
Protocol Synthesis for Real-Time Applications

AHMED KHOUMS!
Department GEGI, University of Sherbrooke, Sherbrooke, Canada

GREGOR V. BOCHMANN
School of ITO, University of Ottawa, Ottawa, Canada

RACHIDA DSSOULI
Department IRO, University of Montreal, Montreal, Canada

Key words: Real-Time Protocol, Service, Synthesis, Assembly System, X.25 Protocol.

Abstract : This paper deals with deriving protocol specifications which provide a given service
satisfying timing requirements. In previous work, we have developed an
extension of a method proposed by Saleh and Probert, by considering timing
requirements in a more general case than in other existing studies. In the present
paper, we improve our method by several modifications and additions. First, the
number of messages exchanged between the protocol entities is minimized.
Second, a less restrictive strategy for choosing between several service
primitives is proposed. Third, we consider applications where the choice
between several primitives of a single site can be made by the user, and not only
by the system. Fourth, conditions of existence of solutions are weaker. Fifth, the
timing constraints of the synthesized protocols are weaker. Finally, two simple
examples of applications are described.

1. INTRODUCTION
Several methods for deriving a protocol from a service have been

developed by various researchers [3,5-7,10,11]. These methods are not
applicable for real-time applications, for which the correct ordering of
service primitives alone does not always ensure the success of a task. In
addition, certain delays must be respected between occurrences of services
primitives. In [6] transit delays in the medium are supposed negligible, while
in [7] they are bounded by a maximum value. In the present paper, our aim
is to describe an approach for deriving protocols which guarantee both : (a) a
correct ordering of service primitives; and (b) the satisfaction of given
timing requirements between the executions of service primitives, in a more
general case than in [6,7].

A protocol derivation approach presented in [10], which guarantees only
(a), has been extended in [8] to the real-time case, i.e., for ensuring also (b).
The timing requirements considered in [8] allow to specify certain
constraints on the delays between consecutive service primitives. In the
present paper, we consider the same problem but we provide a better

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems
© Springer Science+Business Media Dordrecht 1999

418

solution. In fact, compared to [8] : (a) the number of messages exchanged
between protocol entities for providing a desired service has been
minimized; (b) the strategy for choosing between several possible service
primitives is distributed among several sites, instead of being centralized in
a single site; (c) we consider applications where the choice between several
primitives of a single site can be made by the user, and not only by the
system; (d) conditions of existence of solutions are weaker; (e) the temporal
constraints to be respected by the protocol entities are weaker. We have also
presented two concrete examples of application.

The remaining of this paper is organized as follows. In Sect. 2, we
introduce the problem of protocol derivation and the principle used for
deriving protocols. Sect. 3 deals with non-real-time systems. First, we show
how services and protocols are specified, and then we introduce the method
for deriving protocols. Sect. 4 to 7 deal with real-time systems. In Sect. 4,
we describe how services and protocols are specified. In Sect. 5, we explain
the approach used for calculating temporal requirements for protocol entities
from temporal requirements of a service to be provided. We also present
some rules for deriving real-time protocols in a systematic way. In Sect. 6
and 7, two examples illustrate our method. Finally, we conclude in Sect. 8.

2. PROTOCOL SYNTHESIS
We consider a distributed system (DS) consisting of several sites

interconnected through a reliable communication medium (simply called
medium). We assume that: (a) each pair of sites can communicate with each
other through the medium; (b) the environment can interact with the DS at
the different sites through service access points (SAP). These interactions
correspond to the executions of service primitives (simply called primitives).
We may assume that to each Sitej corresponds a protocol entity PEj.

In the user's viewpoint, the DS provides a service where only executions
of primitives are visible. We assume that the specification of the desired
service (provided to the user) defines the ordering of and the timing
requirements between the occurrences of primitives. The timing
requirements define the real-time properties of the DS.

The problem of the designer is then : How can he derive systematically
specifications of the local PEj, for i=l,2, ... , n, from the specification of the
desired service. In the case of a real-time system, the designer must also
have a temporal model of the medium, which is assumed reliable.

Figure 1. Service and protocol concepts

The approach we have selected for deriving protocols is called Synthesis,
and the systems considered are assumed sequential. The basic principle we
have used is the following: if in the specification of the service, a primitive

419

A is executed by PEa. and is followed by the execution of a primitive B by
PEb, then: (a.) after PEa executes A, it sends a message m to PEb; (~) after
PEb receives m, it executes B.

3. PROTOCOL SYNTHESIS FOR NON-REAL­
TIME APPLICATIONS

Service specification : A service desired by the user is described by a finite
state automaton (!FSJ4.), denoted SS, which specifies the sequences of
primitives the user would like to observe at the various S;;tps. Every
transition of SS (Fig. 2) is defined by [q,Ea,r], where: (1) q and rare origin
and destination states; and (2) Ea represents a primitive E executed by PEa.
Besides, every transition is identified by a number p and then denoted
Tp=[q,Ea.rl In a figure representing an !FSJ4., every transition Tp=[q,Ea,r]
may be simply represented by T p = Ea when q and r are explicitly
represented by the transition diagram.

