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Abstract : This paper deals with deriving protocol specifications which provide a given service 
satisfying timing requirements. In previous work, we have developed an 
extension of a method proposed by Saleh and Probert, by considering timing 
requirements in a more general case than in other existing studies. In the present 
paper, we improve our method by several modifications and additions. First, the 
number of messages exchanged between the protocol entities is minimized. 
Second, a less restrictive strategy for choosing between several service 
primitives is proposed. Third, we consider applications where the choice 
between several primitives of a single site can be made by the user, and not only 
by the system. Fourth, conditions of existence of solutions are weaker. Fifth, the 
timing constraints of the synthesized protocols are weaker. Finally, two simple 
examples of applications are described. 

1. INTRODUCTION 
Several methods for deriving a protocol from a service have been 

developed by various researchers [3,5-7,10,11]. These methods are not 
applicable for real-time applications, for which the correct ordering of 
service primitives alone does not always ensure the success of a task. In 
addition, certain delays must be respected between occurrences of services 
primitives. In [6] transit delays in the medium are supposed negligible, while 
in [7] they are bounded by a maximum value. In the present paper, our aim 
is to describe an approach for deriving protocols which guarantee both : (a) a 
correct ordering of service primitives; and (b) the satisfaction of given 
timing requirements between the executions of service primitives, in a more 
general case than in [6,7]. 

A protocol derivation approach presented in [10], which guarantees only 
(a), has been extended in [8] to the real-time case, i.e., for ensuring also (b). 
The timing requirements considered in [8] allow to specify certain 
constraints on the delays between consecutive service primitives. In the 
present paper, we consider the same problem but we provide a better 
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solution. In fact, compared to [8] : (a) the number of messages exchanged 
between protocol entities for providing a desired service has been 
minimized; (b) the strategy for choosing between several possible service 
primitives is distributed among several sites, instead of being centralized in 
a single site; (c) we consider applications where the choice between several 
primitives of a single site can be made by the user, and not only by the 
system; (d) conditions of existence of solutions are weaker; (e) the temporal 
constraints to be respected by the protocol entities are weaker. We have also 
presented two concrete examples of application. 

The remaining of this paper is organized as follows. In Sect. 2, we 
introduce the problem of protocol derivation and the principle used for 
deriving protocols. Sect. 3 deals with non-real-time systems. First, we show 
how services and protocols are specified, and then we introduce the method 
for deriving protocols. Sect. 4 to 7 deal with real-time systems. In Sect. 4, 
we describe how services and protocols are specified. In Sect. 5, we explain 
the approach used for calculating temporal requirements for protocol entities 
from temporal requirements of a service to be provided. We also present 
some rules for deriving real-time protocols in a systematic way. In Sect. 6 
and 7, two examples illustrate our method. Finally, we conclude in Sect. 8. 

2. PROTOCOL SYNTHESIS 
We consider a distributed system (DS) consisting of several sites 

interconnected through a reliable communication medium (simply called 
medium). We assume that: (a) each pair of sites can communicate with each 
other through the medium; (b) the environment can interact with the DS at 
the different sites through service access points (SAP). These interactions 
correspond to the executions of service primitives (simply called primitives). 
We may assume that to each Sitej corresponds a protocol entity PEj. 

In the user's viewpoint, the DS provides a service where only executions 
of primitives are visible. We assume that the specification of the desired 
service (provided to the user) defines the ordering of and the timing 
requirements between the occurrences of primitives. The timing 
requirements define the real-time properties of the DS. 

The problem of the designer is then : How can he derive systematically 
specifications of the local PEj, for i=l,2, ... , n, from the specification of the 
desired service. In the case of a real-time system, the designer must also 
have a temporal model of the medium, which is assumed reliable. 

Figure 1. Service and protocol concepts 

The approach we have selected for deriving protocols is called Synthesis, 
and the systems considered are assumed sequential. The basic principle we 
have used is the following: if in the specification of the service, a primitive 
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A is executed by PEa. and is followed by the execution of a primitive B by 
PEb, then: (a.) after PEa executes A, it sends a message m to PEb; (~) after 
PEb receives m, it executes B. 

3. PROTOCOL SYNTHESIS FOR NON-REAL­
TIME APPLICATIONS 

Service specification : A service desired by the user is described by a finite 
state automaton (!FSJ4.), denoted SS, which specifies the sequences of 
primitives the user would like to observe at the various S;;tps. Every 
transition of SS (Fig. 2) is defined by [q,Ea,r], where: (1) q and rare origin 
and destination states; and (2) Ea represents a primitive E executed by PEa. 
Besides, every transition is identified by a number p and then denoted 
Tp=[q,Ea.rl In a figure representing an !FSJ4., every transition Tp=[q,Ea,r] 
may be simply represented by T p = Ea when q and r are explicitly 
represented by the transition diagram. 

