
Specification and Verification of Synchronous Hardware 
using LOTOS 

Ji He and Kenneth J. Turner 
Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, Scotland 

Keywords: Digital Logic, Hardware Description, LOTOS, Verification 

Abstract: This paper investigates specification and verification of synchronous circuits 
using DILL (Digital Logic in LOTOS). After an overview of the DILL approach, 
the paper focuses on the characteristics of synchronous circuits. A more 
constrained model is presented for specifying digital components and 
verifying them. Two standard benchmark circuits are specified using this new 
model, and analysed by the CADP toolset (Ca:sar/Aldebaran Development 
Package). 

1. INTRODUCTION 

1.1 Background 

DILL (Digital Logic in LOTOS [14,16,17,25]) is an approach for 
specifying digital circuits using LOTOS (Language Of Temporal Ordering 
Specification [12]). DILL offers higher-level abstractions for describing 
hardware using a macro library for typical components and designs. DILL is 
used to formally specify digital hardware, using LOTOS at various 
abstraction levels. DILL addresses functional and timing aspects, supported 
by a library of common components and circuit designs, and using standard 
LOTOS tools. 

The new work reported here allows synchronous circuits to be specified 
and verified. Two hardware verification benchmarks are used as examples. 
The paper extends the applicability of LOTOS in hardware design, and so is 
of interest to the LOTOS community. Of necessity some background in 

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems
© Springer Science+Business Media Dordrecht 1999



296 

LOTOS and hardware is required. The paper demonstrates the possibility of 
hardware verification using LOTOS, although some limitations will be 
discussed. 

LOTOS supports rigorous specification and analysis, unlike semi-formal 
HDLs (Hardware Description Languages) such as VHDL (VHSIC Hardware 
Description Language [10]). LOTOS is neutral with respect to whether a 
specification is to be realised in hardware or software, allowing hardware­
software co-design [22]. LOTOS inherits a well-developed verification theory 
from the field of process algebra, and has a theory for testing and test 
derivation. There is good support from general-purpose LOTOS toolsets such 
as CADP (Cresar/Aldebaran Development Package [7]), LITE (LotoSphere 
Integrated Tool Environment) and LOLAITOPO (LOTOS Laboratory). Most of 
these tools have been used in analysing DILL specifications. DILL is actually 
realised through translation into LOTOS. 

This paper elaborates a DILL approach for modelling and verifying 
synchronous circuits. Synchronous design is chosen here as it is the main 
approach for digital technology. Control by clock signals makes it easier to 
abstract away from timing information. The current standard for LOTOS does 
not support quantified timing, although the authors have developed Timed 
DILL [16] for hardware timing analysis, using ET-LOTOS [19] as a basis. 

Section 2 discusses how DILL models hardware, particularly synchronous 
circuits. Two case studies then demonstrate that DILL can successfully 
specify and verify standard benchmark designs. The Single Pulser in 
section 3 ensures that a switch causes well-defined pulses. The Bus Arbiter 
in section 4 grants bus access to only one client at a time among several. 

1.2 Hardware Description and Verification 

Hardware description has been studied extensively. Languages such as 
VHDL, Verilog [11] and ELLA [2] are commonly used in industry. These 
languages are semi-formal because their semantics is based on simulation 
models. Other HDLs do have formal semantics, e.g. CIRCAL (Circuit 
Calculus [21]), HOL [9] and Ruby [18]. DILL most closely resembles CIRCAL 
in that both have a behavioural basis in process algebra. At a low level of 
specification, the true concurrency semantics of CIRCAL are perhaps more 
appropriate than the interleaving semantics of LOTOS. However, the 
integrated data typing in LOTOS makes it much more expressive than 
CIRCAL. In the authors' experience, DILL can be used successfully at a 
variety of abstraction levels. However, CIRCAL appears to be less effective at 
higher levels. For example, describing the behaviour of a synchronous 
circuit in CIRCAL requires the corresponding Mealy or Moore machine to be 
defined and then translated into CIRCAL. 



297 

Much of the early work on hardware verification used theorem-proving. 
Although quite general, this requires a significant amount of human 
guidance during verification. More recently model-checking, language 
containment and reachability analysis have attracted attention. Approaches 
using FSM (Finite State Machine) models can be automated, but they do not 
yet scale up to realistic hardware designs. The trend is to combine theorem­
proving and model-based approaches so as to achieve generality as well as 
automated support. LOTOS verification approaches tend to be state-based 
using an LTS (Labelled Transition System). Current LOTOS tools offer 
model checking and reachability analysis, together with equivalence or 
preorder checking. DILL can thus exploit a range of verification techniques. 

Various researchers have studied the use of LOTOS for hardware 
description. The initial work at Stirling [25] overlapped independent work in 
Ottawa [6]. The European project FORMAT [5] studied the translation of 
LOTOS to VHDL. Other hardware applications of LOTOS have included bus 
protocols [3,23] and hardware synthesis [27]. 

The new DILL model for synchronous circuits has been evaluated on two 
standard benchmark circuits [24] that are intended for comparing different 
approaches to hardware verification. The machine used by the authors for 
verification was a SUN (300 MHz CPU, 128MB memory). 