Definition 3.1. (Incoming and outgoing transitions).
An outgoing (resp. incoming) transition of a state q is a transition which is
executable from (resp. leads to) q. D

Q_ _
6

T1=[1,A1,2) Tz=[2,1J:3,3) TJ=[3,~,2)
u~ T4=[3,B4,!] Ts=[2,BI ,4] T6=[4,C4,2)

Figure 2. Service specification

Protocol specification : A PEa is described by an !FSJ4., denoted PSa (see for
example Fig. 5), which specifies the sequences of events occurring at Sitea.
There are three types of events in each PSa.
Type P (for Primitive) : The execution of a primitive E is denoted Ea.

TypeS (for Send): The sending of a message is denoted s~(p), and means
"message containing by p is sent by PEa to entity PEi ".

Type R (for Receive): The reception of a message is denoted r~(p), and
means "message containing p and coming from PEi is received by PEa".

Let PEt, PE2, ... , PEn be specified by PSt, PS2, ... , PSn respectively. Let 'DS
be constituted by PEt, PE2, ... , PEn and by the medium, and specified by DS.

Definition 3.2. (Combined behaviour of several PEs) The combined
behaviour of PEt, ... , PEn is the behaviour of 'DS. The specification DS of
this behaviour can be computed from PS}, ... , PSn. We define this combined

behaviour by the operator Comb : DS=Comb(PS 1, PS2 , ... , PSn). D
Definition 3.3. (Projection, total and partial provision of a desired service)
Let Vs and Vi be the alphabets of the service and PSi, respectively. We also

420

use the following concepts : (i) ProjA(A) denotes the projection of an !fSYl A

into an alphabet A; as an example, Projy8(DS) specifies the service provided

to the user by VS; (ii) A = B means that the !JSY/s A and B accept the same
language; (iii) A < B means that the language accepted by A is included in
the one accepted by B. We say that the service is totally (resp. partially)
provided if Projy8(DS) = SS (resp. Projy8(DS) < SS). 0

Definition 3.4. (Semantic and syntactic correctness)
We say that the protocol is semantically correct if the desired service is
totally provided. The protocol is syntactically correct if DS is deadlock-free
and livelock-free and no unspecified reception error is possible (we assume
that the desired service SS is deadlock-free and livelock-free). 0

Our aim is therefore to propose a synthesis method which, from the
specification of a service, generates specifications of protocol entities which
are syntactically and semantically correct.

Principle for deriving PEs : From an SS specifying a desired service,
deriving a protocol consists of generating an !fSYl PSi for each Sitej, which
specifies the action sequences executed at Sitej. In order to provide the
service, the different P'Es exchange messages through a medium. The basic
principle used for deriving a protocol (see Sect. 2) has been applied in [8] as
follows. If the execution of a primitive A by PEa is followed by a choice
between primitives executed by other PEbjS, for i=l, ... ,k, (Fig. 3) then, after
the execution of A, PEa decides which transition should follow. It therefore
sends a message m to all PEbiS (i=l, ... ,k, and bi:¢:a) which contains two
parameters: p which identifies the executed transition T p; and q which
identifies the chosen transition Tq to be executed next. All PEbiS will receive
m, but only one of them will execute the primitive corresponding to the
selected transition T q·

Tp•'• ~k ~ ""
~~---=:...--___;:_:.} PEbk

Figure 3. Choice between several actions

This principle implies that the following three restrictions must be satisfied.

Restriction 1. The transitions which may occur in the initial state of SS are
all executable by a single PE. 0

Restriction 2. The choice between several primitives is made by the system
and not by the user. 0

Restriction 3. The choice between primitives executed by a given PEbi is

made by PEa. 0
Compared to [8,10], the following three improvements are made in the
subsections below:

421

(a) Restriction 2 is weakened as follows: the choice between PEbiS is made
at Sitea by the system, but the choice between several primitives of the
selected PEbi may be made at the selected site by the system (for upward
primitives) or by the user (for downward primitives).

(b) Restriction 3 is removed as follows: PEa is not necessarily required to
select the following primitive; it may decide to select only the following PE
which, in tum, selects one of its primitives.

(c) PEa sends a message only to the selected PE.

Derivation procedure : SS being the input of the problem, the derivation
procedure consists of the following two steps.

Step 1 : This step consists of completing SS by the insertion of a message
exchange between each pair of consecutive primitives which are executed in
different sites. In order to avoid any ambiguity, every message contains the
number of the transition in SS which is associated to the first of the two
primitives. The obtained specification is denoted GPS.

Figure 4. GPS obtained in Step 2 for the example represented in Fig. 2

Step 2 : From GPS, the specification PSi of each PEj is obtained by
projecting GPS into the alphabet of events which occur in Sitej. Then, the
PSi obtained are minimized and determinized.

