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This contribution describes the inner mechanisms af the sa called 
Real-Time Interface to Simulink for Multiprocessor systems (RTI­
MP). RTI-MP is applied in the area of Rapid Controller 
Prototyping and Hardware-in-the-Loop simulations. where high­
end computing power is required that can not be realized on a 
single CPU. Typical users are control engineers who are not too 
familiar with the details of multiprocessor hardware. distributed 
real-time kernels. and parallel programming. Therefore RTI-MP 
is based on an intuitive graphical representation of the 
multiprocessor system in form of a Simulink block diagram, which 
is well known to control engineers. The simulation model is 
implemented fully automatical on a network of DEC Alpha 
processors and Texas Instruments C40 DSPs. 

2. Simulink block diagrams for multiprocessor systems 

Ideally, fTom the user's viewpoint a block diagram for a multiprocessor system should 
look as much as possible like a block diagram for a single processor. Of course, the 
implementation on a hardware with distributed computing nodes requires some 
additional information to be entered graphically in the block diagram: 

the number and type of computing nodes, 

the assignment of different parts of the block diagram to computing nodes, and 

the signals to be communicated between CPUs and the corresponding transfer 
protocol. 
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Figure 1. Typical RTI-MP block diagram. 

RTI-MP provides the so called Interprocessor Communication (lPC) blocks to 
define this information in a Simulink block diagram. A simple example of a PI 
controller and a plant model computed on two CPUs is shown in figure 1. The IPC 
blocks mark the boundaries between CPUs. For example, the block IPC2 transfers the 
signal u from CPU master to CPU alpha via communication channel O. The CPU 
identity of all other Simulink blocks is determined automatically by RTI-MP from the 
connected IPC blocks. 

Figure 2. Definition of an interrupt triggered subsystem, which is executed on two 
CPUs. 

Figure 2 shows a triggered subsystem, which is executed each time a trigger event 
occurs. The trigger event can be an external interrupt from peripheral hardware, or a 
software interrupt, which is raised when a signal in the block diagram crosses the 
trigger level. In a distributed system the interrupt source can be located on another 
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computing node than the task to be triggered. It is also possible, that the interrupt task 
is split over two or more CPUs. For example, the end-of-conversion interrupt from an 
AID converter may trigger a task, where the AID input is read on CPU A and 
transferred to CPU B, which computes a control algorithm and sends the result back 
to CPU A for D/A output. RTI-MP supports this with Inter processor Interrupt (IPI) 
blocks, which define the source and destination CPUs of interrupts. A single interrupt 
can be sent to multiple destination CPUs, if necessary. 

Note, that RTI-MP does not perform an automatic distribution of a Simulink model 
over a network of processors. It is the user's task to assign submodels to certain CPUs 
of the hardware system. Experience shows, that the manual partitioning is not too 
critical in many cases, because 

the assignment of submodels to CPUs often follows directly from physical 
considerations. For example, in a vehicle dynamics model the front axle is 
simulated on one CPU and the rear axle on another. 

some submodels require certain I/O resources, which are only available on a 
specific CPU. 

Nevertheless, RTI-MP provides some mechanisms to balance the load in a 
multiprocessor system, e.g. by allowing to assign individual integration algorithms 
and step sizes to each CPU (see figure 3). The execution times of all tasks can be 
monitored in each simulation step. An overload check detects if a task can not be 
finished before it is triggered the next time. 
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Figure 3. Main dialog window to configure integration algorithms, step sizes, etc. 
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3. The hardware system 

RTI-MP was designed to implement Simulink block diagrams on a hardware system 
consisting of a network of DEC Alpha processors and Texas Instruments C40 DSPs 
as shown in figure 4. Due to the tremendous computing power of theoretically 1000 
MFlops per CPU the Alpha processors are viewed as the main computing nodes. Each 
Alpha is connected via a dual-port memory to a dedicated C40 DSP performing I/O 
tasks and data transfer to other Alpha/C40 combos. Between C40 CPUs data is 
transferred via 6 high speed communication ports. The physical distance between the 
Alpha/C40 nodes can be expanded with special ComPort interfaces up to 100 m. All 6 
communication ports operate byte-serial with a maximum transfer rate of 20 MBytes 
per second in both directions. 
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Figure 4. Hardware architecture of the real-time simulator. The PHS bus is used to 
connect to peripheral I/O boards. 

4. Interprocessor communication 

For the implementation of Simulink block diagrams on the target hardware described 
above two transfer protocols are available to send data from one CPU to another: 

The Virtual Shared Memory (VSM) protocol (see figure 5) is based on a single 
transfer buffer, which is written by the sender CPU and read by the receiver CPU 
independently without synchronization. VSM offers the fastest transfer method 
by avoiding the overhead for synchronization, but it is well possible that not all 
data in the transfer buffer results from the same simulation step of the sender at 
the time it is read by the receiver. It depends on the model dynamics, if this 
behaviour is acceptable. VSM will mostly be used for slowly changing signals. 
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Figure 5. Virtual Shared Memory (VSM) communication protocol. 

• The Swinging Buffer (SBUF) protocol shown in figure 6 uses a triple buffer 
system to allow synchronized data transfer and maintain data consistency. When 
the sender has written all data to one of the buffers, it sets a flag that the data is 
now available for the receiver CPU. In each simulation step the receiver CPU 
checks this flag and switches to the latest consistent data buffer available. The 
sender and receiver CPU never write to / read from the same buffer. 
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Figure 6. Swinging Buffer (SBUF) communication protocol. 