1.3 Verification with CADP 

The authors used CADP to verify DILL hardware. CADP accepts full 
standard LOTOS, using Cresar.ADT for the data part of LOTOS and Cresar for 
the behavioural part. The result is an L TS that can be used for verification. 
Aldebaran performs verification using the LTS or a network of LTSs (i.e. a 
finite state machine connecting several L TSs by LOTOS parallel and hiding 
operators). XTL (Executable Temporal Language) is a functional-like 
programming language that allows compact implementation of temporal 
logic operators. Several temporal logics such as ACTL (Action-based 
Computational Temporal Logic [4]) have been embedded in XTL. To 
partially solve the problem of state space explosion, CADP uses advanced 
verification techniques such as compositional generation, on-the-fly 
comparison, and a BOD (Binary Decision Diagram) representation of LTSs. 
These techniques permit verification of relatively large specifications. 

CADP supports verification through bisimulation and temporal logic 
property checking. For verifying DILL (LOTOS) specifications, ACTL is an 
obvious candidate because the semantics of LOTOS is also based on actions. 
ACTL is also more understandable than the J.t-calculus. The modal operators 
of HML (Hennessy-Milner Logic) are also employed in verification for 



298 

convenience. The subset of temporal operators used later in the paper is as 
follows. A, B and Care action sets, while F and G are formula sets. 

ACTL_NOT_TO_UNLESS (A, B, C): this can be read as 'notA to B 
unless C'. After an action satisfying A in the current state, all paths 
leading to an action satisfying B must also satisfy C. 

AG (F): all reachable states must satisfy F. 
AU_A_B (F, A, B, G): this is the until operatorU. A restricted form is 

used in this paper: AU_A_B (true, A, B, true). This means that for 
the current state, each of its paths should have the following property: 
the actions along the path satisfy A until there is an action that 
satisfies B. 

BOX (A, F): for the current state, all outgoing actions (if any) that 
satisfy A must result in states satisfying F. 

EVAL_A (A): yields a state set corresponding to action A. 
EX_ A (A, F): from the current state, there exists an A that can lead to 

a state satisfying F. 
WDIA (A, F): from the current state there exists a path with possible 

preceding internal actions and A, leading to a state satisfying F. 

2. MODELLING APPROACH 

2.1 General Approach 

The basic philosophy of DILL is that it should be easy for the hardware 
engineer to translate a circuit schematic into a LOTOS specification, and then 
to analyse and verify the properties of this specification. There is thus a need 
for a component library. The library is available online for research purposes 
[15] and is summarised in Table l. 

It is possible to describe logic designs at different levels of abstraction, 
and to compare a higher-level design with a more detailed one. DILL does 
not give refinement guidelines, since these will be motivated by normal 
hardware design procedures. Components in the original DILL library were 
specified by progressively combining simpler components. This approach is 
termed structural since it reflects how a component is constructed. As the 
philosophy of DILL is to enable circuits, including library components, to be 
specified at different abstraction levels, higher level specification is also 
needed. This is termed the behavioural style. It specifies only what the 
component should do, not how it is constructed. Adding a new component to 
the DILL library does, of course, need reasonable knowledge of LOTOS. 

However the existing library provides simple patterns to follow as examples. 



299 

Having abstract (behavioural) as well as design (structural) specifications in 
the library is helpful in both bottom-up and top-down design. 

Table 1. DILL Library 
Component 
Adder 
And, ... 
Clock 
Comparator 
Counter 
Decoder 

Demultiplexer 
Delay 
Divider 
Encoder 
Flip Flop 

Inverter 
Latch 
Memory 
Multiplexer 
One, .... 
Parity 
Register 

Repeater 

Variants 
2/4 inputs, behaviouraVstructural, half/full/paralleVripple 
2/3/4//8 inputs, 0/1-active tri-state enable 

11418/n inputs, behavioural/structural 
behaviouraVstructural 
2/3 inputs, behavioural/structural, 0/1-active outputs, 
BCD/Decimal/Excess-3/Gray 
112 inputs, behavioural/structural 
dynamic/general/hold/inertial/pure/setup/width/edge 
2/4/8 inputs, behavioural/structural, positive/negative edge trigger 
4/8 inputs, behaviouraVstructural, 0/l-active outputs 
D/JK/MS/RS!f, behavioural/structural, positive/negative edge trigger, 
preset, preclear, lockout 
114/8 inputs, Oil-active tri-state enable 
DIRS, 114/8 bits, behavioural/structural, preset, preclear, clocked 
behavioural/structural 
2/4 inputs, 118/n-bit, behavioural/structural 
source oflogic 110, sink 
8 inputs, behaviouraVstructural 
4/8/n bits, behaviouraVstructural, positive/negative edge trigger, load 
enable/preclear, tri-state output, bucket brigade/pass-an/shift 
/4/8 inputs, 0/l-active tri-state enable 

Since component specifications are translated into LOTOS, the designer 
must be familiar with how to combine LOTOS behaviour expressions. 
Fortunately the relationship between a circuit design and its DILL 

representation is straightforward, and does not require detailed LOTOS 

knowledge. The principal method of connecting components is to compose 
their behaviours in parallel. The synchronisation rules of LOTOS allow 
components to be connected in a natural way. 

LOTOS, like most specification languages, deals only with discrete events. 
It is therefore signal changes that are modelled in asynchronous (unclocked) 
design. However in synchronous circuits, changes in signal level are 
controlled by clock pulses (except for components such as level-triggered 
flip-flops). Signal levels can thus be treated as maintained during a clock 
cycle, and so correspond to one LOTOS event per clock cycle in the 
synchronous case. 