We note that this two-step procedure is simpler than the procedures
proposed in [8,10], besides being optimal. For our example of Fig. 2, we
obtain the specifications of Figures 4 and 5, after the first and second steps,
respectively. To make the projections of GPS (Fig. 4) for obtaining PSi (i=l
to 4) (Fig. 5) more directly visible, the states of PSi are named according to
their corresponding states in GPS, where "i-j'' means all integers from ito j.

(a) PS1 (c) PS3

Figure 5. Obtained protocol specifications

Contrary to [10], the rules for deriving PEs do not depend on whether
primitives are upward or downward. In our opinion, such a distinction

422

complicates uselessly the rules of Step 1. In the remaining part of this paper,
we extend the procedure of protocol derivation to real-time systems.

4 TIMED AUTOMATA TO SPECIFY SERVICES
AND PROTOCOLS

We use a dense-time model [1,8] where the time is viewed as a state variable
that ranges over a dense domain and evolves indefinitely. The timed
automata ('TJ.f.) model we propose here uses a variable v and a clock c.

Definition 4.1. (Clock c, variable v)
c has a positive real value which : (1) is set to zero at the occurrence of
every transition; and (2) is equal to the time elapsed since the last instant it
was set to zero. v has a strictly positive natural value which can be updated
at the occurrence of any transition. D

Let A=(Q,l:,O,qo) be an :FSJ.f. where Q is a set of states, L is an alphabet, qo is

the initial state, and o~QxD<Q defines the transitions. Let us see how a 'TJ.f.
can be defined from the :FSJ.f. A.

Definition 4.2. (Timed transition, and Timed automaton)
Let I=[a;b] be an interval, where a and bare positive real numbers and~.
A timed transition is defined by [q,cr,r;C v] where : (a) [q,O',r] defines a
transition of the :FSJ.f. ~ (b) C=(IJ, I2, ... ,Im) is a m-tuple of non-empty

intervals; and (c) v is a value of variable v. A 'TJ.f. At can therefore be
constructed if we transform every transition tr=[qJ,O",q2] of A into a timed

transition Tr by associating to it an m-tuple C of intervals and a value v of v.

The semantics of a timed transition Tr=[q,cr,r;C v] of At depends on the
current state q and on the current values of v and c as follows. If u is the
current value of v then : (1) Tr is enabled (i.e., may occur) only if the current
value of c falls within the uth interval Iu of C; and (2) after the occurrence
of Tr, vis set to v and cis set to zero. Intuitively, the temporal constraint of
a transition may depend on how the current state has been reached (this
information is given by v). D

Henceforth, every timed transition is simply called transition, and
Tr=[q,cr,r;C v] may be simply represented by Tr=[cr;C v] if there is no
ambiguity about q and r. An example of a part of 'TJ.f. is given in Fig. 6. State
q has two incoming (Tq and Tr2) and two outgoing transitions (Tr3 and

Tr4), with Trl=[ql,O'l,q;Cl,vl], Tf2=[q2,0'2,q;Q,V2], Tr3=[q,cr3,rl;C3,V3],

and Tq=[q,cr4,r2;C4, 14]. With the representation of Fig. 6, we can define vl

and Vl, and C3 and C4. In fact, for a timed transition Tr=[q,O'l,r;C v], the
definition of v necessitates to know all the incoming transitions of r, and the
definition of C necessitates to know all the incoming transitions of q. For
example, vl=l, &=2, C3=(13l,I32), C4=(14~tl42), 131=[1 ;2], 132=[0;2],

423

I4t=[1;3] and I42=[2;5]. The informal specification is then the following,
with q being the current state:
- if v= I, i.e., q has been reached by transition Tq, then :
* Tr3 (resp. Tr4) may occur after a delay within the interval I3t (resp. I4t);

* If neither Tr3 nor Tr4 occurs after a delay within [1;2], then Tr4 must
occur after a delay within [2;3] (in order to avoid a deadlock).

- if v=2, i.e., q has been reached by the transition Tr2, then :
* Tr3 (resp. Tq) may occur after a delay within the interval I32 (resp. I42);

* If Tr3 does not occur after a delay within [0;2], then Tq must occur

after a delay within [2;5].

~~
~~
Figure 6. Incoming and outgoing transitions

A desired service is described by a 'T.9l denoted SST, which specifies: (a) the
required sequences of primitives; and (b) certain temporal requirements
between consecutive primitives. In any state q of SST, we can express some
temporal constraints on the primitives which are executable from state q.
These temporal constraints may depend on how q has been reached. As an
example, the !FS~ SS of Fig. 2 (Sect. 3) is transformed into a 'T.9l SST by
replacing transitions Ti of SS into the following timed transitions Trio

i=1, ... ,6, respectively Tq=[1,At,2;Cl, 1], Tr2=[2,B3,3;C2, 1],

Tr3=[3,C2,2;C3,2], Tq=[3,B4,1;C4, 1], Tr5=[2,Bt,4;CS, 1], Tr6=[4,C4,2; C6,3],

and Cl=ll, C2=(I2~oi22,I23), C3=I3, C4=I4, CS=(I5t.I52,I53), C6=I6, where II,
l2t, 122. 123, 13, 14, 15t. 152, 153, and 16 are intervals. For example, if the

current state 2 is reached by Tr3, then v is set to 2, Tr2 is enabled iff (ce 122)

and Tr5 is enabled iff (ce 152) (intervals 122 and 152 of C2 and (5 are used

because v=2). Therefore, if "I+- (Tr8,T1b)" means "the delay of Tra and

Tlb falls within the interval I" then : II +- (Tr4,Tq) 12t +- (Tq,Tr2)

122 +- (Tr3,Tr2) 123 +- (Tr6,Tr2) 13 +- (Tr2,Tr3) 14 +- (Tr2,Tr4)

15t +- (Tq,Tr5) 152 +- (Tr3,Tr5) I53 +- (Tr6,Tr5) 16 +- (Tr5,Tr6).

