
Scalable and Object Oriented SDL State(chart)s

Birger Meller-Pedersen', and Dagbjem Nogva2

IJ Nor ARC- Applied Research Center, Ericsson Norway: 2) Tel ox, Norway

Key words: Statecharts, SDL, UML, state type, state type inheritance, virtual state

Abstract:

The notion of composite state in SDL is introduced. The features include entry/exit points to
enforce encapsulation, type/subtypes of any composite state, virtual states in order to control
the redefinition of states when defining state subtypes, and parameterized state types in order
to allow maximum reuse of the same state type in different contexts. This notion of composite
states will be part of SDL-2000. The same mechanism can, however, as well be introduced in
other languages with a state machine concept.

1. INTRODUCTION

For a family of applications it is important to describe objects by means
of state machines. Specification languages support this by the notions of
either simple finite state machines, extended (with variables) finite state
machines, or variations of Harel's Statecharts [9]).

The most important reason for using state machines is that it ensures that
all possible states of the object and its reaction to all possible events are
covered. State machines may, however, become large and complex, and their
specification correspondingly large and complex. The notion of hierarchical
states (sometimes also called states with nested states or composite states)
introduced by Harel's Statecharts is a recognized solution to this problem,
and it has been adopted by many notations and specification languages.

SOL as of 1996 [6] supports extended finite state machines with one
level of states. In addition, procedures may be described by state machines,
but the states of a procedure are entered when the calling state machine is in
a transition.

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems
© Springer Science+Business Media Dordrecht 1999

60

The emerging proposal for SDL-2000 includes support for composite
states. This paper presents the most important aspects of these composite
states:

Types and subtypes of states for states in general, and not only for the
outermost state as in Statecharts, combined with the introduction of state
diagrams with state connection points facilitating encapsulation and
scalability of state definitions.
The distinction between virtual state types (of a supertype state) that can
be redefined in a subtype state, and states that can not be redefined (in the
spirit of SDL's finalized types/transitions and Java's final methods).
Parameterized state types in line with SDL types with context parameters
and UML parameterized object classes, enabling the definition of
composite state types that can be used in different state machines within
the same system and even in different systems.

2. STATE MACHINES, COMPOSITE STATES

Figure 1 is a partial state machine for an A TM as supported by UML
statecharts [8].

Out of
Service

ReadAmount

abort
---1----~ Release

Card

rejectTransaction

VerifyTransaction

Figure 1. Statechart (UML)

The example
covers the part of
anATMthat
reads the desired
amount: the user
either selects the
amount (the
choices given by
theATM), or
enters the
amount. One of
the benefits of
Statecharts is
illustrated by the
outOfService
event: this
applies to all
states being part
of the composite
state
ReadAmount.

Figure 1 provides the overview of which states are involved and the
transitions between these. As specified here, the transitions are denoted by

61

the events that trigger the transitions. In general it is possible to specify more
than this. Actions being part of transitions are specified textually, in separate
diagrams or editor windows, and just associated with the transition arcs.
The same partial state machine is specified in SDL-2000 in Figure 2 and
Figure 3.

process type A 1M

aborted

Figure 2. SOL State Machine with Composite State

The most apparent difference between statecharts and SDL composite
states is that the content of the composite state ReadAmount is described in a
separate diagram in SDL. Figure 2 is a partial process type diagram with a
state machine specification that references a state diagram.

62

state ReadAmount

reenter

Figure 3. Composite State Diagram

A composite state is entered and exited by means of connection points
defmed as part of the interface of the composite state. Within the state
diagram for the composite state, an entry connection point is represented by
a special start symbol with the name of the entry points (reenter in Figure 3),
An exit connection point is represented by an exit symbol with the name of
the point associated (aborted in Figure 3).

The unlabeled start and exit have the following correspondence to
Statecharts: The initial state of Statecharts corresponds to the state following
the unlabeled start symbol, and the final state corresponds to the exit symbol
without any exit point associated.

Input transitions associated with a composite state apply to all substates.
As an example, in process type ATM in Figure 2, the input transition with

63

signal outOfService applies to all substates of the composite state
ReadAmount. A transition in SOL is the input of a signal and the following
sequence of actions.