Definition 3.1. (Incoming and outgoing transitions). 
An outgoing (resp. incoming) transition of a state q is a transition which is 
executable from (resp. leads to) q. D 

Q_ _
6 

T1=[1,A1,2) Tz=[2,1J:3,3) TJ=[3,~,2) 
u~ T4=[3,B4,!] Ts=[2,BI ,4] T6=[4,C4,2) 

Figure 2. Service specification 

Protocol specification : A PEa is described by an !FSJ4., denoted PSa (see for 
example Fig. 5), which specifies the sequences of events occurring at Sitea. 
There are three types of events in each PSa. 
Type P (for Primitive) : The execution of a primitive E is denoted Ea. 

TypeS (for Send): The sending of a message is denoted s~(p), and means 
"message containing by p is sent by PEa to entity PEi ". 

Type R (for Receive): The reception of a message is denoted r~(p), and 
means "message containing p and coming from PEi is received by PEa". 

Let PEt, PE2, ... , PEn be specified by PSt, PS2, ... , PSn respectively. Let 'DS 
be constituted by PEt, PE2, ... , PEn and by the medium, and specified by DS. 

Definition 3.2. (Combined behaviour of several PEs) The combined 
behaviour of PEt, ... , PEn is the behaviour of 'DS. The specification DS of 
this behaviour can be computed from PS}, ... , PSn. We define this combined 

behaviour by the operator Comb : DS=Comb(PS 1, PS2 , ... , PSn). D 
Definition 3.3. (Projection, total and partial provision of a desired service) 
Let Vs and Vi be the alphabets of the service and PSi, respectively. We also 
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use the following concepts : (i) ProjA(A) denotes the projection of an !fSYl A 

into an alphabet A; as an example, Projy8(DS) specifies the service provided 

to the user by VS; (ii) A = B means that the !JSY/s A and B accept the same 
language; (iii) A < B means that the language accepted by A is included in 
the one accepted by B. We say that the service is totally (resp. partially) 
provided if Projy8(DS) = SS (resp. Projy8(DS) < SS). 0 

Definition 3.4. (Semantic and syntactic correctness) 
We say that the protocol is semantically correct if the desired service is 
totally provided. The protocol is syntactically correct if DS is deadlock-free 
and livelock-free and no unspecified reception error is possible (we assume 
that the desired service SS is deadlock-free and livelock-free). 0 

Our aim is therefore to propose a synthesis method which, from the 
specification of a service, generates specifications of protocol entities which 
are syntactically and semantically correct. 

Principle for deriving PEs : From an SS specifying a desired service, 
deriving a protocol consists of generating an !fSYl PSi for each Sitej, which 
specifies the action sequences executed at Sitej. In order to provide the 
service, the different P'Es exchange messages through a medium. The basic 
principle used for deriving a protocol (see Sect. 2) has been applied in [8] as 
follows. If the execution of a primitive A by PEa is followed by a choice 
between primitives executed by other PEbjS, for i=l, ... ,k, (Fig. 3) then, after 
the execution of A, PEa decides which transition should follow. It therefore 
sends a message m to all PEbiS (i=l, ... ,k, and bi:¢:a) which contains two 
parameters: p which identifies the executed transition T p; and q which 
identifies the chosen transition Tq to be executed next. All PEbiS will receive 
m, but only one of them will execute the primitive corresponding to the 
selected transition T q· 

Tp•'• ~k ~ "" 
~~---=:...--___;:_:.} PEbk 

Figure 3. Choice between several actions 

This principle implies that the following three restrictions must be satisfied. 

Restriction 1. The transitions which may occur in the initial state of SS are 
all executable by a single PE. 0 

Restriction 2. The choice between several primitives is made by the system 
and not by the user. 0 

Restriction 3. The choice between primitives executed by a given PEbi is 

made by PEa. 0 
Compared to [8,10], the following three improvements are made in the 
subsections below: 
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(a) Restriction 2 is weakened as follows: the choice between PEbiS is made 
at Sitea by the system, but the choice between several primitives of the 
selected PEbi may be made at the selected site by the system (for upward 
primitives) or by the user (for downward primitives). 

(b) Restriction 3 is removed as follows: PEa is not necessarily required to 
select the following primitive; it may decide to select only the following PE 
which, in tum, selects one of its primitives. 

(c) PEa sends a message only to the selected PE. 

Derivation procedure : SS being the input of the problem, the derivation 
procedure consists of the following two steps. 

Step 1 : This step consists of completing SS by the insertion of a message 
exchange between each pair of consecutive primitives which are executed in 
different sites. In order to avoid any ambiguity, every message contains the 
number of the transition in SS which is associated to the first of the two 
primitives. The obtained specification is denoted GPS. 

Figure 4. GPS obtained in Step 2 for the example represented in Fig. 2 

Step 2 : From GPS, the specification PSi of each PEj is obtained by 
projecting GPS into the alphabet of events which occur in Sitej. Then, the 
PSi obtained are minimized and determinized. 