Wires or tracks between components are not normally represented 
explicitly in DILL. A component's ports (e.g. its pins) are represented by 
LOTOS gates. (The term 'gate' will be qualified as it has different meanings 
in hardware and LOTOS.) and To 'wire up' two ports, their LOTOS gates are 



300 

merely synchronised. Since LOTOS allows multi-way synchronisation, it is 
easy to connect one output to several inputs. In high-speed circuits, the 
transmission time over a wire may be modelled as a delay. Multi-bit signals 
or multi-wire connections (e.g. buses) and multi-component assemblies (e.g. 
memory arrays) are supported by DILL. 

2.2 Synchronous Circuit Model 

A piece of combinational logic merely combines its inputs to produce 
outputs; it is referred to as a stage in the following. Sequential logic 
incorporates feedback, so the state of an output depends on previous inputs. 
Synchronous circuits, as one form of sequential design, are distinguished 
from asynchronous circuits through control by a global clock. 

The classical synchronous circuit model is shown in figure 1. In this 
model, the combinational logic provides the primary outputs and internal 
outputs according to the primary inputs and internal inputs. Internal outputs 
are then fed into state hold components to produce the internal inputs. 
Changes of the internal inputs are synchronised with the clock, in other 
words they are changed only at a particular moment of the clock cycle 
(usually its transition). The internal inputs determine the state of the whole 
circuit. 

For a synchronous circuit, the designer must ensure that the clock cycle is 
slower than the slowest stage in a circuit. This can be done by analysing the 
timing characteristics of components used in the circuit. The untimed version 
of DILL cannot of course confirm if the clock constraint is met. As discussed 
in [16], Timed DILL can specify such constraints. However, sections 2.4 and 
3 will show that properly modelling the storage components and 
environment ensures a DILL specification always meets the clock condition. 

primal)· 
lnpuls. 

inlemal 

inputs. 

Clk 

c:omblnatlor.al 
logic 

.sta.t101 
hald 

oompon.e.nt 

Figure 1. Synchronous Circuit Model 

primary 
OLJipUIS 

irtemal 
oJiputs 



301 

In synchronous design, the primary inputs are usually synchronised with 
the clock signal. This eases design and analysis of synchronous circuits. 
DILL incorporates this practice into its synchronous circuit model, assuming 
that the primary inputs have already been synchronised with the clock signal. 

Besides the above, the DILL synchronous model has two more 
restrictions. It is important that there is no cyclic connection within a stage, 
and storage components have to be specified in the behavioural style. These 
restrictions are related to the way components are modelled, for otherwise a 
DILL specification might deadlock where a real circuit could still work. This 
is discussed further in section 2.4 . 

2.3 Synchronous Model for Basic Logic Gates 

The fundamental DILL model for basic logic gates allows an input or 
output port to offer an event corresponding to a signal change at any time. 
This model is a very generic representation of logic gates used in real world, 
but this may lead to non-determinism due to the lack of quantified timing 
[17]. The gate model therefore has to be constrained according to the 
environment in which the gates operate. Logic gates are presumed to be part 
of a synchronous design. If the clock is slow enough to let every signal settle 
down, it is reasonable to allow the value of each signal to change just once 
per clock cycle. The transient values are ignored because they do not affect 
circuit behaviour. The synchronous model allows basic logic gates (and thus 
all other components within combinational logic) to wait until all inputs 
occur before outputting the corresponding value. 

The following example models a two-input nand gate. Note that inputs 
are interleaved, i.e. they can occur in any order. It might appear that the 
order of input events could be fixed since it does not influence the 
functionality of a component. This would result in a smaller state space 
when circuits are verified. Unfortunately this might cause deadlock when 
components are connected. Suppose that components A and B each have two 
inputs. Imagine that inputs are required in the order /pAl before IpA2, and 
lpBl before lpB2. This would lead to deadlock if the components shared 
inputs, with !pAl connected to IpB2 and lpA2 connected to lpBJ. For this 
reason, DILL insists on fully interleaved inputs. 

process Nand2 [Ipl, Ip2, Op]: noexit := 
(Ipl ?dtlpl :Bit; exit (dtlpl, any Bit) 
Ill 
Ip2 ?dtlp2 : Bit; exit (any Bit, dtlp2)) 

>>accept dtlpl, dtlp2 :Bit in 
(Op !(dtiPl nand dtip2); 
Nand2 [Ipl, Ip2, Op]) 

endproc (* Nand2 *) 

(* allow one input *) 

(* allow other input •) 
(* accept both inputs •) 

(• output nand of inputs •) 
(* repeat behaviour •) 



302 

2.4 Synchronous Model for State Hold Components 

The gate model just discussed is not suitable for circuits with cyclic 
connections since these result in input-output interdependency and thus in 
specification deadlock. Cyclic connections are common in latches and flip­
flops, so state hold components are modelled in the behavioural style. At a 
higher level of specification and design, problems due to cyclic connections 
do not arise. For synchronous circuits, two modifications are made to the 
fundamental DILL model. LOTOS events are considered to model signal 
levels rather than changes, and a constraint is added to reflect the assumption 
of a slow enough clock. A DFF (Delay Flip-Flop) is a simple memory 
element with data input D, clock input Clk and output Q. Its specification is 
as follows: 

process DFF [D, Clk, Q] (dtD, dtClk: Bit): noexit := 
D ?newdtD : Bit; DFF [D, Clk, Q] (newdtD, dtClk); 
Clk ?newdtClk : Bit; 