A PEa is described by a 'T.9l denoted PST8 , which specifies: (a) the

sequences of events which occur at Site8 ; (b) certain temporal constraints to

be satisfied between consecutive events. Similarly to the non-real-time case,
the events may be of the three types P, S and R. Examples of 'T.9ls specifying
PEs are given in Sect. 6 and 7.

We consider PEt. PE2, ... ,PEn which are specified by PSTt. PST2, ... ,

PST0 , respectively. Let tJJS be constituted by PEt. PE2, ... ,PEn and by the

medium, and specified by a 'T~DST.

Definition 4.3. (Timed sequence of events, Timed language, Acceptance)

424

A timed sequence Tis represented by (cr~ott)(cr2,tz) ... (cri,'i) ... and means that
events cr1. cr2, ... , O"j, ... occur at instants t1, tz, ... , 1i ... , respectively, where 0
< t1 < tz < ... < 1i < ... A timed language is a set (possibly infinite) of timed
sequences. Let A be a fJJ.f, and LA be the set of sequences which can be

executed by A. Then we say that A accepts the language LA. 0
Definition 4.4. (Projection, total and partial provision of a desired service
with temporal requirements) The projection of a '7.9linto a subalphabet A can
be defined similarly to the projection of an !JSJL Therefore, Projv 5(DST)
specifies the service provided to the user by 'DS, and each Projyj(DST)
specifies PEj, for i=l, ... , n. For the comparison of timed languages, we use

the symbols =T and <T, i.e., A=TB means that LA=Ls, and A<TB means that
LA cLs. Total and partial provisions of a real-time service are defined like

in Def. 3.3, but by using symbols =T and <T instead of= and<. D

5. PROTOCOL SYNTHESIS FOR REAL-TIME
APPLICATIONS

Definition 5.1. (Reliable medium) Besides not altering messages, in the real­
time case a reliable communication medium must be such that the transit
delay tm of a message sent at Sitea and received at Siteb, belongs to a finite

interval Ma,b=[J.la,b;Pa,bl which depends on Sitea and Siteb. D
The synthesis of the real-time PEs uses the same Step 1 of the non-real­

time case, where we obtain GPST from SST (the last T indicates the
presence of temporal constraints). In this step, the timed transitions are
processed like simple transitions, while C and v are kept unchanged. GPST
specifies the correct ordering of primitives, but it does not specify the
correct temporal requirements of the service.

To compute temporal constraints for the PEs, we consider every pair of

states q and r of GPST which are connected by two consecutive events s~(p)

and r~(p) (see Fig. 7). Let Tr be the single incoming transition of q (which
corresponds to a primitive executed at a Sitea) and let Tq, ... ,Tr0 be the
outgoing transitions of r (which correspond to primitives executed at the

same Siteb). After Tr, PEa sends a message to PEb (written s~(p)); when PEb

receives the message (written rb(P)), it executes one of then Tfk. The

sequencing of events between Tr=[ql,cr,q;C v] and Tfk=[r,crk,q2;Ck, f.k] is
represented as a function of the time in Fig. 8.a. The delay between Tr and
Tfk must belong to the ~ interval lkv=[')'k~Okv] of C which, for simplicity,

is denoted lk=['Yk;Ok].

Figure 7. Outgoing transitions on a state ofGPST

425

Tr s~(p) r~(p) Trk

t
*

t t -time axis

Is - tm ... trk
(a) Representation in function of time (b) Representation by entities

Figure 8. Representation of events between Tr and Trk

From Fig. 8.a, we see that the service requires that the time tk. between the

executions of Tr and Tfk, falls within lk=[')'k;Ok]. The model of the medium
implies that the transit delay tm of a message sent by PEa and received by

PEb. falls within Ma,b=[J..la,b;Pa,bl The aim of the temporal requirements
derivation for the protocol entities is the following.

From requirements tmeMa,b=[J..la,b;Pa,bl and tkelk=[')'k;Ok] (k=1, 2, ... , n),
we must compute constraints on ts and tfk (k=1,2, ... , n) which ensure that

requirements tkelk on the service will be respected. These derived

constraints are written in the form tse S=[6;cj>], and tfke Rk=['tk; rok], k= 1,
2, ... , n. This computation must be made for each occurrence of the structure
in Fig. 7 within GPST.

