case selection criteria for
stress testing of multimedia applications, and present two methods for

121

automatic test case generation. Finally1 our work is compared with other
related work1 and some observations are made.

2. MODELING OF DMSS

A model for specifying DMSS architectures is given in [W97]. It allows
users to author a DMSS by describing different aspects of the system. A
major part of the model is an extension of the Petri net1 called Temporal
Event Petri Nets (TEPNs). An event can denote some action ofthe user (e.g.1

EXIT _CLICKED) or a signal from some media object (e.g. 1 EOF which
means the end of an object). A TEPN offers a visual representation of
system activities and user interactions.

TEPN adopts a discrete time model. That is1 the time domain consists of
time points which are non-negative integers. We shall use nt(pl,t) to denote
the number of tokens in place plat timet. Place pl is active at timet ifnt(pl,t)
> 0. A transition is enabled at time t if every input place is active at that time.
When it fires, the number of tokens at each input place decreases by 1 and
the number of tokens at each output place increases by 1. But if transition v
forms a self-loop (i.e., goes from place P to itself), we assume that when v
fires, the number of tokens in P first decreases by 1 and then increases by 1
to get back to the same value.

A TEPN is an extension of a classical Petri net. A transition may be marked
with a triggering condition (i.e., the occurrence of some user interaction). It
is firable if it is enabled and the condition is met. For simplicity, we assume
that no two user interactions occur at the same time instant. Otherwise, the
behavior of the system can be nondeterministic. A transition can also have a
timeout value tmax· Then the transition fires if it has been enabled for tmax time
units, or if the triggering condition is met before that time.

A place in a TEPN may be associated with a presentation (e.g., displaying a
picture and then some text), which takes a finite amount of time. In such a
case, we shall use the same name for a place and its presentation. Each
presentation may consist of several media objects (like a paragraph of text,
an image and an audio stream). The designer can specify the temporal
relationships between the objects using an extended time-line diagram or
using some temporal logic formulas (e.g. A ends with B). A presentation
is executed when the corresponding place changes from inactive to active;
and it is stopped when the place becomes inactive, even though the
presentation is not over. A transition can be associated with some actions

122

(like the migration of objects). The associated actions are executed when the
transition fires.

10
Rclicked

Figure I. Example TEPN

Throughout this paper, we shall use the simple example in Figure 1 to
illustrate the concepts and techniques.

The TEPN has 5 places: !nit, P, Q, R, Exit. Among them, P, Q and R are
associated with presentations (indicated by a star beside the name). Suppose
there is a media object A in P, another object B in Q, two objects C and D in
R, and the durations of A, Band Dare 5, 12, and 8, respectively. In addition,
there is a temporal constraint: C during D. This means that C can only be
active when D is. The duration of C is undetermined. Transition g1 has a
timeout value of 10.

2.1 A Discrete Time Model of TEPN Executions

The TEPN and temporal specifications provide a basis for specifying,
analyzing and testing distributed multimedia applications. For timed systems,
many analysis problems are undecidable [BD91], [GMMP91]. The reason is
that unbounded time values can make the state space infinite. But for testing
purposes, we may consider the system's behavior within a finite period of
time.

Given a specification, an execution trace is defined to be a set of timed
events, i.e., { (evi, ti) } . Here each ti is a non-negative integer denoting a time
point, and evi denotes an event in the general sense. An event is defined to be
the beginning or ending of a presentation, the activation or ending of a media

123

object, or a user interaction. For a presentation P, we use Pt and p.J.. to
denote its beginning and ending events, respectively, and similarly for media
objects. At any timet (t > 0), event Pt happens if nt(P,t-1) = 0 and nt(P,t) >
0; and event p.J.. happens ifnt(P,t-1) > 0 and nt(P,t) = 0.

In an execution trace, more than one events can happen at the same time
point, and an event can happen many times. An execution trace should be
well-defined. For instance, there should be an event p.J.. between two
consecutive Pt events.

For the TEPN in Figure 1, a possible execution trace is:

{ (Pt, 1), (Qt, 1), (At, 1), (Bt, 1), (A.J.., 6), (Q.J.., 11),
(B.J.., 11), (Rt, 11), (Dt, 11), (ct, 13), (Xclicked,15),
(P.J.., 15), (R.J.., 15), (C.J.., 15), (D.J.., 15) }.