We note that this two-step procedure is simpler than the procedures 
proposed in [8,10], besides being optimal. For our example of Fig. 2, we 
obtain the specifications of Figures 4 and 5, after the first and second steps, 
respectively. To make the projections of GPS (Fig. 4) for obtaining PSi (i=l 
to 4) (Fig. 5) more directly visible, the states of PSi are named according to 
their corresponding states in GPS, where "i-j'' means all integers from ito j. 

(a) PS1 (c) PS3 

Figure 5. Obtained protocol specifications 

Contrary to [10], the rules for deriving PEs do not depend on whether 
primitives are upward or downward. In our opinion, such a distinction 
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complicates uselessly the rules of Step 1. In the remaining part of this paper, 
we extend the procedure of protocol derivation to real-time systems. 

4 TIMED AUTOMATA TO SPECIFY SERVICES 
AND PROTOCOLS 

We use a dense-time model [1,8] where the time is viewed as a state variable 
that ranges over a dense domain and evolves indefinitely. The timed 
automata ( 'TJ.f.) model we propose here uses a variable v and a clock c. 

Definition 4.1. (Clock c, variable v) 
c has a positive real value which : (1) is set to zero at the occurrence of 
every transition; and (2) is equal to the time elapsed since the last instant it 
was set to zero. v has a strictly positive natural value which can be updated 
at the occurrence of any transition. D 

Let A=(Q,l:,O,qo) be an :FSJ.f. where Q is a set of states, L is an alphabet, qo is 

the initial state, and o~QxD<Q defines the transitions. Let us see how a 'TJ.f. 
can be defined from the :FSJ.f. A. 

Definition 4.2. (Timed transition, and Timed automaton) 
Let I=[a;b] be an interval, where a and bare positive real numbers and~. 
A timed transition is defined by [q,cr,r;C v] where : (a) [q,O',r] defines a 
transition of the :FSJ.f. ~ (b) C=(IJ, I2, ... ,Im) is a m-tuple of non-empty 

intervals; and (c) v is a value of variable v. A 'TJ.f. At can therefore be 
constructed if we transform every transition tr=[qJ,O",q2] of A into a timed 

transition Tr by associating to it an m-tuple C of intervals and a value v of v. 

The semantics of a timed transition Tr=[q,cr,r;C v] of At depends on the 
current state q and on the current values of v and c as follows. If u is the 
current value of v then : (1) Tr is enabled (i.e., may occur) only if the current 
value of c falls within the uth interval Iu of C; and (2) after the occurrence 
of Tr, vis set to v and cis set to zero. Intuitively, the temporal constraint of 
a transition may depend on how the current state has been reached (this 
information is given by v). D 

Henceforth, every timed transition is simply called transition, and 
Tr=[q,cr,r;C v] may be simply represented by Tr=[cr;C v] if there is no 
ambiguity about q and r. An example of a part of 'TJ.f. is given in Fig. 6. State 
q has two incoming (Tq and Tr2) and two outgoing transitions (Tr3 and 

Tr4), with Trl=[ql,O'l,q;Cl,vl], Tf2=[q2,0'2,q;Q,V2], Tr3=[q,cr3,rl;C3,V3], 

and Tq=[q,cr4,r2;C4, 14]. With the representation of Fig. 6, we can define vl 

and Vl, and C3 and C4. In fact, for a timed transition Tr=[q,O'l,r;C v], the 
definition of v necessitates to know all the incoming transitions of r, and the 
definition of C necessitates to know all the incoming transitions of q. For 
example, vl=l, &=2, C3=(13l,I32), C4=(14~tl42), 131=[1 ;2], 132=[0;2], 
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I4t=[1;3] and I42=[2;5]. The informal specification is then the following, 
with q being the current state: 
- if v= I, i.e., q has been reached by transition Tq, then : 
* Tr3 (resp. Tr4) may occur after a delay within the interval I3t (resp. I4t); 

* If neither Tr3 nor Tr4 occurs after a delay within [1;2], then Tr4 must 
occur after a delay within [2;3] (in order to avoid a deadlock). 

- if v=2, i.e., q has been reached by the transition Tr2, then : 
* Tr3 (resp. Tq) may occur after a delay within the interval I32 (resp. I42); 

* If Tr3 does not occur after a delay within [0;2], then Tq must occur 

after a delay within [2;5]. 