Notations: operators !:, u or n will be used on intervals, and
[a;b]+[c;d]=[a+c;b+d], [a;b]-[c;d]=[a-c;b-d].

Condition for existence of solutions : we consider two consecutive
transitions Tq and Tr2 wich are executed at Sitei and Sitej. respectively.
After Tq, Sitei sends a message to Sitej to inform it that it may execute Tr2.
If the delay between Tq and Tr2 must be greater than x and smaller than y,
then the transit delay of the message must be smaller than y. Besides, the
difference between the biggest delay and the smallest delay of the message
in the medium must be smaller than y-x. Formally, for each occurrence of
the structure in Fig. 7 within the GPST, we must have:

for k= 1, 2, ... , n: Ok- Pa,b ~ sup(')'k- J..la,b; 0) (1)

where sup(a;b) is equal to the biggest of a and b.
Therefore, for each occurrence within GPST of the structure in Fig. 7, we
must check if (1) is respected. If the checking is positive then we must
compute : (a) the interval S representing the constraint on ts, and (b)
intervals Rk, k=1, 2, ... , n, representing the constraints on tfk, k=1, 2, ... , n.

We note that condition (1) is less restrictive than the conditions for the
existence of solutions of [8]. For resolving the timing constraints of the P'Es,
we consider the following three cases :
Static case : messages transmitted by P'Es contain no temporal information;
First dynamic case : the P'Es include some temporal information in the

messages they send;
Second dynamic case : the temporal information included by the P'Es is

completed by the medium.

426

In the following, ~and 'If are any real values which fall within [0; 1].

Static case : we assume that the intervals S and Rk are constant. When PEa
executes a transition Tr and decides to send a message to PEb, the time ts
between Tr and the transmission of the message falls within a constant
interval S. When PEb receives the message from PEa. it can execute a
transition T~. among n possible transitions (k=1, 2, ... , n), in a time lrk
belonging to a constant interval Rk. The interval S =[a;~] must satisfy the

following equations: ~ = 'lf'Xmink=l ton (Ok -Pa,b) (2)

a= sup(U, 0) + (~- sup(U, O))x~ (3)
with U = maxk=l ton(~ + (Pa,b -!la,b)- (Ok -')'k)) (4)

Afterwards, we choose the less restrictive solutions for Rk=['tk; cok] :

for k= 1, 2, ... , n: COk = Ok- Pa,b- ~ (5)

'tk = sup('Yk- lla,b- a; 0) (6)

Intuitively, modifying 'If and ~ allows to "move" some timing constraints
between two communicating entities.

First dynamic case : we assume that PEa sends to PEb a message
containing ts (Fig. 8.a), and PEb calculates dynamically Rk as a function of
ts when it receives the message from PEa. The interval S=[a;~] must satisfy

the following equations : ~= 'lf'Xmink=l ton (Ok- Pa,b) (2)

a= ~x~ (7)
The interval Rk(ts) is computed as follows. lfts, which belongs to [8; cp],

is the delay when the message is sent after the execution of Trp. the
receiving entity knows it and can choose:

fork= 1, 2, ... , n : COk(ts) = Ok- Pa,b- ts (8)
'tk(ts) =sup('Yk- !la,b- ts; 0) (9)

Intuitively, with the information ts, the receiving entity PEb can use the time
allocated to it to provide the service more efficiently than in the static case.
Let us, for instance, assume that some optional tasks are achieved by PEb in
order to provide a better quality of service, only if PEb has enough time. In
the static case, PEb may estimate that it has not enough time to execute its
optional tasks, while in the dynamic case optional tasks will be executed.

Second dynamic case : in comparison with the first dynamic case, we
assume that the medium modifies ts into the more accurate information
ts+tm. In this case, PEb receives the message with information ts+tm, and it
calculates dynamically the interval Rk, as a function of ts+tm. S = [a;~] is
resolved as in the previous case; COk and 'tk are calculated by PEb as follows :

fork= 1, 2, ... , n: COk(ts+tm) = Ok- (ts+tm) (10)

'tk(ts+tm) =sup('Yk- (ts+tm); 0) (11)

427

Intuitively, with the information ts+tm the receiving entity PEb knows that
Tr has been executed ts+tm before the reception of the message, which is a
more accurate information than in the first dynamic case. Due to this fact, in
the second dynamic case PEb can use the time allocated to it to provide the
service more efficiently than in the first dynamic case.

We note that ts and ts+tm , which are transmitted in the dynamic cases,
are a relative temporal information. This implies that a global clock is not
necessary. We also note that the temporal requirements of the protocol
obtained using the approach in [8] are more restrictive than those derived by
our improved approach.

Derivation Procedure : it consists of three steps. Step 1, which generates a
specification GPST, is similar to step 1 of the non-real-time case.