The special places !nit and Exit are omitted for the sake of brevity. In this
trace, g0 fires at time 1, which activates presentations P and Q and their
media objects A and B. A ends at time 6 because its duration is 5, and so on.
At time 15, the user clicks on X, and g2 fires. This terminates the
presentation R (as well as its media objects C and D). Place P also becomes
inactive.

3. STRESS TESTING

Specification-based testing of real-time systems and multimedia applications
has been studied by some researchers (see for example, [MMM95], [AS96]).
These approaches are based on syntactic features of the specification, such
as the structures of formulas.

In what follows, we shall study stress testing [B84], i.e., exercising the
system under strenuous conditions. The basic idea is that the system is more
susceptible to errors or performance degradation when much resource is
being used. For a DMSS, the three most critical resources are CPU cycles,
memory and network bandwidth. Heavy communication may cause buffer
overflow and packet loss. Errors may also result from insufficient CPU
power or programming mistakes. From our experience, mismanagement of
buffers is one of the common types of errors in developing multimedia
systems. Hom and Girod also reported that when time consuming
applications are running simultaneously, buffer overflow and packet loss
may happen due to limited CPU capacity [HG97].

124

3.1 Resource Consumption

The amount of resources consumed by an active media object depends on
several factors, like the supporting software/hardware, and the required
quality of service (QoS). Based on our observations, we assume that for a
particular media type and some fixed QoS, the amount of resources
consumed is constant during the object's lifecycle, except for the following
two cases:

(1) Immediately after an object is activated, much more resources are
needed. This transient period may last for less than a second to a few
seconds.

(2) For some media types, random peaks may occur from time to time. For
example, when a singer raises her voice in a recital. Such peaks may
occur at any time instant. If they occur frequently, we consider the
maximum amount of resource usage; otherwise, we consider the
average amount.

3.2 Test Case Selection Criteria

As mentioned earlier, we adopt the discrete time model in our analysis. For
the purpose of testing, it is reasonable to restrict the time domain to be finite.
Let us denote by TT the total testing time. Like an execution trace, a test case
is also a (well-defined) set of timed events.

Given a set of execution traces, a trace will be selected as a test case if one
of the following conditions is met:

(1) its total resource usage during the period [0 .. 11] is maximum;
(2) it has the largest number of object beginning events;
(3) there is a large peak resource usage at some time point t (0 < t ~ TT).

The second condition is necessary since there is usually a significant
increase in the amount of CPU usage when a media object starts or when
some user interaction occurs. However the exact amount is unpredictable.

Generally speaking, it is not necessary or practical to produce test data that
are strictly optimal in the above sense. Neverthele;.,;s, appropriate techniques
and tools can help us find good test cases.

We shall be mainly interested in the amount of data required by the active
media objects. Usually, the more data a client needs, the more resources the

125

system consumes. Our analyses will be based on the data rates of the media
objects.

For an object with duration d, we assume that the amount of required data is
w(m,q) * d, where w is the average or maximum amount of data needed per
unit time. The parameters m and q denote the media type and the quality of
services, respectively. In the following, we simply write wA for the value of
the function in case of object A. For example, if A is an audio stream of
telephone quality, then wA is about 56 Kbps. If the data are compressed
before communication, and we are interested in maximizing the amount of
data transfer, then we should divide wA by the compression ratio. For
example, instead of 56 Kbps, we use 16 Kbps.

3.3 Maximizing Total Resource Usage

Obviously, if there are many time points, the number of possible execution
traces can be very large. A better way is to use symbolic execution traces.
Such a trace is also a set of timed events { (ev;, t;)}. But the t/s can be either
integer variables or specific integers. To avoid confusion, we shall call an
execution trace a concrete execution trace if every t; is a constant.

As mentioned earlier, a place can be active more than once during an
execution. In a given execution trace, we use bP; and eP; to denote the z'th
beginning and ending times of place P, respectively. Moreover, we define}P;
= min(eP;, 17), where IT is the total testing time. (The letter i can be omitted
if each place is active only once during the execution.) In the example in
Section 2, we have, bQ = I, eQ = II and so on. If IT= 10, thenfQ = 10.

Given a specification, we can derive a set of finite symbolic execution traces.
This is done by choosing sequences of transition firings. For each sequence,
we record its associated conditions, and then determine the values of the
variables such that some resource usage criterion is satisfied.