As a summary of the SOL composite as introduced above, they differ
from Statecharts in the following respects:
- SOL composite states scale up to handle real, large systems by having

composite states described in separate state diagrams.
Entering and exiting a composite state is not specified by crossing state
boundaries as in Statecharts, but by means of connections to state
connection points, thereby providing encapsulation. The internal
specification of a composite state can be changed without effecting the
enclosing state machine.
While Harel statecharts appear state-oriented, SOL state machines are
specified in a transition-oriented way. While state orientation provides
overview, some developers prefer the transition orientation when it
comes to the specification of the transitions. It is usually also regarded as
a benefit to see both transitions caused by incoming signals and outputs
of signals.

3. ENTERING AND EXITING COMPOSITE STATES

Entering a composite state at a specific point is specified by the name of
the composite state followed by via <entry point name>. In Figure 2, if the
ATM rejects the transaction, it reenters the composite state ReadAmount via
the reenter connection point, and in the state diagram for ReadAmount it is
specified where the state is reentered (by a start symbol with the label reenter.

Entering a composite state in the "initial state" is a special case of this;
specified by the name of the composite state, without any via <entry point
name>. The composite state is then entered at the unlabelled start symbol. In
Figure 2 this happens when the A TM has got the signal acceptCard (in state
VerifyCard). The composite state is entered at the unlabelled start symbol in
the left uppermost part of state ReadAmount.

The composite state may exit in two different ways:
- it has got the amount signal in state SelectAmount or the ok signal in

state Enter Amount, and simply terminates, in that case the process type
ATM continues at the unlabelled connection line after ReadAmount, or

- it aborts; in that case the A TM continues at the connection line labeled
abort following ReadAmount.
While a Statecharts transition crossing a state boundary is one transition,

specified as part of the whole statechart, a corresponding SOL-2000

64

transition is a combination of a inner sub-transition defined in the composite
state and an outer sub-transition defined in the enclosing state diagram. In
Figure 4 it is illustrated what that would mean in UML Statecharts. An SDL-
2000 transition being just one sequence of actions is just a special case,
where the outer or inner transition is left empty.

ReadAmount

SelectAmount

touter
~lReleaseCard
... ,

Figure 4. Transitions as combination of outer and inner transitions

Entry/exit actions are specified by means of textual procedures defined
locally in the state diagram. The procedures, named entry and exit, are called
implicitly when a state is entered and exited, respectively. The names entry
and exit are predefined names.

The entry/exit actions may not take parameters, but may access variables
defined in the state diagram and in enclosing entities according to the usual
scope rules.

Note that there is no notational difference between a composite state and
a non-composite. One reason for this is that states with entry/exit actions
(but not necessarily any contained states) are described by separate state
diagrams. As described below, a state may also have just internal transitions.
Finally, the decision of whether a state is a composite state or not, may
change during development of the complete state machine.

4. SPECIAL FEATURES

The SDL composite state example also illustrates a special SDL feature:
the asterisk state with input of the signal abort implies that this transition
applies to all states. In general, a transition can be specified to be applicable
to
- all states,
- all states, except a specified list of states,
- a list of states.

This feature provides an alternative way of grouping states than provided
by composite states. An input transition specified for a composite state

65

applies to all substates, while an input transition specified for a list of states
applies to a set of states that are not necessarily substates. SDL-2000 with
composite states will provide both alternatives and their combination.

5. INTERNAL TRANSITIONS

An internal transition is a transition that remains in a state. An internal
transition is not equivalent to a self-transition from a state back to the same
state. A self-transition causes the exit and entry actions on the state to be
executed, whereas an internal transition does not.

Internal transitions in SDL-2000 are part of composite states, even if they
do not have substates. In a state with no substates, the asterisk state is merely
a syntactical way of referring to the composite state itself, see Figure 5.

state ReadPIN The nextstate with the
"-"(a dash nextstate)
implies in general that
the nextstate is the state
in which the signal was
consumed, in this case
the state readPIN itself

Figure 5. Internal transition in SDL

6. STATE OVERVIEW DIAGRAMS

A composite state can as a special case have transitions only (and not just
internal transitions). This can be used to obtain state overview diagrams
very similar to Statecharts. The state diagram of A TM in Figure 6 is an
example of a state overview diagram, where only the connections between
the states are specified. The transitions corresponding to these connections
are specified in separate state diagrams. These are sketched in Figure 7.