([(dtClk eq l) and (newdtClk eq 0)]--+ 
DFF [D, Clk, Q] (dtD, newdtClk) 

[] 
[(dtClk eq 0) and (newdtClk eql)]--+ 

Q !dtD; 
DFF [D, Clk, Q] (dtD, newdtClk) 

) 
endproc ("' DFF *) 

("' input new data "') 
("' input clock pulse *) 

("' ignore negative pulse *) 
(* continue behaviour *) 

(* react to positive pulse *) 
(* output stored data *) 

(* continue behaviour *) 

Suppose a combinational logic circuit feeds into this flip-flop as the state 
hold component. If the clock signal is not constrained, it is possible that the 
clock moves to the next cycle before the combinational logic has settled 
down. The model of a synchronous circuit must exclude this possibility. 
After a positive-going transition of the clock signal, if the D input of the flip­
flop has not occurred yet then the next positive-going transition of clock 
signal must not occur. This is ensured by the following constraint on the D 
flip-flop specification. The process Cons _DFF deals with the initial state of 
the flip-flop The next positive-going clock transition is handled by process 
Cons_DFF_Aux. The full specification of aD flip-flop combines DFF and 
Cons _DFF with the LOTOS parallel operator. 

process Cons_DFF [D, Clk] (dtClk: Bit): noexit := 
D ?newdtD : Bit; 
Cons_DFF [D, Clk] (dtCik) 

[] 
Clk ?newdtClk : Bit; 
([(newdtCik eq l) and (dtCik eq 0)]--+ 

Cons_DFF _Aux [D, Clk] (newdtClk) 
[] 

[(newdtCik eq 0) and (dtCik eq 1)] --+ 
Cons_DFF [D, Clk] (newdtCik)) 

where 

(* input new data *) 
(* continue behaviour *) 

(* input clock pulse *) 
(* react to positive pulse *) 
(* after one clock pulse *) 

(* ignore other pulses *) 
(* continue behaviour *) 



303 

process Cons_DFF _Aux [D, Clk1 (dtClk : Bit) : noexit := 
D ?newdtD : Bit; Clk !0; Clk ! I; (* input before negative pulse *) 
Cons_DFF _Aux [D, Clk1 (I) (*continue behaviour*) 

D 
Clk !0; D ?newdtD : Bit; Clk ! I; (* input after negative pulse *) 
Cons_DFF _Aux [D, Clk1 (I) (*continue behaviour*) 

endproc (* Cons_DFF _Aux *) 
eodproc (* Cons_DFF *) 

3. CASE STUDY: A SINGLE PULSER 

The informal description of the Single Pulser appears in the standard 
benchmark document [24]. A Single Pulser is a clocked-sequential device 
with a one-bit input I and a one-bit output 0. It deals with a debounced 
switch that is on (true) in the down position and off(false) in the up position. 
When the Single Pulser senses the switch being turned on, it must assert an 
output signal lasting one clock cycle. The circuit should not allow additional 
outputs until after the switch has been turned off. The benchmark also 
informally defines some properties that the Single Pulser must respect. 

3.1 Specification 

Figure 2 shows a design for the Single Pulser given in the benchmark. 
P _In is the input from the switch, and P _Out is the output from the circuit. It 
is very straightforward to represent the Single Pulser design in DILL. 
Because the clock is implicit in a synchronous circuit design, circuit 
properties may not actually refer to it. Experience shows that hiding the 
clock signal can make the temporal logic formulae clearer. The Single Pulser 
specification is as follows (omitting process gate names for brevity): 

DFF 
r.' Y1r.-

r.i.•..:l •··· ... ..!. T1 :1 ~twert&., --·-
It OFF 

:E•_::-.-

Figure 2. Single Pulser Design 

hide Inp, N_Find, Find, Clk in 
((Cons_DFF I[ N_Find, Inp 11 (Inverter I[ Find 11 And2)) 
I[ Clk, Inp 11 
Cons_DFF) 

I[ P _In, Clk, P _Out 11 
Env 

P r•:-
And2 --

(* hide internal gates *) 
(* flip-flop, inverter, and*) 

(* synchronised with ... *) 
(* flip-flop *) 

(* synchronised with ... *) 
(* the environment *) 



304 

The Env process serves as the environment constraint on the Single 
Pulser. It permits P _In to come before each positive-going clock transition, 
and allows the next clock cycle only after P _Out has occurred. Without this 
constraint, the properties discussed later are invalid. The constraint between 
P _In and Clk ensures that P _In is synchronised with Clk. The constraint 
between inputs and output respects the slow-clock requirement: P _Out must 
happen before the next positive-going clock transition. These assumptions 
are not automatically guaranteed by the circuit design, but they are required 
by the DILL synchronous circuit model. In outline, Env is specified as: 

(P _In? dtPin: Bit; 
Clk! I; 
(Clk! 0; exit Ill P _Out? dtPOUt: Bit; exit)) 

>> 
Env 

3.2 Verification 

(* pulse in *) 
(* positive-going clock *) 

(* negative-going clock, pulse out *) 
(* and then ... *) 

(* same environment behaviour *) 

The formulation of properties in CADP was briefly explained in 
section 1.3 For brevity the properties are given only informally here; see the 
details in [ 17]. Verification of the Single Pulser was undertaken using only 
XTL model checking, although it is not difficult to give a higher level 
specification in DILL/LOTOS and then check for equivalence between the two 
levels. Because LOTOS events are modelled as signal levels instead of signal 
transitions, representing a rising edge needs two clock cycles. In the first 
cycle the signal should be at level 0, in the second cycle it should be at level 
1. Each signal happens once and only once in a clock cycle, so the second 
appearance of the same signal indicates the second clock cycle. 