~~ 
~~ 
Figure 6. Incoming and outgoing transitions 

A desired service is described by a 'T.9l denoted SST, which specifies: (a) the 
required sequences of primitives; and (b) certain temporal requirements 
between consecutive primitives. In any state q of SST, we can express some 
temporal constraints on the primitives which are executable from state q. 
These temporal constraints may depend on how q has been reached. As an 
example, the !FS~ SS of Fig. 2 (Sect. 3) is transformed into a 'T.9l SST by 
replacing transitions Ti of SS into the following timed transitions Trio 

i=1, ... ,6, respectively Tq=[1,At,2;Cl, 1], Tr2=[2,B3,3;C2, 1], 

Tr3=[3,C2,2;C3,2], Tq=[3,B4,1;C4, 1], Tr5=[2,Bt,4;CS, 1], Tr6=[4,C4,2; C6,3], 

and Cl=ll, C2=(I2~oi22,I23), C3=I3, C4=I4, CS=(I5t.I52,I53), C6=I6, where II, 
l2t, 122. 123, 13, 14, 15t. 152, 153, and 16 are intervals. For example, if the 

current state 2 is reached by Tr3, then v is set to 2, Tr2 is enabled iff ( ce 122) 

and Tr5 is enabled iff ( ce 152) (intervals 122 and 152 of C2 and (5 are used 

because v=2). Therefore, if "I+- (Tr8,T1b)" means "the delay of Tra and 

Tlb falls within the interval I" then : II +- (Tr4,Tq) 12t +- (Tq,Tr2) 

122 +- (Tr3,Tr2) 123 +- (Tr6,Tr2) 13 +- (Tr2,Tr3) 14 +- (Tr2,Tr4) 

15t +- (Tq,Tr5) 152 +- (Tr3,Tr5) I53 +- (Tr6,Tr5) 16 +- (Tr5,Tr6). 

A PEa is described by a 'T.9l denoted PST8 , which specifies: (a) the 

sequences of events which occur at Site8 ; (b) certain temporal constraints to 

be satisfied between consecutive events. Similarly to the non-real-time case, 
the events may be of the three types P, S and R. Examples of 'T.9ls specifying 
PEs are given in Sect. 6 and 7. 

We consider PEt. PE2, ... ,PEn which are specified by PSTt. PST2, ... , 

PST0 , respectively. Let tJJS be constituted by PEt. PE2, ... ,PEn and by the 

medium, and specified by a 'T~DST. 

Definition 4.3. (Timed sequence of events, Timed language, Acceptance) 
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A timed sequence Tis represented by (cr~ott)(cr2,tz) ... (cri,'i) ... and means that 
events cr1. cr2, ... , O"j, ... occur at instants t1, tz, ... , 1i ... , respectively, where 0 
< t1 < tz < ... < 1i < ... A timed language is a set (possibly infinite) of timed 
sequences. Let A be a fJJ.f, and LA be the set of sequences which can be 

executed by A. Then we say that A accepts the language LA. 0 
Definition 4.4. (Projection, total and partial provision of a desired service 
with temporal requirements) The projection of a '7.9linto a subalphabet A can 
be defined similarly to the projection of an !JSJL Therefore, Projv 5(DST) 
specifies the service provided to the user by 'DS, and each Projyj(DST) 
specifies PEj, for i=l, ... , n. For the comparison of timed languages, we use 

the symbols =T and <T, i.e., A=TB means that LA=Ls, and A<TB means that 
LA cLs. Total and partial provisions of a real-time service are defined like 

in Def. 3.3, but by using symbols =T and <T instead of= and<. D 

5. PROTOCOL SYNTHESIS FOR REAL-TIME 
APPLICATIONS 

Definition 5.1. (Reliable medium) Besides not altering messages, in the real­
time case a reliable communication medium must be such that the transit 
delay tm of a message sent at Sitea and received at Siteb, belongs to a finite 

interval Ma,b=[J.la,b;Pa,bl which depends on Sitea and Siteb. D 
The synthesis of the real-time PEs uses the same Step 1 of the non-real­

time case, where we obtain GPST from SST (the last T indicates the 
presence of temporal constraints). In this step, the timed transitions are 
processed like simple transitions, while C and v are kept unchanged. GPST 
specifies the correct ordering of primitives, but it does not specify the 
correct temporal requirements of the service. 

To compute temporal constraints for the PEs, we consider every pair of 

states q and r of GPST which are connected by two consecutive events s~(p) 

and r~(p) (see Fig. 7). Let Tr be the single incoming transition of q (which 
corresponds to a primitive executed at a Sitea) and let Tq, ... ,Tr0 be the 
outgoing transitions of r (which correspond to primitives executed at the 

same Siteb). After Tr, PEa sends a message to PEb (written s~(p) ); when PEb 

receives the message (written rb(P) ), it executes one of then Tfk. The 

sequencing of events between Tr=[ql,cr,q;C v] and Tfk=[r,crk,q2;Ck, f.k] is 
represented as a function of the time in Fig. 8.a. The delay between Tr and 
Tfk must belong to the ~ interval lkv=[')'k~Okv] of C which, for simplicity, 

is denoted lk=['Yk;Ok]. 

