
MODELING DISTRIBUTED STATE AS AN 
ABSTRACT OBJECT 

Pertti Kellomaki and Tommi Mikkonen 
Tampere University of Technology 

P.D.Box 553, Fin-33101 Tampere, Finland 
{pk, tjm}@cs.tut.fi 

1. Introduction 

Object-oriented software development emphasizes the use of abstractions. Inheritance 
is used for factoring common structure and functionality to abstract classes, providing 
abstract interfaces to objects. This helps in avoiding premature implementation bias. 

Current methods of software engineering, such as OMT (Rumbaugh et at., 1991), 
focus on the behavior of implementation level objects. In distributed systems, 
however, we can also identify abstractions that arise from the cooperation of several 
objects. These abstractions help in explaining the collective behavior of objects in 
more high level terms. An example of such abstractions is the way various 
components of a telephone network cooperate in order to provide a phone call. 

Formal approaches to object-oriented development like Z++ (Lano, 1991) or 
VDM++ (Durr et at., 1992) also usually focus on the behavior of single objects. In 
this paper, we use the DisCo specification method (Jarvinen, 1992), (Jarvinen et at., 
1991), which has been explicitly designed for expressing collective behavior in terms 
of synchronous actions. The DisCo language has a formal basis in the joint action 
theory (Back et at., 1988), (Jarvinen et aI., 1990) and Temporal Logic of Actions 
(Lamport, 1994), which gives DisCo specifications an unambiguous meaning. We can 
thus reason informally or formally about the behavior described by a DisCo 
specification. Moreover, a DisCo specification can be used as a precise reference to 
answer questions about the intended behavior of the system. 

F. J. Rammig (ed.), Distributed and Parallel Embedded Systems
© Springer Science+Business Media New York 1999



224 Modeling Distributed State as an Abstract Object 

We see the possibility of early validation and verification of behavioral properties 
as the main advantage of our approach. When abstractions are expressed using a 
precise notation, we can use them for more than just conveying informal intuition. 
Animation can be used when specifications are validated by experts of the application 
domain, and informal or formal reasoning may be used for verifying temporal 
properties of the specification. 

The rest of this paper is structured as follows. Section 2 introduces the basics of the 
DisCo method. Section 3 discusses abstractions and their temporal behaviors, and 
gives an example of such an abstraction. Section 4 discusses validation and 
verification using explicit abstractions of cooperation. We focus on effects on early 
stages of development. Related work is presented in Section 5, and Section 6 lists the 
main conclusions. 

2. The DisCo method 

In this section we give a short overview of DisCo, a specification method and 
language for the specification of reactive systems. For the purposes of this paper, the 
most important issues are the closed world principle, superposition, and preservation 
of properties in a refinement. 

The approach adopted in DisCo is to begin the development by identifying 
variables and interactions whose role is fundamental to the behavior. The variables at 
this level may represent implementation-level entities such as phones, or abstractions 
such as phone calls. Details are then added in a modular manner, allowing 
implementation of the high-level abstractions by using more concrete objects. 

In DisCo, variables are defined in terms of classes that are patterns for objects. 
Each object can be understood as a structured variable. Objects may contain local 
variables, references to other objects, and nested statemachines similarly to 
Statecharts (Harel, 1997). In addition, objects can be associated with each other by 
using relations. 

The underlying computational model is based on joint actions, where a number of 
objects may exchange information. An action may be executed whenever suitable 
objects for which the action guard evaluates to true exist. Action execution is atomic, 
and nondeterministic choice is used for modeling concurrent activities. Actions are 
given in the format: 

name(participants ): 
when guard 
-> body, 

where participants is a list of formal names for the participating objects, guard is a 
boolean-valued expression, and body is a sequence of statements. 

At a high level of abstraction, it is not always clear who initiates operations, 
especially if several objects are involved. The joint action approach considers this to 
be an implementation detail that can be deferred, and therefore does not indicate 
which component initiates the execution of an action. Adopting this simplification 
liberates us from programming-level abstractions, making the approach suitable for 



Modeling Distributed State as an Abstract Object 225 

high level specification where only the information exchanged and the commitment of 
the communicating parties is of interest (Kurki-Suonio et at., 1997). 