66

process type ATM

notAccepted

This state overview diagram
relies on the fact that the
composite states VerizyCard
and ReadAmonut define the
transitions. In this diagram it is
only specified that there may be
two transitions from
VerifyCard, and two transitions
from ReadAmount. The details
about these transitions, e.g.
which signals that trigger them
and what actions are performed
as part of the transitions, are
found in the separate state
diagrams.

Figure 6. State overview diagram

state ReadAmount state VerifyCard

I I I I
I I I I
I I I I
I I I I
I I notAccepted

I I
I I I I

® ® (-- ® ®
aborted notAccepted

Figure 7. Composite State Diagrams covering all Transitions from the State Overview
Diagram

7. STATE TYPES AND SPECIALISATION

If a composite state shall be used in different situations, a composite state
type is defined, for short called a state type. A state with the properties of a
state type is called a type-based state. The syntax is simple. The type name is
specified after the name of the state, separated by a colon: "<state
name>:<state type name>". This is by the way the standard syntax for type­
based instances in SDL.

State types are useful in cases where the properties of composite state are
applicable in many systems in the same domain, or even in different parts of

67

the same system. Several larger state machines may use composite state
types describing the states and transitions needed for e.g. starting/stopping,
providing status or handling general management signals.

A state type may be defined as a specialisation of another (super) state
type, inheriting states and transitions of the supertype and redefining virtual
states and transitions. This is the same mechanism as already present in SDL.
States of the supertype cannot be deleted, but virtual states can be redefined.
States and transitions can be added in a subtype.

Entry/exit procedures may also be defined as virtual procedures that can
be redefined.

Figure 8 shows an example of a state type that inherits a general type and
adds abort functionality. Adding this functionality includes adding a state
exit point (aborted). The asterisk state in the subtype specifies that the abort
input applies to all states, including the inherited states (in this case
SelectAmount).

state type
SelectAmount

aborted

state type AbortableSelectAmount
inherits SelectAmount adding

Figure 8. State Type Inheritance

In SDL-2000, any composite state type at any level can be defined as a
subtype of another state type. For Statecharts associated with object
modeling notations, the outermost state is associated with a class, and
inheritance for states follows the class inheritance. The implication of this is
that inheritance only applies to the outermost state.

68

8. VIRTUAL STATES

A state type may be defmed to be a virtual type in order to allow
redefinition, when the enclosing type is subtyped. Figure 9 and Figure 10
provide an example of the redefinition of a virtual state type when the
enclosing process type is subtyped. The example also shows how an exit
transition in the enclosing process type is defined as virtual and redefined in
the subtype.

process type SimpleATM virtual state type ReadAmount

Figure 9. Virtual states/redefinition of states (1)

The state type ReadAmount is defined as a virtual state type and used for
defining a state, by the expression

"A TMReadAmount: ReadAmount"
The definition of the contents of the virtual state type will in all

redefinitions be inherited, that is only virtual properties of the virtual state
type can be redefined.

In Figure 10 the redefined state type inherits the corresponding state type
definition in the super process type, and extends it with the state
EnterAmount and with three transitions. The state SelectAmount in the
redefinition is the inherited state with the same name defined in the virtual
state type.

The virtual exit transition (aborted) is a transition defined as part of
Simp leA TM and not as part of ReadAmount. It is therefore redefined as part
of the enclosing process subtype ATM.

process type ATM
inherits SimpleATM

AlMReadAmount

redefined state type ReadAmount

Figure 10. Virtual States/redefinition of States (2)

69

A virtual state can not just be redefined to any state with the same name.
A virtual type has a constraint, and redefinitions have to be extensions (by
inheritance) of the constraint. A constraint is either another, more general
state type, or it is the virtual type itself. In the last case, the redefinition is
simply an extension of the virtual state.

9. PARAMETERIZED STATE TYPES

In order for state types to be defined in packages and used in different
systems with different local definitions, state types can have type parameters,
in the same way as provided for classes (template parameters) in many other
languages.