Figure 7. Outgoing transitions on a state ofGPST 
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Tr s~(p) r~(p) Trk 

t 
* 

t t -time axis 

Is - tm ... trk .... 
(a) Representation in function of time (b) Representation by entities 

Figure 8. Representation of events between Tr and Trk 

From Fig. 8.a, we see that the service requires that the time tk. between the 

executions of Tr and Tfk, falls within lk=[')'k;Ok]. The model of the medium 
implies that the transit delay tm of a message sent by PEa and received by 

PEb. falls within Ma,b=[J..la,b;Pa,bl The aim of the temporal requirements 
derivation for the protocol entities is the following. 

From requirements tmeMa,b=[J..la,b;Pa,bl and tkelk=[')'k;Ok] (k=1, 2, ... , n), 
we must compute constraints on ts and tfk (k=1,2, ... , n) which ensure that 

requirements tkelk on the service will be respected. These derived 

constraints are written in the form tse S=[6;cj>], and tfke Rk=['tk; rok], k= 1, 
2, ... , n. This computation must be made for each occurrence of the structure 
in Fig. 7 within GPST. 

Notations: operators !:, u or n will be used on intervals, and 
[a;b ]+[ c;d]=[a+c;b+d], [a;b ]-[ c;d]=[a-c;b-d]. 

Condition for existence of solutions : we consider two consecutive 
transitions Tq and Tr2 wich are executed at Sitei and Sitej. respectively. 
After Tq, Sitei sends a message to Sitej to inform it that it may execute Tr2. 
If the delay between Tq and Tr2 must be greater than x and smaller than y, 
then the transit delay of the message must be smaller than y. Besides, the 
difference between the biggest delay and the smallest delay of the message 
in the medium must be smaller than y-x. Formally, for each occurrence of 
the structure in Fig. 7 within the GPST, we must have: 

for k= 1, 2, ... , n: Ok- Pa,b ~ sup(')'k- J..la,b; 0) (1) 

where sup(a;b) is equal to the biggest of a and b. 
Therefore, for each occurrence within GPST of the structure in Fig. 7, we 
must check if (1) is respected. If the checking is positive then we must 
compute : (a) the interval S representing the constraint on ts, and (b) 
intervals Rk, k=1, 2, ... , n, representing the constraints on tfk, k=1, 2, ... , n. 

We note that condition (1) is less restrictive than the conditions for the 
existence of solutions of [8]. For resolving the timing constraints of the P'Es, 
we consider the following three cases : 
Static case : messages transmitted by P'Es contain no temporal information; 
First dynamic case : the P'Es include some temporal information in the 

messages they send; 
Second dynamic case : the temporal information included by the P'Es is 

completed by the medium. 
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In the following, ~and 'If are any real values which fall within [0; 1]. 

Static case : we assume that the intervals S and Rk are constant. When PEa 
executes a transition Tr and decides to send a message to PEb, the time ts 
between Tr and the transmission of the message falls within a constant 
interval S. When PEb receives the message from PEa. it can execute a 
transition T~. among n possible transitions (k=1, 2, ... , n), in a time lrk 
belonging to a constant interval Rk. The interval S =[a;~] must satisfy the 

following equations: ~ = 'lf'Xmink=l ton (Ok -Pa,b) (2) 

a= sup(U, 0) + (~- sup(U, O))x~ (3) 
with U = maxk=l ton(~ + (Pa,b -!la,b)- (Ok -')'k)) (4) 

Afterwards, we choose the less restrictive solutions for Rk=['tk; cok] : 

for k= 1, 2, ... , n: COk = Ok- Pa,b- ~ (5) 

'tk = sup('Yk- lla,b- a; 0) (6) 

Intuitively, modifying 'If and ~ allows to "move" some timing constraints 
between two communicating entities. 

First dynamic case : we assume that PEa sends to PEb a message 
containing ts (Fig. 8.a), and PEb calculates dynamically Rk as a function of 
ts when it receives the message from PEa. The interval S=[a;~] must satisfy 

the following equations : ~= 'lf'Xmink=l ton (Ok- Pa,b) (2) 

a= ~x~ (7) 
The interval Rk(ts) is computed as follows. lfts, which belongs to [8; cp], 

is the delay when the message is sent after the execution of Trp. the 
receiving entity knows it and can choose: 

fork= 1, 2, ... , n : COk(ts) = Ok- Pa,b- ts (8) 
'tk(ts) =sup( 'Yk- !la,b- ts; 0) (9) 

Intuitively, with the information ts, the receiving entity PEb can use the time 
allocated to it to provide the service more efficiently than in the static case. 
Let us, for instance, assume that some optional tasks are achieved by PEb in 
order to provide a better quality of service, only if PEb has enough time. In 
the static case, PEb may estimate that it has not enough time to execute its 
optional tasks, while in the dynamic case optional tasks will be executed. 