Let us illustrate the ideas using the previous example.

For the TEPN in Figure 1, we can see that there is only one firing sequence,
namely, g0 fires first, then g1 and then g2• We assume that the timings of the
firings are as follows:

1 = bP = bQ; 1 + x = eQ = bR; 1 + x + y = eP = eR.

where 1 ~ x ~ 10 and 1 ~ y.

126

For a media object 0 and its]th activation, let b~ and e~ denote the
scheduled beginning and ending times, respectively. Again, the subscript j
can be omitted if the object is active only once. In the present example, we
can derive the following equations and inequalities from the temporal
specification of the presentations:

eA = bA + 5, ... , be> bD, ee < eD.

Note that the object may end earlier than the scheduled time if the place
becomes inactive (due to some user events) before that time. It is also
possible that some objects are not activated at all. The actual running time of
object A, denoted by rA, can be defined as:

rA = 0, if jP ~ bA;
JP-bA, if bA <JP ~ eA;
eA-bA, if jP >eA.

The variables rB, re and rD can be defined in a similar way. Let wA (wB,
we, wD) denote the amount of data needed for object A (B, e, D) per unit
time. Our goal is to maximize (wA * rA + wB * rB + we * re + wD * rD)
under the temporal constraints. This represents maximal resource utilization
and contention.

Given the above constraints and objective function, we can find solutions
using constraint solving and optimization techniques. Suppose 1T = 15, wA
= 100, wB = 1400, we= 1800, wD = 64. The optimal solution is: x = 7, y =
7. That is, object B runs for 7 time units, then the event Rclicked happens,
and then place R is active for 7 time units. If we change the value of we to
800, then the solution becomes: x = 10, y = 4. In this case, object B runs for
10 time units when transition g1 times out. The rationale is to select the
timing of events in a way which makes communication intensive objects run
as long as possible, so as to maximize the total amount of data usage while
satisfying the timing constraints of the application.

If we adopt the second criterion in Section 3 .2, we need only change the
objective function to the number of all object beginning events (before TT).
This can be obtained by summing up the following quantities (over all
activations of each object A):

nA; = 1, if bA; <jP;; 0, otherwise.

Here Pis the presentation which contains A.

127

We can see that even though the TEPN's control structure is very simple,
several different test sequences are possible, depending on the resource
usage information and on the total testing time. For more complicated
systems, it is hard to determine the best (or even near optimal) test data
without automated tool support. We have implemented a tool for generating
the constraints. The tool NCL [Zh98] is used to obtain the solutions.

3.4 Maximizing Peak Usage

A multimedia software system can be considered to be in a critical state if
several media objects are active simultaneously and they require a large
amount of data. To find a time point at which the resource utilization is
maximized, we first analyze the object instances to see which of them can be
active at the same time. A pair of instances A; and Bj can not be active
simultaneously, if eBj ~ bA; or eA; ~ bBj. Obviously, for any pair of integers i,
j (i:;:. }), it is impossible that A; and Aj are active simultaneously.

The above information can be depicted as a graph, which we call the object
instance relation graph. Each vertex represents an active instance of some
media object. A vertex is associated with a weight, which represents the
amount of resource consumption per unit time. An edge connects two
vertices if the two object instances can be active at the same time. What
needs to be solved is an extended maximal clique problem. (Some additional
constraints have to be satisfied.) That is, find a subset of the vertices such
that every pair of vertices are connected and the sum of the weights is
maximum.

To represent the clique, we associate a set of binary variables with the
vertices. For example, xA; = 1 means that A; is included in the clique. We
study the satisfiability of the following constraints:

(1) (xA; = 0) or (xBj = 0), if there is no edge between vertex A; and Bj;
(2) (xA; = 1) ~ (bA; < t < eA;);
(3) (xA; = 1) ~ (t < eP;);
(4) t<IT;
(5) the constraints characterizing the symbolic execution trace.

Here P is the presentation which contains A. The objective function to be
maximized is the summation of (xA; * wA) over all object instances A;. If the
problem has a solution, we obtain a concrete execution trace which uses
maximal amount of data at time point t.