The VSM and SBUF protocols have been implemented for both, the serial data 
transfer via C40 communication ports and the parallel data transfer via the dual-port 
memory between C40 and Alpha processors. In the graphical block diagram 
representation of the simulation model this is fully transparent, i.e. the user needs not 
to care about the physical type of a communication connection. 
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5. Interprocessor interrupts 

Many control engineering applications require to service asynchronous interrupts. For 
example, in automotive engine control applications there are typically some periodic 
time-based tasks and other tasks, which have to be executed based on the crankshaft 
angle (- speed) of the engine. 

In a multiprocessor system an interrupt occurring on one CPU may trigger actions 
on other CPUs too. This requires 

the ability to send interprocessor interrupts, 

interruptible, re-entrant communication routines, and 

a priority-based multitasking real-time kernel with low latency running on each 
CPU. 
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Figure 7. Interprocessor interrupts in a two-processor system. CPU A executes two 
periodic tasks with 1 ms and 2 ms sample time and CPU B another periodic task with 
2 ms sample time. An asynchronous event interrupts the periodic tasks on both CPUs 
and schedules another high-priority task. 

Hardware interrupts between C40 and Alpha processors can be generated by writing a 
logical interrupt number to a certain memory location in the dual-port memory. When 
an interrupt occurs, the real-time kernel checks this logical interrupt number and 
schedules (or queues) the corresponding task depending on the selected priority (see 
figure 7). 

To exchange interrupts between C40 processors a separate communication port 
line is used. This allows to send interrupts at any time, even if the interrupted task 
writes a large data block to another communication port at the same time. The DMA 
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coprocessor of the C40 generates an interrupt each time a data word (= logical 
interrupt number) is received via the interrupt line and the corresponding interrupt 
handler calls the scheduler to activate the desired task. 

6. Real-time simulation frame 

In a multiprocessor environment it is especially difficult to perform a coordinated 
start and stop of the simulation. Upon simulation start all CPUs must (re-)initialize 
their internal state variables. If the applications running on each CPU are 
automatically generated and external 110 is involved, it is very difficult to predict how 
much time the initialization process will need on each CPU, but for control 
applications all CPUs in a multiprocessor system must start the simulation exactly at 
the same point in time. 
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Figure 8. Software architecture of the real-time simulation frame. 

With RTI-MP one of the processors is selected as the so called master CPU. Only 
the master CPU can send the signal to start and stop the simulation to other CPUs. In 
each simulation cycle the desired execution state (= RUN, PAUSE, or STOP) is sent 
from the master to the slave CPUs. One cycle before the simulation state is actually 
switched from STOP to RUN, the master CPU sends a command to all slaves to re­
initialize their states. This allows to perform a coordinated simulation start in the next 
step. 
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Note, that RTI-MP maintains the interprocessor communication even if the 
simulation is stopped. This is necessary if the user wants to adjust simulation 
parameters on a distant CPU during STOP state before the next simulation run is 
started. To transfer the new parameter settings to a CPU, which can not be reached 
from the host directly, interprocessor communication must always be available. 

7. Application example 

The following industrial application example describes a Hardware-in-the-Loop (HIL) 
simulation running on two C40 DSPs and two Alpha processors. This simulator was 
developed by the locomotive manufacturer Adtranz to perform a system integration 
test of the controller equipment of electric locomotives (Keller et aI, 1997). For this 
purpose all power electronic devices, two asynchronous motors, and a mechanical 
model of the locomotive had to be simulated. 
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Figure 9. Partitioning of the electrical model on four CPUs. 

Modern power electronic switches, like GTOs and IGBTs, which are applied in the 
line and motor converters of electric locomotives can switch currents with rise times 
of up to 2 NilS. To keep the error in the simulated currents minimal, the 
computational dead-time of the HIL simulator must be as small as possible. Off-line 
simulations have shown that step sizes of 40 Ils or less are required to achieve 
acceptable simulation results. Even with such small step sizes the error in the 
simulated currents can be up to 80 A in the worst case, which is about 4 percent of the 
whole range. Since the desired performance could not be achieved on a single 
processor, Adtranz decided to implement the HIL simulator on a mUltiprocessor 
system with RTI-MP. 

Figure 9 shows the partitioning of the electrical model on two C40 DSPs and two 
Alpha processors. The corresponding RTI-MP block diagram is given in figure 10. 
The first Alpha computes the line side of the model including three rectifiers and the 
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intermediate DC link. The second Alpha simulates the two motor converters and 
asynchronous motor models. 

Both C40s are completely dedicated to the necessary I/O operations, while the 
Alphas compute the main simulation model. Not all 84 I/O signals need to be sampled 
with a step size of 40 JlS. To save execution time in the 40 JlS task some of the I/O 
signals are serviced in the background process. The corresponding non-time-critical 
I/O blocks are placed into the subsystem background I/O tasks on the top level of the 
Simulink block diagram in figure 10. 
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Figure 10. RTI-MP model of the HIL Simulator. 

Adtranz has applied the described multiprocessor system successfully to a number 
of HIL simulation projects. Meanwhile there exist 5 copies of the simulator in 
different departments of Adtranz. Thus system integration tests by HIL simulation 
have become a standard part of the development process. 

8. Conclusions 

RTI-MP provides an intUitive graphical programming of multiprocessor systems 
based on Simulink block diagrams. All code for I/O operations, communication 
between CPUs, interprocessor interrupts, and the underlying real-time frame is 
generated fully automatical. This enables control engineers to apply multiprocessor 
simulators to very practical problems in domains where big mainframe or expensive 
analog computers were required before. The distribution of a control application over 
the available processors is still a remaining task for the user. 
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