Second dynamic case : in comparison with the first dynamic case, we 
assume that the medium modifies ts into the more accurate information 
ts+tm. In this case, PEb receives the message with information ts+tm, and it 
calculates dynamically the interval Rk, as a function of ts+tm. S = [a;~] is 
resolved as in the previous case; COk and 'tk are calculated by PEb as follows : 

fork= 1, 2, ... , n: COk(ts+tm) = Ok- (ts+tm) (10) 

'tk(ts+tm) =sup( 'Yk- (ts+tm ); 0) (11) 
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Intuitively, with the information ts+tm the receiving entity PEb knows that 
Tr has been executed ts+tm before the reception of the message, which is a 
more accurate information than in the first dynamic case. Due to this fact, in 
the second dynamic case PEb can use the time allocated to it to provide the 
service more efficiently than in the first dynamic case. 

We note that ts and ts+tm , which are transmitted in the dynamic cases, 
are a relative temporal information. This implies that a global clock is not 
necessary. We also note that the temporal requirements of the protocol 
obtained using the approach in [8] are more restrictive than those derived by 
our improved approach. 

Derivation Procedure : it consists of three steps. Step 1, which generates a 
specification GPST, is similar to step 1 of the non-real-time case. 

Step 2 : The aim of this step is : (a) to compute and insert into GPST the 
static temporal constraints and, in the dynamic cases, some constant 
parameters which allow to compute the dynamic temporal constraints; (b) to 
insert ts and tm into the exchanged messages. Therefore, for every structure 
represented in Fig. 7 and contained in GPST, the following three substeps 
are performed to transform GPST into GST. 
Step 2.1. We compute the interval S=[e; <!>]and: 

*Intervals Rk, k=1, ... ,n, in the static case; 
*Intervals Xk=Ik-Ma,b. k=1, ... ,n, in the first dynamic case; 

Step 2.2 os~(P~o r6'<P~O becomes: ( v being the value of v which is set by 

the transition preceding 8R(p)) 

- In the static case : 

- In the first dynamic case : 

Q (s~(p);S,v)>() (~(p);M.t b,v)>() 

Q<s~(p,ts);S, Y>()<rC(p,ts);M3 h• v>,..Q 

- In the second dynamic case : Q(s~(p,ts+un);S, v~<ffi<p.ts+un);M.,h,v~Q 

Informally: -the delay between Tr and s~(*) falls within S=[9;Q>]; 

-the delay between s~(*) and rb(*) falls within Ma,b· 
Step 2.3 For each k=1, ... ,n, the tth interval Ik of Ck is replaced by the 

interval: (i) Rk in the static case; (ii) Xk=Ik-Ma,b in the first dynamic case; 

(iii) Ik (i.e., it is not replaced) in the second dynamic case. We note that the 
GST obtained at Step 2.3 is defined by constant intervals. In dynamic cases, 
some of these constant intervals do not directly represent timing constraints, 
but they are used for a dynamic calculation of the time requirements. In fact, 

for each k= 1 , ... ,n, the delay between occurrences of rb(P) and Tfk must 
belong to: - the interval Rk in the static case; 

-an interval Rk(ts) which depends on the interval Xk=Ik-Ma,b and on ts; 
- an interval Rk(ts+tm) which depends on the interval Ik and on ts+tm. 
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Step 3 : This step consists of generating the protocol specification PSTi by 
projecting GST onto the alphabet of events which occur at Sitej, i=l, ... ,n. 
This step is similar to the second step of the non-real-time case, with the 
difference that intervals Ma,b are replaced by [Q;oo]. 

In Sect. 6 and 7, 'IJI and~ are taken to be equal to 0.5, which means that 
the temporal constraints are equally distributed between the two sites. 

6. SYNTHESIS OF A TIMED X.25 PROTOCOL 
We consider the X.25 service [2]. In order to apply our synthesis method, the 
X.25 service is made sequential by assuming that the service primitives are 
ordered and executed sequentially. For that purpose, the following 
assumptions are made: (i) a new message cannot be sent before the last one 
is received; and (ii) express data are not supported. The simplified X.25 
service obtained will be extended by adding certain temporal requirements 
between consecutive primitives. In order to give the possibility to both sites 
to establish a connection, we have used a mechanism of tokens to realize a 
distributed choice. The following description of this example is based on [ 4]. 

Primitives of the simplified X.25 service : Let U 1 and U2 be two users of 
the network who are located in Sitet and Site2, respectively. The following 
service primitives are defined : 
• Connection : It may be established between U 1 and U2 if one of them, for 
instance U1. sends a CN.req to U2. When U2 receives a CN.ind, he may 
answer either by a DC.req to reject the CN.req, or by a CN.rsp. In the first 
case Ut receives a DC.ind, while in the second case Ut receives a CN.cnf. 
• Disconnection : A disconnection primitive can be used either to reject a 
CN.req (see above) or to terminate an existing connection. For instance, Ut 
may send a DC.req and then U2 will receive a DC.ind. 
• Data Transfer : Two site linked by a connection may exchange data in 
both directions. To simplify, we assume that only the party which has 
initiated the connection can send data. The sending of a message is 
generated by a DT.req and its reception by a DT.ind. 
• Reinitialization : it allows to restore the synchronization between two 
parties. When a RI.req is generated, for instance by U J, then all the data 
being transmitted are removed. The next element to be received by U2 is a 
RI.ind. U2 answers by a RI.rsp and then Ut will receive a RI.cnf. We assume 
that the party which requests the reinitialization is the sender of data. 