Property 1: If P _In has a rising, eventually P _Out becomes true. 
Property 2: Whenever P _Out is l, it becomes 0 in the next state and 

remains 0 at least until the next rising edge on P _In. 
Property 3: Whenever there is a rising edge, and assuming that the 

output pulse does not happen immediately, there are no more rising 
edges until that pulse happens. In other words, there cannot be two 
rising edges on P _In without a rising edge on P _Out between them. 

The size of the LTS produced by Cresar.ADT and Cresar from the DILL 
specification has 295 states and 538 transitions. Aldebaran minimises the 
L TS to a smaller one having 97 states and 17 4 transitions modulo strong 
bisimulation. Because the resultant LTS is small, all the generation and 
verification steps take negligible time. Aldebaran uses the L TS to show that 
the DILL design is deadlock free. The XTL tool is also able to demonstrate 
that all the supposed properties of the circuit are valid. 



305 

4. CASE STUDY: A BUS ARBITER 

In this section, the DILL approach is evaluated using another benchmark 
circuit. For brevity, the specifications are not given here but can be found in 
[ 17]. The purpose of the Bus Arbiter is to grant access on each clock cycle to 
a single client among a number of clients requesting use of a bus. The inputs 
to the arbiter are a set of request signals, each from a client. The outputs are 
a set of acknowledge signals, indicating which client is granted access 
during a clock cycle. The documentation also defines some properties that 
the Bus Arbiter must respect. Thse are given informally and also in CTL 
(Computational Temporal Logic). Besides listing the properties to be 
fulfilled, the benchmark documentation also gives an arbitration algorithm in 
plain English. Finally the gate level implementation of the Bus Arbiter is 
provided as a circuit diagram. 

ti 

Clk 

gl 

0 

Figure 3. Bus Arbiter With Three Cells 

r-----------------~------------------to 

DFF 
~ 

Req--------------~----------------~-+----~ 
oi 

Figure 4. Design of An Arbiter Cell 



306 

4.1 Higher-Level Specification in LOTOS 

LoTOS supports specification at various levels of abstraction. Although 
the benchmark circuits have been studied by many researchers, as far as the 
authors knowledge there has not been a formal specification of the 
arbitration algorithm used in the design. With LOTOS, it is possible to 
provide such a higher-level specification. There are two clear benefits of this 
formalisation. Firstly, better understanding of the algorithm can be gained 
from rigorous specification. Secondly, correctness of the algorithm itself can 
be ensured before the circuit is built and verified. Flaws in the algorithm will 
be more time-consuming to fix if they are found only after implementation. 

The arbitration algorithm embodied in the design is a round-robin token 
scheme with priority override. Normally the arbiter grants access to the 
highest priority client: the one with the lowest index number among all the 
requesting clients. However as requests become more frequent, the arbiter is 
designed to fall back on a round-robin scheme, so that every requester is 
eventually acknowledged. This is done by circulating a token in a ring of 
arbiter cells, with one cell per client. The token moves once every clock 
cycle. If a client's request persists for the time it takes for the token to make 
a complete circuit, that client is granted immediate access to the bus. 

Translating the algorithm to LOTOS is quite straightforward, mainly using 
LOTOS value expressions. For example each cell has two associated 
variables: token indicates if the token is in the cell, and waiting indicates if 
the client's request has persisted for a completed token cycle. Circulating the 
token, (re)setting the waiting variable and so on correspond to LOTOS value 
expressions. For an arbiter with three cells, the LOTOS specification has 79 
lines (including comments) for the behavioural specification. 

4.2 Lower-Level Specification in DILL 

The design of the arbiter consists of repeated cells. Each cell is in charge 
of accepting request signals from a client, and sending back 
acknowledgements to the same client. Figure 3 shows an arbiter with three 
cells. Figure 4 shows the design of each cell. The first cell is slightly 
different because it is assumed that the token is initially in the first cell. 

The principle of the circuit will not explained in detail here. Briefly, the ti 
(token in) and to (token out) signals are for circulation of the token. The to 
output of the last cell connects to the ti input of the first cell to form a ring. 
The gi (grant in) and go (grant out) signals are related to priority. The grant 
of cell i is passed to cell i+ 1, meaning no client of index ::;; i is requesting. 
Hence a cell may assert its acknowledge output if its grant input is asserted. 
The oi (override in) and oo (override out) signals are used to override the 



307 

priority. When the token is in a persistent requesting cell, its corresponding 
client will get access to the bus. The oo signal of the cell is set to 1. This 
signal propagates down to the first cell and resets its grant signal through an 
inverter. As a consequence the gi signal of every cell is reset, in other words 
the priority has no effect during this clock cycle. Within each cell, register T 
stores 1 when the token is present; register W (waiting) is set to 1 when there 
is a persistent request. Initially the token is assumed to be in the first cell. 