Step 2 : The aim of this step is : (a) to compute and insert into GPST the
static temporal constraints and, in the dynamic cases, some constant
parameters which allow to compute the dynamic temporal constraints; (b) to
insert ts and tm into the exchanged messages. Therefore, for every structure
represented in Fig. 7 and contained in GPST, the following three substeps
are performed to transform GPST into GST.
Step 2.1. We compute the interval S=[e; <!>]and:

*Intervals Rk, k=1, ... ,n, in the static case;
*Intervals Xk=Ik-Ma,b. k=1, ... ,n, in the first dynamic case;

Step 2.2 os~(P~o r6'<P~O becomes: (v being the value of v which is set by

the transition preceding 8R(p))

- In the static case :

- In the first dynamic case :

Q (s~(p);S,v)>() (~(p);M.t b,v)>()

Q<s~(p,ts);S, Y>()<rC(p,ts);M3 h• v>,..Q

- In the second dynamic case : Q(s~(p,ts+un);S, v~<ffi<p.ts+un);M.,h,v~Q

Informally: -the delay between Tr and s~(*) falls within S=[9;Q>];

-the delay between s~(*) and rb(*) falls within Ma,b·
Step 2.3 For each k=1, ... ,n, the tth interval Ik of Ck is replaced by the

interval: (i) Rk in the static case; (ii) Xk=Ik-Ma,b in the first dynamic case;

(iii) Ik (i.e., it is not replaced) in the second dynamic case. We note that the
GST obtained at Step 2.3 is defined by constant intervals. In dynamic cases,
some of these constant intervals do not directly represent timing constraints,
but they are used for a dynamic calculation of the time requirements. In fact,

for each k= 1 , ... ,n, the delay between occurrences of rb(P) and Tfk must
belong to: - the interval Rk in the static case;

-an interval Rk(ts) which depends on the interval Xk=Ik-Ma,b and on ts;
- an interval Rk(ts+tm) which depends on the interval Ik and on ts+tm.

428

Step 3 : This step consists of generating the protocol specification PSTi by
projecting GST onto the alphabet of events which occur at Sitej, i=l, ... ,n.
This step is similar to the second step of the non-real-time case, with the
difference that intervals Ma,b are replaced by [Q;oo].

In Sect. 6 and 7, 'IJI and~ are taken to be equal to 0.5, which means that
the temporal constraints are equally distributed between the two sites.

6. SYNTHESIS OF A TIMED X.25 PROTOCOL
We consider the X.25 service [2]. In order to apply our synthesis method, the
X.25 service is made sequential by assuming that the service primitives are
ordered and executed sequentially. For that purpose, the following
assumptions are made: (i) a new message cannot be sent before the last one
is received; and (ii) express data are not supported. The simplified X.25
service obtained will be extended by adding certain temporal requirements
between consecutive primitives. In order to give the possibility to both sites
to establish a connection, we have used a mechanism of tokens to realize a
distributed choice. The following description of this example is based on [4].

Primitives of the simplified X.25 service : Let U 1 and U2 be two users of
the network who are located in Sitet and Site2, respectively. The following
service primitives are defined :
• Connection : It may be established between U 1 and U2 if one of them, for
instance U1. sends a CN.req to U2. When U2 receives a CN.ind, he may
answer either by a DC.req to reject the CN.req, or by a CN.rsp. In the first
case Ut receives a DC.ind, while in the second case Ut receives a CN.cnf.
• Disconnection : A disconnection primitive can be used either to reject a
CN.req (see above) or to terminate an existing connection. For instance, Ut
may send a DC.req and then U2 will receive a DC.ind.
• Data Transfer : Two site linked by a connection may exchange data in
both directions. To simplify, we assume that only the party which has
initiated the connection can send data. The sending of a message is
generated by a DT.req and its reception by a DT.ind.
• Reinitialization : it allows to restore the synchronization between two
parties. When a RI.req is generated, for instance by U J, then all the data
being transmitted are removed. The next element to be received by U2 is a
RI.ind. U2 answers by a RI.rsp and then Ut will receive a RI.cnf. We assume
that the party which requests the reinitialization is the sender of data.

Specification of the Simplified X.25 Service : Our specification contains
two blocs St,2 and S2,1. where Si,j (see Fig. 9) models the service when Sitei
and Sitej are the sender and the receiver, respectively. The specification of

the simplified X.25 is schematized in Fig. 10. The event Token{ means that

"Sitei gives to Sitej the possibility to establish a connection". We assume
that State lt,2 is the initial state of the service.

429

Temporal constraints added to the simplified X.lS service
- The delay between CN .reqi and CN .indj belongs to the interval [1; 1.5];
-The delay between DC.reqi and DC.indj belongs to the interval [0.5;1];
- The delay between RI.indi and RI.rspj belongs to the interval [0;0.5];
-The delay between DT.reqi and DT.indj belongs to the interval [1;1.5];
-The delay between DT.rspj and DT.cnfj belongs to the interval [1;1.25].

Transitions with temporal constraints are represented in grey in Fig. 9 and
10, with the intervals defining the temporal constraints.