128

Let us consider again the TEPN in Figure 1. Suppose that presentation P
consists of 3 objects A, E and F, with the constraints A begins_ with F,
and E ends_ with F. The durations of the objects and resource
consumption weights are given in Table 1. We note that the objects A and E
can not be active simultaneously, neither can the presentations Q and R. So
we get the object instance relation graph as shown in Figure 2.

c

Table 1. Durations and Weights of Objects in the Example

duration
weight

A B C D E F
5 12 6 8 6 13

100 1400 1800 64 150 56

A

D

Figure 2. Object Instance Relation Graph of the Example

This optimization problem has a solution, which can be found by NCL in
less than 1 second on a SP ARCstation 5. The maximal clique consists of the
media objects C, D, E and F. Their beginning/ending times are: bC = 3, eC =

9, bD = 2, eD = 10, bE= 8, eE = 14, bF= 1, eF = 14. At time pointt = 8, the
total amount of data usage is maximized at 2070.

Summary Given a specification and resource consumption information
about each media object, we can prepare test data for stress testing in one of
the following ways:

(1) Arbitrarily generate many concrete execution traces. Then pick from
them the best ones using the test selection criteria given in Section 3.2.

(2) Generate some symbolic execution traces, and then use constraint
satisfaction and optimization techniques to determine concrete traces
with the largest amount of data usage.

The total testing time TT can be varied as needed.

129

4. RELATED WORK

Specification and Testing of DMSS

Several authors have extended Petri nets to specify distributed multimedia
applications. Most notably, Little and Ghafoor proposed Object Composition
Petri Nets (OCPN) [LG90]. It was extended later into XOCPN [WQG94].
Senac et a/. proposed the so-called Hierarchical Time Stream Petri Nets
{HTSPN) [SSW95].

Considerable amount ofwork exists on conformance testing of protocols and
distributed systems (see for example [S93]). Most of the test data generation
methods are based on graph models of protocols. Testing of multimedia
systems is more complicated because the exact timings of events are very
important.

Some researchers have attempted to adapt protocol testing methods to
multimedia system testing. Ates and Sarikaya [AS96] discussed an approach
based on timed automata. A finite state machine (FSM) is derived from the
automata, and then timed traces are obtained from the FSM. Each timed
trace serves as a test case, which is a sequence of transitions from the initial
state to some final state. A complex system may have a large number of
timed traces. In our approach, only the most significant test cases are
considered. These test cases drive the system to states where potential bugs
can be revealed with high probability. It is possible to add some criteria to
the approach of [AS96], for example, each transition is visited only once.
But this can lead to inaccuracy. Sometimes a transition fires more than once
before the system enters a critical state.

Modeling and Analysis of Real-time Systems

Real-time systems have been extensively studied. Various formalisms have
been proposed to model and analyze them. They include, among others, time
Petri nets [BD91], timed automata [AD94], 1/0 automata[LSGL95], timed
CSP [ABSS96], Duration Calculus [Zcc93], Modechart [JM94].

Roughly speaking, there are three classes of techniques for studying the
behaviors of real-time systems based on formal specifications:

(1) Simulation. The specification is executed. Typical executions may
reveal certain properties of the system. But in most cases, there are
many possible executions.

130

(2) Searching. This includes reachability analysis of timed Petri nets
[BD91], [GMP94] and temporal logic model checking [LPW96],
[YMW97]. Search-based tools are attractive in that they are automatic.
But usually they have difficulty with infinite or very large state spaces.
While model checking procedures are quite effective for untimed
systems, verifying properties of timed systems is much more difficult
in general.

(3) Theorem proving. The user develops a theory about the system based
on some logic, like first-order logic or temporal logic. System
properties are expressed as formulas and their truth is to be proved in
the logic. Constructing nontrivial proofs tends to be arduous, although
some steps can be mechanized as done in provers like the Larch Prover
[LSGL95] and PVS [SS94], [AH96].

While reachability analysis and symbolic execution are well-known
techniques for time Petri nets, they have not been used with resource
consumption information.

The Petri net is a natural formalism for describing asynchronous systems. In
contrast, many model checking tools are intended for synchronous systems.
For example, the UPPAAL tool [LPW96] is designed to verify networks of
timed automata. In such a model, the basic communication mechanism is
through send/receive primitives which synchronize two automata. Yang et a/.
[YMW97] introduce a logic called SREL for specifying synchronous
systems, and described an extension of McMillan's SMV tool to verify
Modecharts. These approaches still have some limitations. It is hard to
specify a requirement such as the following: The meeting begins when all
the 3 participants are ready.