The components of each cell are in the DILL library, so specification of a 
cell is very easy. The specification of an arbiter with three cells is obtained 
by connecting three such processes. As for the Single Pulser, there is also an 
environment constraint in the structural specification of the arbiter to meet 
the conditions of the synchronous circuit model discussed in section 2.2. 

Since the properties that the arbiter must fulfill are given in the 
benchmark documentation, it is obvious that the verification should consist 
of model checking these properties. Equivalence checking is also performed 
since two levels of specifications are identified. 

4.3 Verification 

Section 1.3 explained how to formulate properties in CADP. They are 
translated into action-based temporal logic (ACTL and HML). The following 
properties refer to client 0; the formulae for other clients have a similar form. 

Property 1: No two acknowledge outputs are asserted in the same 
clock cycle (safety). 

AG( 
not ( 
EX_A( 
EVAL_A(AckO !1) 
{WDIA (EVAL_A (Ackl !1), true) or 
WDIA (EVAL_A (Ack2 !1), true))))) 

(* for all states ... *) 
(* it is not the case that ... *) 

(* there exists action *) 
(* AckO ! 1 leading to ... *) 

(* action Ackl ! 1 or *) 
(* action Ack2 ! 1 *) 

Property 2: Every persistent request is eventually acknowledged 
(liveness). 

AG( 
BOX( 
EVAL_A (ReqO !I), 
AU_A_B (true, true, 
(EVAL_A (AckO !l) or 
EVAL_A (ReqO !0)), true))) 

(* for all states ... *) 
(* after all its outgoing action *) 

(* which is ReqO ! l ... *) 
(*until ... *) 

(* eventually AckO ! l ... *) 
(* unless ReqO !0 *) 

Property 3: Acknowledge is not asserted without request (safety). 
AG ( (* for all states *) 
ACTL_NOT_TO_UNLESS ( (*not ReqO !0, AckO !I unless ReqO!l *) 
EV AL_A (ReqO !0), (* after ReqO !0 *) 
EVAL_A (AckO !1), (* AckO !lis impossible ... *) 
EV AL (ReqO ! l ))) (* unless after ReqO ! l *) 



308 

To verify the higher-level specification against the temporal logic 
formulae, the LTS of the specification was produced first. Cresar generates 
an LTS with 3649 states and 7918 transitions. Aldebaran reduces this to 379 
states and 828 transitions with respect to strong bisimulation. Both 
generation and reduction take seconds. The temporal logic formulae are then 
checked against the minimised LTS. Each is verified as true within 1 minute. 

The real challenge comes when the lower-level DILL specification is 
verified. The state space is so large that direct generation of the LTS from 
the LOTOS specification is impractical. As mentioned before, there are 
several advanced techniques implemented in CADP to tackle the problem of 
state space explosion. Nevertheless, using on-the-fly verification of the 
arbiter also fails after considerable run-time. CADP does not currently 
support the direct generation ofBDDs from a LOTOS specification. 

Compositional generation was tried out to verify the arbiter. Basically the 
idea is that of 'divide and conquer'. A LOTOS specification is divided into 
several smaller specifications to make sure that it is possible for Cresar to 
generate an L TS for each of them. Then Aldebaran is used to reduce these 
L TSs with respect to a suitable equivalence relation. The minimised LTSs 
are then combined using the LOTOS parallel operator (and also the hide 
operator if necessary) to form a network of communicating L TSs (the CADP 
term). At this stage, an LTS might be produced from the network, or on-the­
fly verification might be performed against the network. In order to get valid 
verification results, special attention must be given to the equivalence 
relation that is used. The relation must be a congruence at least with respect 
to the compositional operators, here the LOTOS parallel and hide operators. 
The relation must also preserve the properties to be verified. This ensures 
that the resulting network of communicating L TSs will respect the same 
properties as the original LOTOS specification. 

Among the benchmark properties, the first and the third concern safety 
while the second concerns liveness. Safety equivalence [ 1] preserves safety 
properties, while branching bisimulation equivalence [26] preserves liveness 
properties when there are no livelocks in specifications. Both of these 
equivalences are congruences with respect to the parallel and hide operators. 
These two equivalences are thus appropriate to compositional generation. 

The arbiter design was divided into three pieces, one per cell. After about 
seven minutes, an LTS that is safety equivalent to the LOTOS specification of 
the design is generated. The two safety properties were verified to be true 
against this LTS, implying that the design also satisfies these safety 
properties. Verification of the formulae takes just seconds. However 
generating the LTS which is branching equivalent to the design takes almost 
one day, after which the liveness property is also verified to be true. 



309 

Before checking equivalence, a suitable equivalence must be chosen. For 
most systems, observational equivalence is an obvious choice. Informally it 

means that two systems have exactly same behaviour in terms of the 
observable actions. For hardware systems, testing equivalence (two 
specifications pass or fail exactly the same external tests) is also used as a 

criterion in some approaches such as CIRCAL. The algorithm for testing 
equivalence is not implemented in CADP, so the stronger notion of 
observational equivalence was used when checking the Bus Arbiter. 

As before, compositional generation was used to generate the L TS for the 
design. This time each cell was reduced with respect to observational 
equivalence, since this is a congruence for the parallel and hide operators. 
Generating the L TS took about eight minutes. This LTS was expected to be 

observationally equivalent to that for the higher-level specification. However 
Aldebaran discovered that they are not! Table 2 is one of the sequences 

given as a counter-example. (The Aldebaran output has been rendered more 
readable here.) This sequence indicates that in the first three clock cycles 
only client 0 requests the bus; both the high-level specification and the low­

level design grant access to this client. In the fourth cycle, client 0 cancels its 
request but client 1 begins to request access. At this point the two levels of 
specifications are different: the lower-level specification offers 0 for Ackl, 
whereas the higher-level specification offers 1 for Ackl. 