2.1. Closed-World Principle 

The closed-world principle is the philosophical backbone of the DisCo methodology. 
Each DisCo specification is a complete description of a system in the sense that it 
describes all the possible changes to the variables introduced in the specification. The 
closed world principle implies that every DisCo specification models both a system 
and its environment, thus facilitating reasoning about their collective behavior. 

Any introduction of new properties, referred to as a refinement, reveals more 
properties of the system, but cannot allow behaviors that the more abstract level does 
not allow. Thus, refinements can be understood analogous to dimensions of vectors. 
The analogy extends to the possibility to project the behavior of the system into a 
certain set of refinement steps. 

2.2 Superposition and Preservation of Properties 

DisCo specifications may be nondeterministic. Refinement steps may be used to 
superimpose stronger constraints on nondeterminism, by introducing new variables 
and operations on them. Operations may only assign to variables introduced in the 
same refinement step. Thus, a DisCo refinement can be understood as a system-wide 
layer, that applies advantages of program slices (Weiser, 1992) to specification. The 
method enforces that safety properties ('Something bad will never happen') 
introduced in one specification layer cannot be invalidated in subsequent layers. As 
guards of actions can be made stronger, preservation of liveness properties 
('Something good will eventually happen') are not guaranteed by construction. 

With such refinements, a specification can be "broadened" by providing new 
aspects as well as "deepened" by introducing new details on how some operations are 
implemented. The former allows incremental specification when the specification is 
still incomplete, whereas the latter enables implementation of an operation by using a 
more concrete representation. In practice, there may not always be clear distinction 
between the two. 

3. Cooperation as an object 

In a distributed system, the state of a high level abstraction, such as a phone call, may 
be distributed in the local states of several objects. We make the state of the 
abstraction explicit by representing the abstraction as an object. This helps in focusing 
on the collective behavior instead of the details of a distributed implementation. The 
explicit object describes the state of several distributed objects in a centralized 
fashion. 

The use of a specification language with precise semantics enables us to use the 
abstractions for more than informal sketching. Behaviors can be expressed and 
validated with abstractions, with the assurance that the high level properties are not 
invalidated in later refinement steps. 



226 Modeling Distributed State as an Abstract Object 

In the following, we give an example of an abstraction of cooperation, and discuss 
its distributed implementation. Consider a mobile phone system that consists of 
phones and base stations. Each phone can be linked to a base station via a radio link, 
and base stations can establish links among themselves to route calls. We impose the 
rather unrealistic restriction that only one phone at a time may be connected to a base 
station. 

When a phone moves about, it may disconnect from one base station and connect 
to another. If the phone is involved in a call, the connections between base stations are 
modified accordingly. Thus, a handover is possible, where a phone disconnects from 
one base station and connects to another during a call. A phone call consists of three 
connections: one connection between the base stations, and connections between the 
phones and the base stations. Over the duration of a call, anyone of these connections 
may be changed. 

3. 1 Abstract Level 

Even though a phone call is clearly a central notion in explaining how the system 
works, it is not part of the class hierarchy of the specification of the mobile phone 
network. It would not make much sense to inherit a phone call class in either phones 
or base stations. Nor is a phone call a subsystem composed of the connections, since 
the connections may be changed on the fly. Rather, a phone call is the result of 
cooperation between the phones and base stations. 

By making this cooperation explicit, we can create a simpler model that can be 
used for verification and validation of high level properties of the system. We next 
give a specification of the mobile phone system where the call abstraction is 
represented as an explicit object. In this specification, a phone may be on or off, 
indicated by boolean variable on. In addition, each phone call contains a data field 
parties, a set of phones. The actions of the specification can be given as follows: 

connect(pl, p2 : phone; c : call): 
when c.parties = { } 

and p1.on 
and p2.on 
and forall c2 : call: (pI in c2.parties or p2 in c2.parties) = false 
-> c.parties:= {pI, p2}, 

disconnect(c : call): 
when not c.parties = { } 
-> c.parties:= { }, 

on(p : phone): 
when not p.on 
-> p.on := true, 

off(p : phone): 
when p.on 
-> p.on := false. 