Virtual types in SDL (the correspondence would be virtual nested classes
in UML and virtual inner classes in Java) provides one way of expressing
that a type has type parameters, in that a virtual type can be redefined to any
(visible) type that satisfies the constraint on the virtual type. For a further
description of this in SDL, see [5]. For its application to Java, [4] is
recommended. Virtual state types have been described above.

SDL has, in addition to virtual types, the notion of context parameters in
general for type definitions, and this mechanism is in SDL-2000 also applied

70

to state types. Context parameters are a little more general than just type
parameters: a context parameter can be of any kind of entity that may be
defined in the context of the type. Possible context parameters for state types
are data types, signals, procedures, variables and other state types. Figure 11
gives an example, where the parameter is a variable.

process type ATM

del amount Integer

state type ReadAmount
<del seiAmount Integer>

Figure 11. Parameterised State Type

The state type ReadAmount is defined to have an Integer typed variable
as parameter. Binding this variable to a local variable in the process type
ATM implies that all accesses to selAmount in the state type will become
accesses to the process local variable amount.

Parameterised types are necessary in order to facilitate reuse in real
system development, and together with virtual types it allows the definition
of frameworks by means of abstract (super) types that are specialized to
actual applications. In [5] it is demonstrated how virtual types can be used to
make frameworks. It covers only the virtuality of types like system-, block-,
and process types, and virtual procedures. With virtual state types it is
possible to extend the notion of frameworks to cover also the state machine
description of process types.

10. FORMAL DEFINITION

In the current stage of standardization, composite states are defined by
transformation to basic SDL, which in turn has a formal definition. This

71

transformation is part of the Z.1 00 recommendation. This scheme may
change with the new approach to the formal definition of SDL, using
Abstract State Machines (ASMs), [11].

11. RELATED WORK

UML state machines have a notion of submachinestate, which resembles
the SDL-2000 notion of either a composite state that references a separate
state diagram, or a type-based composite state. According to the UML
Semantics, this mechanism should "facilitate reuse and modularity", but
submachinestate is not a Classifier and not a GeneralizableElement, so
inheritance is not supported. It is also said in the UML Semantics that it is a
shorthand "that implies a macro-like expansion". Graphical macros have
been removed from SDL-2000, and state diagrams in SDL-2000 are not
macros, but real scope units. This implies that a state diagram forms its local
name space, i.e. names of entities defined in enclosing scope units are visible
in the same way as for other kinds of scope units in SDL. Entities of the
composite state scope unit have to be specified as part of its interface in
order to be visible from outside.

A stubstate in UML state machines corresponds to a nextstate via an
entry point in SDL-2000. The difference is that a stubstate can reach any
substate to any depth, while a nextstate via an entry point can only reach a
first level starting point within the composite state. In addition, this starting
point has to be defined as an entry point as part of the interface of the
composite state. The SDL-2000 notion of nextstate as part of a composite
state is therefore less flexible than stubstate, but it supports encapsulation
and thereby independent development. The enclosing state machine only has
to know the entry/exit points of a composite state, and the content of a
composite state can be changed without changing the use of it in the
enclosing state machine.

As mentioned above, the notion of type/subtype of composite states is in
UML state machines only supported for the topmost state associated with a
class. But even for this topmost state, the UML Semantics does not say
anything definite about inheritance of states and transitions. A note describes
some alternatives that may be considered.

SDL-2000 has first of all the notion of type/subtype for composite state at
any level, not only the topmost. Secondly, it is well defined how inheritance
works. Virtual states and transitions as parts of a state type (or directly of a
process type or procedure) can be redefined in state subtypes (or process
subtypes or subprocedures). If they are finalized (like Java's final), they can

72

not be redefined in further subtypes. States and transitions can also be added
to the states and transition inherited from the supertype.

Even though UML does not define inheritance for state machines,
various methods for using UML recommend approaches that are similar to
the one described here. In [10] it is recommended to follow a.o. these rules
when inheriting a state machine type (in [10] called a "state model"):
- New states and transitions may be added
- States and transitions defined by the parent cannot be deleted

Action and activity lists may be changed
- Actions and activities may be specialised.