Table 2. A Counter-Example generated by Aldebaran 
Cycle 1 Cycle 2 Cycle3 Cycle4 

ReqO 1 1 1 0 
Reql 0 0 0 0 
Req2 0 0 0 0 
AckO 1 1 1 
Ackl 0 0 0 0 or 1 
Ack2 0 0 0 

After step-by-step simulation of the counter-example, it was soon 
discovered that the circuit may not properly reset the oo (override out) signal 

to 0. Suppose a cell has been requesting access, so its W register is set to 1. If 

the cell cancels the request in the very clock cycle that the token happens to 

arrive. In this situation, because the client has already cancelled its request it 

should be possible for another client to get the bus. However, the design sets 

the oo signal to override the priority as if this client were still requesting. 
This prevents any other client from accessing the bus in this clock cycle. 

Fixing the problem was much easier than finding it. The correction was 
to connect the Req signal to the And gate that follows the W register. (See 
[ 17] for the revised circuit diagram.) The output of the And gate guarantees 
that the oo signal is always correctly set or reset according to the request 



310 

signal in the current clock cycle. This modified design was verified to be 
observationally equivalent to the higher-level algorithmic specification. 

As mentioned in section 2.2, in DILL the inputs are assumed to be 
synchronised with the clock signal. Suppose that the Req signal in figure 4 
is always ready before the active clock transition, i.e. is not synchronised 
with the clock. In this case the problem discussed above might not happen. 
As the benchmark documentation does not state if inputs are synchronised 
with the clock or not, it is believed that the modified design is more robust. 

5. CONCLUSION 

With the new approach to specifying synchronous, it is possible to verify 
standard hardware benchmarks - here, the Single Pulser and the Bus Arbiter. 
In comparison with other techniques applied to the same case studies, e.g. 
COSPAN [8] and CIRCAL [20], DILL is much more convenient for giving a 
higher-level specification. This is not so surprising since LOTOS is an 
expressive language. CIRCAL, by way of contrast, gives an abstract view of a 
synchronous circuit by directly specifying its corresponding finite state 
machine, which is not always a natural representation of circuit behaviour. 

Being based on process algebra, DILL specifications can be verified by 
equivalence and preorder checking. This is distinctive in that most hardware 
verification systems are based on theorem proving or model checking. The 
former needs human assistance to complete a proof. The latter needs 
specialised expertise since temporal logic specifications are not easy to write. 
In contrast, equivalence or preorder checking makes it possible to write the 
specification in the same formalism as the implementation, here DILL (or 
really, LOTOS). The correctness of a DILL specification can be easily 
checked by simulation tools. Another benefit of equivalence checking is seen 
in the Bus Arbiter case study. As a classical verification benchmark, the Bus 
Arbiter has been investigated using many approaches. But as far as the 
authors know, the defect reported in section 4.3 is a new discovery. 

However, the size of the circuit that can be effectively verified is small 
compared to that handled by other mature hardware verification tools. 
COSP AN can verify an arbiter with four cells with the consumption of about 
1 MB memory, due to a symbolic representation using BDDs and efficient 
reduction techniques [8]. CIRCAL is reported to generate the state space of an 
arbiter with up to 40 cells using reasonable computing resources, although 
the actual memory used was not reported [20]. Again this is due to the BDD 
representation of the CIRCAL specification. Note that CIRCAL was not in fact 
used to verify the arbiter formally. [20] just gives a test pattern to show that 
even if all clients request the bus, only one can gain access to the bus in each 



311 

clock cycle. CIRCAL does not have the functionality of temporal logic model 
checking. Because of its limited power in specifying higher-level behaviour, 
equivalence checking was not used in the CIRCAL case study. CADP on the 
other hand consumes more than 100 MB of memory to produce the state 
space of a three-cell arbiter. Although the resulting state space is relatively 
small, the intermediate stages of generation need considerable memory. 

There are two main reasons for this performance limitation. One comes 
from the modelling language LOTOS and the other comes from CADP. Firstly, 
for synchronous circuits the order in which signals occur during a clock 
cycle is not so important. So it is reasonable to imagine that the inputs 
happen together and then output occurs. But when modelling such circuits in 
DILL, independent (interleaved) inputs are allowed so the state space is 
considerably enlarged. Secondly, CADP is a tool under development and 
currently some of its features are mainly based on explicit state exploration. 
Because CADP cannot produce the minimised state space in the first place, 
large amounts of memory have to be consumed before a smaller L TS can be 
produced by minimisation. On-the-fly algorithms are of some help, but they 
apply only in particular situations. For example, on-the-fly observational 
equivalence checking is not supported by CADP. Also CADP does not offer a 
BDD representation of LOTOS specifications, although BDDs are used to 
represent intermediate data types in some algorithms. Fortunately CADP is 
currently being actively improved by the CADP developers. 

REFERENCES 

[1] A. Boua.ijani, J. C. Fernandez, et al. Safety for branching time semantics. In Automata, 
Languages and Programming, LNCS 510, pages 76-92. Springer-Verlag, Berlin, 1991. 