Modeling Distributed State as an Abstract Object 227 

The model given by the specification is highly nondeterministic. Two phones that 
are in state on and not involved in a phone call may arbitrarily be connected, and a 
phone call may be disconnected at any time. However, the model can already be used 
to give exact answers to questions about the behavior of the system. For example, we 
can ask whether it is possible for more than two phones to be involved in a call, or 
whether "zombie" calls where one of the phones is in state offare possible. Validation 
and verification of such issues are discussed separately in Section 4. 

The abstract phone call serves as a convenient place for storing various attributes a 
call might have: who is paying for the call, what is the duration of the call, etc. 

3.2 Distributed Level 

Once we are satisfied that the abstract specification captures our informal 
requirements, we use DisCo refinements to derive a less abstract specification of the 
system. For instance, the abstract call discussed earlier can be implemented by three 
connections: two between phones and base stations, and one between two base 
stations. We omit the specification here for brevity. 

Due to the use of superposition, the specification of the distributed level formally 
contains the call objects introduced at the abstract level. However, we can justify an 
implementation where calls do not exist as implementation level objects if we can 
show how the state of each call can be computed. This also implies that the properties 
expressed in terms of abstract calls hold in such an implementation. The following 
invariant shows how the state of a call is computed (connected is the obvious 
relation). This may be established either informally of formally, as discussed in 
Section 4. The invariant is: 

forall c in call, pI, p2 in phone: 
c.parties ={pI, p2} implies 

exists bI, b2 in basestation: 
connected(b I, b2) 

and connected(p I, b I) 
and connected(p2, b2). 

4. Validation and verification 

Verification and validation take place at all levels of design. At the highest level of 
abstraction, we validate the behavior of the abstract model against the requirements. 
We can also assert properties that a valid specification should possess, and attempt to 
verify these with informal reasoning or formal proofs. At lower levels, we may 
additionally verify invariants that show how higher-level abstractions are correctly 
implemented using objects that are closer to the implementation level. 



228 Modeling Distributed State as an Abstract Object 

4. 1 Validation 

Abstractions are particularly useful when the development involves people with no 
computing background. High-level operations performed by abstract objects enable 
such participants to use familiar concepts in validation, instead of using concepts 
arising from available implementation techniques. 

If we only use implementation-level entities in validation, the essence of behavior 
is obscured behind implementation details. On the other hand, validating high-level 
abstractions whose behavior is not well defined is of little use. A combination of 
suitable abstractions and a well defined language for expressing them are thus needed. 

The DisCo language has an operational interpretation, so an instance of the 
specification may be animated with the DisCo animation tool (Systa, 1991). 
Animation is particularly useful for embedded systems, where the behavior of the 
system as a whole is essential. Industrial experience also supports the use of 
animations (Isojiirvi, 1997). 

4.2 Verification 

In addition to validating the behavior of a high level specification, we may also 
formulate properties that should hold if the specification correctly reflects our 
requirements. For example, we might want each phone to be involved in at most one 
call at a time, formulated as 

forall c1, c2 in call, p in phone: 
pin cl.parties and pin c2.parties 

implies c1 = c2. 

If this assertion is included in the specification, the animation tool evaluates the 
assertion after each step, and informs the user in case of a violation. This helps in 
catching errors when a specification is being developed. 

Since the language has a precise semantics, we can also verify properties either 
informally or formally. In simple cases informal reasoning may be sufficient, but if 
more assurance is desired, the specification may be mechanically mapped to the logic 
of the PVS (Owre et at., 1992) theorem prover, where mechanical formal verification 
may be carried out (Kellomaki, 1997). The assertions presented in this paper have 
been verified in this manner. 

The DisCo specification methodology encourages the use of abstractions that are 
later implemented with lower level entities. This incurs an obligation to show that the 
abstractions are correctly implemented. These proof obligations are invariants linking 
abstract and concrete variables, and they can be verified with the desired level of 
formality. 

5. Related work 

In (Awad et at., 1997), Awad and Ziegler recognize the need for representing 
collective behavior explicitly. They propose using Statecharts of a 'floating nature' to 



Modeling Distributed State as an Abstract Object 229 

capture aspects of the behavior that cuts across objects and classes. This is very close 
to our approach. However, unlike them, we use a language with a formal basis which 
makes it possible to use the abstraction for early validation and verification. 