(Other states and
transitions are

represented In Fig. 14)

Figure 9. Block Sij

DC.ind;
[0.5;1]

(Other states and
transitions are

represented In Fig. 14)

S:zt
Figure 10. Service specification of the simplified X.25

Protocol Synthesis : The synthesized specifications of the two PEs can be
represented by the single tif4. of Fig. 11, and where i identifies the PE
described and j identifies the other PE. Messages sent by each PEi contain

the parameters p~, k=1, ... , 17, with pf :# pf if r;t s. The initial states of PEt

and PE2 are identified by 1 and 2, respectively. To generate these real-time
PEs, the following temporal model of the medium has been used: the transit
delay of a message falls within [0.5;0.75] when it is transmitted from Site1

to Site2, and within [0.25;0.5] when it is transmitted from Site2 to Site1. To
simplify, we give only the results of the static case. The synthesized
temporal constraints, which are defined by interval for the transitions
represented in grey in Fig. 11, are the following.

~1: constraint for sf(p2 1), sf(P3t), sf(p41), sf(p51), sf(p101) and

430

sf(pll1) is [0.0625;0.I25]; constraint for sf(p71) is [0.25;0.25]; constraint

for sf(p81} and sf(p91} is [0.25;0.375]; constraint for DT.cnft is
[0.375;0.375]; constraint for DT.indt is [0.375;0.5]; constraint for DC.ind1
is [O.I25;0.25]; constraint for RI.rsp1 is [0; 0.5].

~2 : constraint for s~(p22), s~(p3 2), s~(p42), s~(p5 2), s~(pl0 2) and

s~ (pii 2) is [O.I25;0.25]; constraint for s~(p72) is [0.375;0.375]; constraint

for s~(p82) and s~(p92) is [0.375;0.5]; constraint for DT.cnf2 is [0.25;0.25];
constraint for DT.ind2 and CN.ind2 is [0.25;0.375]; constraint for DC.ind2 is
[O;O.I25]; constraint for RI.rsP2 is [0;0.5].

~
~

sf<pl7j)

Figure II. Specification of the synthesized X.25 protocol at SitCj

7. EXAMPLE ASSEMBLY SYSTEM
The following example application of our synthesis method in another area
than telecommunications. We consider an assembly system consisting of
three robots RI, R2 and R3 and three carpets CI, C2 and C3. The carpets CI
and C2 bring pieces of type PI and P2, respectively, and carpet C3 takes
away the assembled pieces. Robot RI takes a piece PI, and puts it on a table
T for the assembly. Robot R2 takes a piece P2 and assembles it with the
piece PI which is on the table T. Robot R3 removes the defective pieces.
The details of this example are given in [9].

Protocol entities: There are six PEs, RI, R2, R3, CI, C2 and C3, which
correspond to the three robots and the three carpets, respectively. TableT is
not considered as an entity since it is passive. A piece is denoted Pi.

Service primitives: They are the following (i=l, 2, 3, andj=l, 2):
MOVE.CarpetCi: Ci is actuated; ARRIVED.PieceCi: Ci has detected that a

431

Pi has reached its destination; STOP.Carpetci : Ci is stopped ;
CHECK.PieceRj : Rj begins to check Pj ; T AKE.PieceRj : Rj takes a Pj from
Cj; TAKE.PieceiR3: R3 takes a PI from CI; TAKE.Piece2R3: R3 takes a
piece P2 from C2 ; T AKE.AssPieceSRJ : R3 takes an assembled piece from
tableT; PUT.PieceRl : RI puts a PI on T; PUT.AssPiecesR2 : R2 puts an
assembled piece on C3; ASS.PiecesR2: R2 assembles PI and P2.

Scenario of the Service : From the initial state where the whole system is
stopped, the scenario of the service is the following:

Step 1: Cl is actuated (MOVE.CarpetcJ)
Step 2: PI, which is on Cl, reaches its destination (ARRIVED.PiececJ)
Step 3: Cl is stopped (STOP.CarpetcJ)
Step 4: Rl checks PI (CHECK.PieceRJ):
Step 5: If PI is bad then R3 takes it off(TAKE.Piece!RJ), andgoto Step 1.
Step 6: If PI is good then Rl takes it from Cl (TAKE.PieceRJ) and

Step 7: Rl puts Cl on the tableT (PUT.PieceRJ)
Step 8 : C2 is actuated (MOVE.Carpetc2)
Step 9 : P2, which is on C2, reaches its destination (ARRIVED.Piecec2l

Step 10: Carpet C2 is stopped (STOP.Carpetc2)
Step 11 : Robot R2 checks P2 (CHECK.PieceR2):
Step 12: IfP2 is bad then R3 takes it off(TAKE.Piece2RJ) andgoto Step 8.
Step 13: IfP2 is good then R2 takes it from C2 (TAKE.PieceR2) and

Step 14: R2 assembles P2 with PI on the tableT (ASS.PiecesR2).
Step 15 : If the assembly is bad, which it is detected by R2, then R3 takes it off

(TAKE.AssPieceSR3). and goto Step 1.
Step 16: If the assembly is good then R2 takes it and puts it on carpet C3

(PUT.AssPiecesR2)
Step 17: Carpet C3 is actuated (MOVE.Carpetc3)
Step 18 : The assembled pieces reach their destination, which is detected by carpet C3

(ARRIVED.Piecec3).
Step 19: Carpet C3 is stopped (STOP.Carpetc3), and goto Step 1.