Specification of the Simplified X.25 Service : Our specification contains 
two blocs St,2 and S2,1. where Si,j (see Fig. 9) models the service when Sitei 
and Sitej are the sender and the receiver, respectively. The specification of 

the simplified X.25 is schematized in Fig. 10. The event Token{ means that 

"Sitei gives to Sitej the possibility to establish a connection". We assume 
that State lt,2 is the initial state of the service. 
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Temporal constraints added to the simplified X.lS service 
- The delay between CN .reqi and CN .indj belongs to the interval [ 1; 1.5]; 
-The delay between DC.reqi and DC.indj belongs to the interval [0.5;1]; 
- The delay between RI.indi and RI.rspj belongs to the interval [0;0.5]; 
-The delay between DT.reqi and DT.indj belongs to the interval [1;1.5]; 
-The delay between DT.rspj and DT.cnfj belongs to the interval [1;1.25]. 

Transitions with temporal constraints are represented in grey in Fig. 9 and 
10, with the intervals defining the temporal constraints. 

(Other states and 
transitions are 

represented In Fig. 14) 

Figure 9. Block Sij 

DC.ind; 
[0.5;1] 

(Other states and 
transitions are 

represented In Fig. 14) 

S:zt 
Figure 10. Service specification of the simplified X.25 

Protocol Synthesis : The synthesized specifications of the two PEs can be 
represented by the single tif4. of Fig. 11, and where i identifies the PE 
described and j identifies the other PE. Messages sent by each PEi contain 

the parameters p~, k=1, ... , 17, with pf :# pf if r;t s. The initial states of PEt 

and PE2 are identified by 1 and 2, respectively. To generate these real-time 
PEs, the following temporal model of the medium has been used: the transit 
delay of a message falls within [0.5;0.75] when it is transmitted from Site1 

to Site2, and within [0.25;0.5] when it is transmitted from Site2 to Site1. To 
simplify, we give only the results of the static case. The synthesized 
temporal constraints, which are defined by interval for the transitions 
represented in grey in Fig. 11, are the following. 

~1: constraint for sf(p2 1), sf(P3t ), sf(p41), sf(p51 ), sf(p101) and 
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sf(pll1) is [0.0625;0.I25]; constraint for sf(p71) is [0.25;0.25]; constraint 

for sf(p81} and sf(p91} is [0.25;0.375]; constraint for DT.cnft is 
[0.375;0.375]; constraint for DT.indt is [0.375;0.5]; constraint for DC.ind1 
is [O.I25;0.25]; constraint for RI.rsp1 is [0; 0.5]. 

~2 : constraint for s~(p22 ), s~(p3 2 ), s~(p42 ), s~(p5 2 ), s~(pl0 2) and 

s~ (pii 2 ) is [O.I25;0.25]; constraint for s~(p72 ) is [0.375;0.375]; constraint 

for s~(p82 ) and s~(p92 ) is [0.375;0.5]; constraint for DT.cnf2 is [0.25;0.25]; 
constraint for DT.ind2 and CN.ind2 is [0.25;0.375]; constraint for DC.ind2 is 
[O;O.I25]; constraint for RI.rsP2 is [0;0.5]. 

~ 
~ 

sf<pl7j) 

Figure II. Specification of the synthesized X.25 protocol at SitCj 

7. EXAMPLE ASSEMBLY SYSTEM 
The following example application of our synthesis method in another area 
than telecommunications. We consider an assembly system consisting of 
three robots RI, R2 and R3 and three carpets CI, C2 and C3. The carpets CI 
and C2 bring pieces of type PI and P2, respectively, and carpet C3 takes 
away the assembled pieces. Robot RI takes a piece PI, and puts it on a table 
T for the assembly. Robot R2 takes a piece P2 and assembles it with the 
piece PI which is on the table T. Robot R3 removes the defective pieces. 
The details of this example are given in [9]. 

Protocol entities: There are six PEs, RI, R2, R3, CI, C2 and C3, which 
correspond to the three robots and the three carpets, respectively. TableT is 
not considered as an entity since it is passive. A piece is denoted Pi. 

Service primitives: They are the following (i=l, 2, 3, andj=l, 2): 
MOVE.CarpetCi: Ci is actuated; ARRIVED.PieceCi: Ci has detected that a 
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Pi has reached its destination; STOP.Carpetci : Ci is stopped ; 
CHECK.PieceRj : Rj begins to check Pj ; T AKE.PieceRj : Rj takes a Pj from 
Cj; TAKE.PieceiR3: R3 takes a PI from CI; TAKE.Piece2R3: R3 takes a 
piece P2 from C2 ; T AKE.AssPieceSRJ : R3 takes an assembled piece from 
tableT; PUT.PieceRl : RI puts a PI on T; PUT.AssPiecesR2 : R2 puts an 
assembled piece on C3; ASS.PiecesR2: R2 assembles PI and P2. 