[2] R. Boulton, M. J. C. Gordon et al. The HOL verification of ELLA designs. TR 199, 
University of Cambridge Computer Laboratory, Aug. 1990. 

[3] G. Chehaibar, H. Garavel, et al. Specification and verification of the PowerScale bus 
arbitration protocol: An industrial experiment with LOTOS. TR 2958, INRIA, Le Chesnay, 
Aug. 1996. 

[4] R. De Nicola and F. Vaandrager. Action versus state based logics for transition systems. 
In Semantics for Systems of Concurrent Processes, LNCS 469, pages 407-419. Springer­
Verlag, Berlin, 1990. 

[5] C. Delgado Kloos, T. de Miguel eta/. VHDL generation from a timed extension of the 
formal description technique LOTOS with the FORMAT project. Microprocessing and 
Microprogramming, 38:589-596, 1993. 

[6] M. Faci and L. M. S. Logrippo. Specifying hardware in LoTOS. In Proc. Computer 
Hardware Description Languages and Their Applications XI, pages 305-312. North­
Holland, Amsterdam, Apr. 1993. 

[7] J.-C. Fernandez, H. Garavel, eta/. CADP (Cresar/Aldebaran development package): A 
protocol validation and verification toolbox. In R. Alur and T. A. Henzinger, editors, Proc. 



312 

Computer-Aided Verification VIII, LNCS 1102, pages 437-440. Springer-Verlag, Berlin, 
Aug. 1996. 

[8] K. Fisler and R. P. Kurshan. Verifying VHDL designs with COSPAN. In Formal Hardware 
Verification Methods and Systems in Comparison, LNCS 1287, pages 206-247. Springer­
Verlag, Berlin, 1997. 

[9] C. A. R. Hoare and M. J. C. Gordon, editors. Mechanized Reasoning and Hardware 
Design. Prentice Hall, Englewood Cliffs, 1992. 

[10] IEEE. VHSIC Hardware Design Language. IEEE 1076. Institution of Electrical and 
Electronic Engineers Press, New York, 1993. 

[11] IEEE. IEEE Standard Hardware Design Language based on the Verilog Hardware 
Description Language. IEEE 1364. Institution of Electrical and Electronic Engineers 
Press, New York, 1995. 

[12] ISOIIEC. Information Processing Systems- Open Systems Interconnection- LOTOS- A 
Formal Description Technique based on the Temporal Ordering of Observational 
Behaviour. ISOIIEC 8807. International Organization for Standardization, Geneva, 1989. 

[13] ISOIIEC. Information Processing Systems- Open Systems Interconnection­
Enhancements to Loros. International Organization for Standardization, Geneva, Apr. 
1998. 

[14) Ji He and K. J. Turner. Extended DILL: Digital logic with LOTOS. TR CSM-142, 
Computing Science and Mathematics, University of Stirling, UK, Nov. 1997. 

[15] Ji He and K. J. Turner. DILL (Digital Logic in LOTOS) translator. http://www.cs.stir.ac.ukl 
-kjt/software/di/l.html, Jan. 1998. 

[16) Ji He and K. J. Turner. Timed DILL: Digital logic with LOTOS. TR CSM-145, 
Computing Science and Mathematics, University of Stirling, Apr. 1998. 

[17] Ji He and K. J. Turner. Modelling and verifying synchronous circuits in DILL. TR CSM-
152, Computing Science and Mathematics, University of Stirling, Feb. 1999. 

[18] G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor, Formal 
Methods For VLSIDesign, pages 13-70. Elsevier Science Publishers, Amsterdam, 1990. 
[19] L. Leonard and G. Leduc. An introduction to ET-LOTOS for the description of time­

sensitive systems. Computer Networks and ISDN Systems, 28:271-292, May 1996. 
[20] G. A. McCaskill and G. J. Milne. Sequential circuit analysis with a BDD based process 

algebra system. TR HDV-25-93, Computer Science, University ofStrathclyde, Jan. 1993. 
[21] G. J. Milne. The Formal Specification and Verification of Digital Systems. McGraw­

Hill, New York, 1994. 
[22] L. Sanchez Fernandez, M. L. L6pez eta/. Co-design at work: The Ethernet bridge case 

study. Current Issues in Electronic Modelling, 8, Apr. 1996. 
[23] M. Sighireanu and R. Mateescu. Validation of the link layer protocol of the IEEE-1394 

serial bus ('Firewire'): An experiment withE-LOTOS. TR 3172, Institut National de 
Recherche en Informatique et Automatique, Le Chesnay, May 1997. 

[24] J. Staunstrup and T. Kropf. IFIP WG10.5 benchmark circuits. http://goethe.ira.uka.de/ 
hvg/benchmarks. html, July 1996. 

[25] K. J. Turner and R. 0. Sinnott. DILL: Specifying digital logic in LOTOS. In R. L. Tenney, 
P. D. Amer, and M. D. Uyar, editors, Proc.Formal Description Techniques VI, pages 71-
86. North-Holland, Amsterdam, 1994. 

[26] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation. 
TR CS R8911, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. 

[27] K. Yasumoto, A. Kitajima eta/. Hardware synthesis from protocol specifications in 
LOTOS. InS. Budkowski, E. Najm, and A. Cavalli, editors, Proc. Formal Description 
Techniques XI/Protocol Specification, Testing and Verification XVIII. Chapman-Hall, 
London, 1998. 