Increasing use of design patterns (Gamma et aI., 1995), (Buschmann et aI., 1996) 
can be interpreted to bear goals similar to the discussed approach. The development is 
initiated by using abstractions of inter-object cooperation, referred to by using the 
name of the pattern. However, unlike in pattern-oriented development, we have a 
well-defined state for the abstractions as well, providing enhanced validation and 
verification facilities. 

6. Conclusions 

We presented an approach for modeling distributed state as an object. Despite being 
an abstraction, such an object can bear significant information for early validation and 
formal verification. Thus, use of high-level abstractions results in an increased 
confidence that the resulting system will be satisfying. 

Acknowledgments 

This research has been partly supported by the Academy of Finland (project 40500). 

References 

Awad, M. and Ziegler, 1. (1997). A pracatical approach to object-oriented state modeling. 
Software - Practice and Experience, 27(3):311-328, Mar. 1997. 

Back, R.1.R and Kurki-Suonio, R. (1988). Distributed cooperation with action systems. ACM 
Transactions on Programming Languages and Systems, (10):513-445. 

Buschmann, F., Meunier, R., Rohneert, H., Sommerlad, P., and Stal, M. (1996) A System of 
Patterns. John Wiley & Sons. 

Durr, E.H. and van Katwijk, J. (1992). VDM++ - A formal specification language for object­
oriented designs. In Technology of Object-oriented Languages and Systems, Prentice-Hall 
International, pages 63-78. Proceedings of Tools Europe '92. 

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison-Wesley. 

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer 
Programming, 8(3):231-274, June 1987. 

Isojarvi, S. (1997). DisCo and Nokia: Experiences of DisCo with modeling real-time system in 
multiprocessor environment. FMEIndSem'97, Otaniemi, Finland, February 20,1997. 

Jarvinen, H.-M. and Kurki-Suonio, R. (1991). DisCo specification language: marriage of 
actions and objects. In Proceedings of the 11th International Conference on Distributed 
Computing Systems, IEEE Computer Society Press, pages 142-151. 

Jarvinen, H.-M., Kurki-Suonio, R., Sakkinen, M., and Systa, K. (1990). Object-oriented 
specification of reactive systems. In Proceedings of the 12th International Conference on 
Software Engineering, IEEE Computer Society Press, pages 63-71. 

Kellomiiki, P. (1997). Verification of reactive systems using DisCo and PVS. In J. Fitzgerald, 
C.B. Jones, and P. Lucas, editors, FME'97: Industrial Applications and Strengthened 



230 Modeling Distributed State as an Abstract Object 

Foundations of Formal Methods, number 1313 in Lecture Notes in Computer Science, 
Springer-Verlag, pages 589-604. 

Kurki-Suonio, R. and Mikkonen, T. (1997). Liberating object-oriented modeling from 
programming-level abstractions. In 1. Bosch and S. Mitchell, editors, Object-Oriented 
Technology: ECOOP'97 Workshop Reader, number 1357 in Lecture Notes in Computer 
Science, Springer-Verlag, pages 195-199. 

Lamport, L. (1994). The temporal logic of actions. ACM Transactions on Programming 
Languages and Systems, 16(3):872-923, May 1994. 

Lano, K.c. (1991). Z++, an object-orientated extension to Z. In J.E. Nicholls, editor, Z User 
Workshop, Oxford 1990, Workshops in Computing, Springer-Verlag, pages 151-172. 

Owre, S., Rushby, 1.M., and Shankar, N. (1992). PVS: A prototype verification system. In D. 
Kapur, editor, 11th International Conference on Automated Deduction, number 607 in 
Lecture Notes in Artificial Intelligence, Springer-Verlag, pages 748-752. 

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-Oriented 
Modeling and Design. Prentice Hall. 

SysUi, K. (1991). A graphical tool for specification of reactive systems. In Proceedings of the 
Euromicro'91 Workshop on Real-Time Systems, IEEE Computer Society Press, pages 12-19. 

Weiser, M. (1982). Programmers use slices when debugging. Communication of the ACM, 
25(7):446-452, July 1982. 