Scenario of the Service : From the initial state where the whole system is 
stopped, the scenario of the service is the following: 

Step 1: Cl is actuated (MOVE.CarpetcJ) 
Step 2: PI, which is on Cl, reaches its destination (ARRIVED.PiececJ) 
Step 3: Cl is stopped (STOP.CarpetcJ) 
Step 4: Rl checks PI (CHECK.PieceRJ): 
Step 5: If PI is bad then R3 takes it off(TAKE.Piece!RJ), andgoto Step 1. 
Step 6: If PI is good then Rl takes it from Cl (TAKE.PieceRJ) and 

Step 7: Rl puts Cl on the tableT (PUT.PieceRJ) 
Step 8 : C2 is actuated (MOVE.Carpetc2) 
Step 9 : P2, which is on C2, reaches its destination (ARRIVED.Piecec2l 

Step 10: Carpet C2 is stopped (STOP.Carpetc2) 
Step 11 : Robot R2 checks P2 (CHECK.PieceR2): 
Step 12: IfP2 is bad then R3 takes it off(TAKE.Piece2RJ) andgoto Step 8. 
Step 13: IfP2 is good then R2 takes it from C2 (TAKE.PieceR2) and 

Step 14: R2 assembles P2 with PI on the tableT (ASS.PiecesR2). 
Step 15 : If the assembly is bad, which it is detected by R2, then R3 takes it off 

(TAKE.AssPieceSR3). and goto Step 1. 
Step 16: If the assembly is good then R2 takes it and puts it on carpet C3 

(PUT.AssPiecesR2) 
Step 17: Carpet C3 is actuated (MOVE.Carpetc3) 
Step 18 : The assembled pieces reach their destination, which is detected by carpet C3 

(ARRIVED.Piecec3). 
Step 19: Carpet C3 is stopped (STOP.Carpetc3), and goto Step 1. 

Temporal constraints added to the service 

-Between MOVE.Carpetci and ARRIVED.Piececi: [10;20); (i=l,2,3) 
-Between ARRIVED.Piececi and STOP.Carpetci: [0.5;2]; (i=l,2,3) 
-Between STOP.Carpetci and CHECK.PieceRi: [5;8]; (i=l,2) 
-Between CHECK.PieceRi and TAKE.PieceiR3: [5;8]; (i=l,2) 
- Between ASS.PieceR2 and T AKE.AssPieces3 : [5;8]; 
-Between CHECK.PieceRi and TAKE.PieceRi: [1;2]; (i=l,2) 
-Between TAKE.PieceRl and PUT.PieceRl: [1;2]; 
-Between TAKE.PieceR2 and ASS.PiecesR2: [4;10]; 
-Between PUT.PieceRl (or TAKE.Piece2RJ) and MOVE.Carpetc2: [5;10]; 
-Between PUT.AssPiecesR2 and MOVE.Carpetc3 : [5; 10]; 
-Between ASS.PiecesR2 and PUT.AssPiecesR2: [2;5]; 
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-Between TAKE.Piece1R3 (or TAKE.AssPiecesR3 or STOP.Carpet(:3) and 

MOVE.Carpetc1 : [6;10]; (i=1,2) 

The service specification is represented in Fig. 12, where transition Trj 

corresponds to Step i of the scenario. The temporal constraint of each 
transition is defined by a single interval (which is shown in Fig. 12). 

1;2) 

Figure 12. Service specification of the assembling system 

Protocol Synthesis : The specifications synthesized in the static case are 

represented in Fig. 13, and consist of six 'I'..9ls modeling the the three robots 

and the three carpets, respectively. To generate these real-time PEs, the 
transit delay of all messages has been assumed to belong to [2;5]. 

(d) Carpet C1 ( t) Carpet C3 

Figure 13. Synthesized specifications of the robots and the carpets in the static case 

8. CONCLUSION 
A method for deriving real-time protocols [8] is improved and extended in 
the present paper. Our method imposes requires that the service is 
sequential. We are presently investigating an approach using the following 

three steps : (a) the given service specification S is transformed into a 

sequential service, called sseq; (b) a protocol pseq providing the sequential 

service sseq is synthesized by using our method; the obtained protocol is a 

kind of "skeleton" of a protocol P providing S; (c) pseq is transformed in 

order to obtain a protocol P which provides S. 
We note that Step (b) is realized automatically by the method presented 

in the present paper, and that Step (a) has been applied manually in the 
examples of Sect. 6 and 7 to make our method applicable. We therefore try 
to fmd a systematic way to achieve steps (a) and (c). 
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