Other similar notations have an opposite view on this. In [3] it is argued
that strict inheritance (as the above approach is called in [3]) does not
guarantee anything, so in ROOM it is possible to delete states and transition.
It is true that strict inheritance is a kind of syntactic restriction on inheritance
(that cannot guarantee anything in terms of the actual application), but it is
still better than complete freedom in deletion of properties.

No other approaches to inheritance of state machines have the notion of
constraints on redefinition of inherited, virtual states. The "strict inheritance"
in SDL-2000 is extended with the notion of a virtual state type constraint (in
terms of a more general state type or the virtual state type itself). A virtual
state type with constraint can only be redefined to a state type that is a
subtype of the constraint This assures that all redefinitions are extensions of
this constraint. If no constraint is specified, the virtual state is itself the
constraint; the implication is that redefinitions are extensions of the virtual
state. The last case is covered by the rules in [10]. For SDL-2000 it is also
covered by the language, and thereby checked by tool.

The notion of constraints on virtual state types is not a mechanism special
for SDL. It first appeared in [2], and recent proposals for adding type
parameters to Java ([4] being one of these) also provide constraints on type
parameters. This is needed in order for Java to be a strongly typed language.
The parameterised class can use the type parameters according to the
constraint. The same is the case for virtual states in SDL-2000: the enclosing
state machine can use the constraint of a virtual state, e.g. entry/exit
connection points.

12. CONCLUSION

It has been demonstrated that it is possible to obtain the best of two
"worlds": the transition-orientation of SDL state machines and the state­
orientation of Statecharts. The transition-orientation has focus on the where
the functionality is specified and therefore provides designers with the right

73

mechanism during detailed design. The state-orientation is superior for
providing an overview of large and complex state machines. The notion of
composite state of SDL-2000 provides this combination, but it does more
than this. It scales up and handles large state machines by state references
and by separate state diagrams. It supports encapsulation by defining
interfaces of composite states, instead of allowing any substate of a
composite state to be entered directly. Finally it has been demonstrated that
it is possible to have real object oriented composite states. Any composite
state can be subject to the type/subtype mechanism; state types can inherit
states and transitions, and redefine virtual states; state types can be
generalised by type parameters in order to be used in different contexts.

ACKNOWLEDGEMENTS

Although the authors are responsible for the idea behind composite states
in SDL, for the first versions of their definition, and of course for the
contents of this paper, the notion of composite states is the result of the joint
effort ofthe working group ITU-T Study Group 10 Question 6.

REFERENCES

[1] D. Harel & E Gery: Executable Object Models with Statecharts. IEEE Computer, 1997.
[2] 0. Lehrmann Madsen & B. M01ler-Pedersen: Virtual Classes- a Powerful Mechanism in

Object Oriented Programming. OOPSLA'89, Sigplan Notices, Vol24 Number 10, 1989.
[3] B. Selic: An efficient Object-Oriented Variation of the Statecharts Formalism for

Distributed Real-Time Systems. bttp-!lwww objectjme com/otl/technjcalfefficjent html.
[4) K. Thorup: Genericity in Java with Virtual Types. European Conference on Object­

Oriented Programming, LNCS 1241 Springer-Verlag, 1997.
[5] Brrek & B. M01ler-Pedersen: Frameworks by means of virtual types. FORTE XIIPSTV

XVIII'98, Paris November 1998.
[6] ITU Z.IOO Specification and Description Language SDL, 1996.
[7] A. Olsen et al: Systems Engineering Using SDL-92. North-Holland 1994.
[8] OMG Unified Modeling Language Specification (draft, Version 1.3, 1999).
[9] D. Hare!: Statecharts: a visual formalism or complex systems. Science Computer Program

Vol. 8, 1987.
[1 0] B. P. Douglass: Real-Time UML- Developing Efficient Objects for Embedded Systems.

Addison-Wesley 1998.
[11] R. Gotzheim, B. Geppert, F. Rossler, and P. Schaible: Towards a new formal SDL

semantics. In Proc. Of the 1'1 Workshop of the SDL Forum Society and SDL and MSC,
Berlin June 98.