Test Data Generation and Constraint Solving

In general, automatic test data generation is an undecidable problem.
However, in certain cases, constraint solving methods can be used
effectively in protocol testing [CA90], [CZ93]. A test case derivation
algorithm was given in [HB94] for a subset of LOTOS called P-LOTOS.
The only data types in this subset are integers and Booleans, and the
operations on integers are restricted to addition, subtraction and comparison.
None of them considered timing or resource consumption.

Mandrioli eta/. [MMM95] described how to generate functional test cases
for real time systems given their temporal logic specifications. The test
generation criteria are based on the structure of formulas in the specification.
They used an interactive tool. In contrast, constraint solving tools are
automatic and highly efficient. In this paper, we are mainly interested in the

131

resources consumed by the media objects. We believe that for distributed
multimedia systems, it is more effective to focus on those system states
where large amounts of resources are being used.

Resource Modeling and Load Testing

The traditional method of representing resource consumption in Petri nets is
by way of the number oftokens [M89], [YSS94]. When a transition fires, n
(n 2::: 1) tokens may be deleted from or added to the related places, where the
value of n depends on how much resource is needed. This is not adequate for
multimedia applications since a presentation (which is associated with a
place in the net) consists of several types of media objects, and different
objects may consume different amounts of resources.

A vritzer and Weyuker [A W94] discussed load testing of software based on
some operational profile. They used Markov chains, and their purpose is to
examine the most probable system states more thoroughly. Yang and
Pollock [YP96] described an algorithm for analyzing sequential programs to
identify load sensitive parts. But no method was given to find input data to
exercise these parts.

5. CONCLUDING REMARKS

In this paper, stress testing of distributed multimedia systems is studied. A
multimedia application is specified by a temporal event Petri net (TEPN)
together with some time-line diagrams (or the corresponding temporal
formulas). We define execution traces of a specification assuming a discrete
time model. From such a trace one can derive a test case of the application.
When the media objects' resource consumption data are available, we may
use some criteria to select the test cases which drive the application to
stressful states.

The focus of the paper is on automatic generation of test cases for stress
testing. Essentially our approach is to generate some symbolic execution
traces first, and then use constraint satisfaction and optimization techniques
to determine the timings of events. We give two methods for generating the
constraints, which correspond to different test case selection criteria. One
appealing feature of our approach is that the method is easy to automate.
Another is that the generated test cases are executable. Preliminary
experimental results are quite encouraging. Using a state-of-the-art
constraint solver, we are able to determine the timings of user interactions

132

such that the test criteria are satisfied. On the examples we tried, the test case
generation times are reasonable.

Of course, some assumptions are needed in our work, and our model is only
an approximation of the real world. For instance, in the model, it is assumed
that the firing of every transition takes the same amount of time (i.e., 1 time
unit). In reality the transition times may be different from each other,
depending on such factors as the distance between a client and a server.
Moreover, we assume that the amount of data transfer is constant for a given
media object. In practice the bit rates of audio and video objects may vary
for different compression techniques. Nevertheless, the results of our
analysis can serve as a guideline for test engineers. In most cases, audio and
video streams consume much more resources than other media objects.

ACKNOWLEDGEMENTS

This work is partially supported by RGC grant HKUST6088/97E. The paper
was written during the first author's visit to the Hong Kong University of
Science and Technology, sponsored by the Croucher Foundation. He is also
supported in part by the NSF of China.

REFERENCES

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science 126(2): 183-235, 1994.

[AH96] M. Archer and C. Heitmeyer. Mechanical verification of timed automata: a
case study. Proc. IEEE Real-time Technology and Applications Symp., 192-203,
1996.

[ABSS96] A.F. Ates et a!. Using timed CSP for specification, verification and
simulation of multimedia synchronization. IEEE J on Selected Areas in Comm.
14(1): 126-137, 1996.

[AS96] A.F. Ates and B. Sarikaya. Test sequence generation and timed testing.
Computer Networks and ISDN Systems 29(1): 107-131, 1996.

[A W94] A. Avritzer and E.J. Weyuker. Generating test suites for software load
testing. Proc. Int'l Symp. on Software Testing and Analysis (JSSTA), 44-57, 1994.

[B84] B. Beizer. Software System Testing and Quality Assurance, Van Nostrand
Reinhold, New York, 1984.