Temporal constraints added to the service

-Between MOVE.Carpetci and ARRIVED.Piececi: [10;20); (i=l,2,3)
-Between ARRIVED.Piececi and STOP.Carpetci: [0.5;2]; (i=l,2,3)
-Between STOP.Carpetci and CHECK.PieceRi: [5;8]; (i=l,2)
-Between CHECK.PieceRi and TAKE.PieceiR3: [5;8]; (i=l,2)
- Between ASS.PieceR2 and T AKE.AssPieces3 : [5;8];
-Between CHECK.PieceRi and TAKE.PieceRi: [1;2]; (i=l,2)
-Between TAKE.PieceRl and PUT.PieceRl: [1;2];
-Between TAKE.PieceR2 and ASS.PiecesR2: [4;10];
-Between PUT.PieceRl (or TAKE.Piece2RJ) and MOVE.Carpetc2: [5;10];
-Between PUT.AssPiecesR2 and MOVE.Carpetc3 : [5; 10];
-Between ASS.PiecesR2 and PUT.AssPiecesR2: [2;5];

432

-Between TAKE.Piece1R3 (or TAKE.AssPiecesR3 or STOP.Carpet(:3) and

MOVE.Carpetc1 : [6;10]; (i=1,2)

The service specification is represented in Fig. 12, where transition Trj

corresponds to Step i of the scenario. The temporal constraint of each
transition is defined by a single interval (which is shown in Fig. 12).

1;2)

Figure 12. Service specification of the assembling system

Protocol Synthesis : The specifications synthesized in the static case are

represented in Fig. 13, and consist of six 'I'..9ls modeling the the three robots

and the three carpets, respectively. To generate these real-time PEs, the
transit delay of all messages has been assumed to belong to [2;5].

(d) Carpet C1 (t) Carpet C3

Figure 13. Synthesized specifications of the robots and the carpets in the static case

8. CONCLUSION
A method for deriving real-time protocols [8] is improved and extended in
the present paper. Our method imposes requires that the service is
sequential. We are presently investigating an approach using the following

three steps : (a) the given service specification S is transformed into a

sequential service, called sseq; (b) a protocol pseq providing the sequential

service sseq is synthesized by using our method; the obtained protocol is a

kind of "skeleton" of a protocol P providing S; (c) pseq is transformed in

order to obtain a protocol P which provides S.
We note that Step (b) is realized automatically by the method presented

in the present paper, and that Step (a) has been applied manually in the
examples of Sect. 6 and 7 to make our method applicable. We therefore try
to fmd a systematic way to achieve steps (a) and (c).

433

References
[1] R. ALur and D.Dill, "Automata for Modeling Real-Time Systems," in

Proceedings of the 17th Intern. Col/. on Automata, Languages and
Programming, Lecture Notes in Camp. Sci. 443, Ed. Springer-Verlag,
Warwick, UK, 1990.

[2] R.J. Deasington, "Protocoles X25 pour /es reseaux a commutation de
paquets," Masson, 1987.

(3] R. Gotzhein and G. v. Bochmann, "Deriving Protocol Specifications
from Service Specifications Including parameters," ACM Transactions on
Computer Systems, Vol. 8, N° 4, pp. 255-283, 1990.

[4] Y. Iraqi, "Synthese du protocole X.25 simplifie avec contraintes de
temps. Utilisation de l'outil de Khoumsi," Report of a project realized at
the University of Montreal, April, 1996.

[5] C. Kant, T. Higashino and G.v. Bochmann, "Deriving Protocol
Specifications from Service Specifications Written in LOTOS,"
Distributed Computing, Vol. 10, N° 1, pp. 29-47, 1996.

[6] M. Kapus Kolar, "Deriving protocol specifications from service
specifications with heterogeneous timing requirements." in Proceedings
of the IEEE Int. Conf. on Software Engineering for real time systems,
United-Kingdom, 1991.

[7] M. Kapus Kolar and J. Rugelj, "Deriving protocol specifications from
service specifications with simple relative timing requirements," in
Proceedings of ISMM Int. Workshop on parallel computing, Italy, 1991.

[8] A. Khoumsi, G.v. Bochrnann, and R. Dssouli, "Derivation de
specifications de protocole a partir de specifications de service avec des
contraintes temps-reel," Revue Reseaux et informatique repartie (RIR),
Vol.4, W 1, Aprill994.

[9] E. Madja, "Derivation de protocoles pour applications temps reeel.
Application au systeme d'assemblage," Report of a project realized at the
University of Montreal, April, 1996.

[1 0] K.Saleh and R. Probert, "A service-based method for the synthesis of
Communications protocols," International Journal of Mini and
Microcomputers, Vol. 12, N° 3, pages 97-103, December 1990.

[11] H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi,
"Synthesis of protocol entities specifications from service specifications
in a Petri Net model with registers,", in Proceedings of IEEE Parallel
and Distributed Computing Systems, 1995.