[BD91] B. Berthomieu and M. Diaz. Modeling and verification of time dependent
systems using Time Petri Nets. IEEE Trans. on Softw. Eng. 17(3): 259-273, 1991.

[CZ93] S.T. Chanson and J. Zhu. A unified approach to protocol test sequence
generation. Proc. IEEE INFOCOM'93, 106-114, 1993.

[CA90] W. Chun and P.D. Amer. Test case generation for protocols specified in
Estelle. Formal Description Techniques III (FORTE'90), 191-206.

133

[GMMP91] C. Ghezzi et a/. A unified high-level Petri net formalism for time­
critical systems. IEEE Trans. on Softw. Eng. 17(2): 160-172, 1991.

[GMP94] C. Ghezzi, S. Morasca and M. Pezze. Validating timing requirements for
time basic net specifications. J of Systems and Software 27(2): 97-117, 1994.

[HB94] T. Higashino and G.v. Bochmann. Automatic analysis and test case
derivation for a restricted class of LOTOS expressions with data parameters.
IEEE Trans. on Softw. Eng. 20(1): 29-42, 1994.

[HG97] U. Hom and B. Girod. Scalable video transmission for the Internet.
Computer Networks and ISDN Systems 29, 1833-1842, 1997.

[JM94] F. Jahanian and A.K. Mok. Modechart: a specification language for real­
time systems. IEEE Trans. on Software Engineering, 20(12): 933-947, 1994.

[LPW96] K.G. Larsen, P. Pettersson and Wang Yi. Diagnostic model-checking for
real-time systems. Hybrid Systems III, LNCS Vol. 1066, Springer, Berlin, 575-
586, 1996.

[LG90] T.D.C. Little and A. Ghafoor. Synchronization and storage models for
multimedia objects. IEEE Jon Selected Areas in Comm. 8(3): 413-427, 1990.

[LSGL95] V. Luchangco eta/. Verifying timing properties of concurrent algorithms.
Formal Description Techniques VII (FORTE'94), 259-273.

[MMM95] D. Mandrioli eta/. Generating test cases for real-time systems from logic
specifications. ACM Trans. on Computer Systems, 13(4): 365-398, 1995.

[MCC98] V.B. Misic, S.T. Chanson and S.-C. Cheung. Towards a framework for
testing distributed multimedia software systems. Proc. Int'l Symp. on Software
Engineering for Parallel and Distributed Systems, Kyoto, Japan, 72-81, 1998.

[M89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4): 541-580, 1989.

[S93] B. Sarikaya. Principles of Protocol Engineering and Conformance Testing.
Ellis Horwood, New York, NY, USA, 1993.

[SSW95] P. Senac, P. de Saqui-Sannes and R. Willrich. Hierarchical time stream
Petri net: a model for hypermedia systems. Proc. 16th Int'l Conf on Application
and Theory of Petri Nets, 451-470, 1995.

[SS94] J. Skakkebaek and N. Shankar. Towards a duration calculus proof assistant
in PVS. Proc. Int'l Symp. on Formal Tech. in Real-Time and Fault-Tolerant Syst.,
660-679, 1994.

[W97] K.-K. Wong. Distributed Multimedia Authoring Using Application Structures.
Master Thesis, Hong Kong Univ. of Sci. and Tech. 1997.

[WQG94] M. Woo, N.U. Qazi and A. Ghafoor. A synchronization framework for
commu-nication of pre-orchestrated multimedia information. IEEE Network 8(1):
52-61' 1994.

[YP96] C.-S.D. Yang and L.L. Pollock. Towards a structural load testing tool. Proc.
Int'l Symp. on Software Testing and Analysis (ISSTA), 201-208, 1996.

[YMW97] J. Yang, A.K. Mok and F. Wang. Symbolic model checking for event­
driven real-time systems. ACM Trans. on Prog. Lang. and Syst. 19(2): 386-412,
1997.

[YSS94] J.C. Yee eta/. Resource synchronization specification and modeling based
on timed stream Petri net. Proc. of the IASTEDIISMM Int'l Conf on Distributed
Multimedia Systems and Applications, 171-175, 1994.

[Zcc93] Zhou Chaochen. Duration calculi: an overview. Proc. Formal Methods in
Programming and Their Applications, 256-266, 1993.

[Zh98] J. Zhou. The user manual ofNCL 1.0. Loria and Inria-Lorraine, France, 1998.

