
BLOCK DIAGRAM BASED REAL-TIME
SIMULATION ON A NETWORK OF

ALPHA PROCESSORS AND C40 DSPS

U. Kiffmeier and M. Beine

This contribution describes the inner mechanisms af the sa called
Real-Time Interface to Simulink for Multiprocessor systems (RTI­
MP). RTI-MP is applied in the area of Rapid Controller
Prototyping and Hardware-in-the-Loop simulations. where high­
end computing power is required that can not be realized on a
single CPU. Typical users are control engineers who are not too
familiar with the details of multiprocessor hardware. distributed
real-time kernels. and parallel programming. Therefore RTI-MP
is based on an intuitive graphical representation of the
multiprocessor system in form of a Simulink block diagram, which
is well known to control engineers. The simulation model is
implemented fully automatical on a network of DEC Alpha
processors and Texas Instruments C40 DSPs.

2. Simulink block diagrams for multiprocessor systems

Ideally, fTom the user's viewpoint a block diagram for a multiprocessor system should
look as much as possible like a block diagram for a single processor. Of course, the
implementation on a hardware with distributed computing nodes requires some
additional information to be entered graphically in the block diagram:

the number and type of computing nodes,

the assignment of different parts of the block diagram to computing nodes, and

the signals to be communicated between CPUs and the corresponding transfer
protocol.

F. J. Rammig (ed.), Distributed and Parallel Embedded Systems
© Springer Science+Business Media New York 1999

158 Real-Time Simulation on a Network of Alpha Processors and C40 DSPs

Figure 1. Typical RTI-MP block diagram.

RTI-MP provides the so called Interprocessor Communication (lPC) blocks to
define this information in a Simulink block diagram. A simple example of a PI
controller and a plant model computed on two CPUs is shown in figure 1. The IPC
blocks mark the boundaries between CPUs. For example, the block IPC2 transfers the
signal u from CPU master to CPU alpha via communication channel O. The CPU
identity of all other Simulink blocks is determined automatically by RTI-MP from the
connected IPC blocks.

Figure 2. Definition of an interrupt triggered subsystem, which is executed on two
CPUs.

Figure 2 shows a triggered subsystem, which is executed each time a trigger event
occurs. The trigger event can be an external interrupt from peripheral hardware, or a
software interrupt, which is raised when a signal in the block diagram crosses the
trigger level. In a distributed system the interrupt source can be located on another

Real-Time Simulation on a Network of Alpha Processors and C40 DSPs 159

computing node than the task to be triggered. It is also possible, that the interrupt task
is split over two or more CPUs. For example, the end-of-conversion interrupt from an
AID converter may trigger a task, where the AID input is read on CPU A and
transferred to CPU B, which computes a control algorithm and sends the result back
to CPU A for D/A output. RTI-MP supports this with Inter processor Interrupt (IPI)
blocks, which define the source and destination CPUs of interrupts. A single interrupt
can be sent to multiple destination CPUs, if necessary.

Note, that RTI-MP does not perform an automatic distribution of a Simulink model
over a network of processors. It is the user's task to assign submodels to certain CPUs
of the hardware system. Experience shows, that the manual partitioning is not too
critical in many cases, because

the assignment of submodels to CPUs often follows directly from physical
considerations. For example, in a vehicle dynamics model the front axle is
simulated on one CPU and the rear axle on another.

some submodels require certain I/O resources, which are only available on a
specific CPU.

Nevertheless, RTI-MP provides some mechanisms to balance the load in a
multiprocessor system, e.g. by allowing to assign individual integration algorithms
and step sizes to each CPU (see figure 3). The execution times of all tasks can be
monitored in each simulation step. An overload check detects if a task can not be
finished before it is triggered the next time.

II PIocMIart! 2

SdIecUII T,.,..

Figure 3. Main dialog window to configure integration algorithms, step sizes, etc.

160 Real-Time Simulation on a Network of Alpha Processors and C40 DSPs

3. The hardware system

RTI-MP was designed to implement Simulink block diagrams on a hardware system
consisting of a network of DEC Alpha processors and Texas Instruments C40 DSPs
as shown in figure 4. Due to the tremendous computing power of theoretically 1000
MFlops per CPU the Alpha processors are viewed as the main computing nodes. Each
Alpha is connected via a dual-port memory to a dedicated C40 DSP performing I/O
tasks and data transfer to other Alpha/C40 combos. Between C40 CPUs data is
transferred via 6 high speed communication ports. The physical distance between the
Alpha/C40 nodes can be expanded with special ComPort interfaces up to 100 m. All 6
communication ports operate byte-serial with a maximum transfer rate of 20 MBytes
per second in both directions.

- -- -- -. ---- -- --- -- --- -- ~--- -- ----. ---------- --. --- --- ---
, BaSIC Conflqurahon

051004
Alpha 21164

500 MHz

051004
Alpha 21164

500 MHz

HoSi
Interface

CoI'J.n .. mlcahon
Pora

vo Boards

051003
TMS32OC40 1\i-"=,::c....I; .

60 MHz
11090.>""

Figure 4. Hardware architecture of the real-time simulator. The PHS bus is used to
connect to peripheral I/O boards.

4. Interprocessor communication

For the implementation of Simulink block diagrams on the target hardware described
above two transfer protocols are available to send data from one CPU to another:

The Virtual Shared Memory (VSM) protocol (see figure 5) is based on a single
transfer buffer, which is written by the sender CPU and read by the receiver CPU
independently without synchronization. VSM offers the fastest transfer method
by avoiding the overhead for synchronization, but it is well possible that not all
data in the transfer buffer results from the same simulation step of the sender at
the time it is read by the receiver. It depends on the model dynamics, if this
behaviour is acceptable. VSM will mostly be used for slowly changing signals.

Real-Time Simulation on a Network of Alpha Processors and C40 DSPs 161

input buffer input buffer
at time 1 at time 2

new new

DMA new new

fills .-. old new
buffer old new

old old

Figure 5. Virtual Shared Memory (VSM) communication protocol.

• The Swinging Buffer (SBUF) protocol shown in figure 6 uses a triple buffer
system to allow synchronized data transfer and maintain data consistency. When
the sender has written all data to one of the buffers, it sets a flag that the data is
now available for the receiver CPU. In each simulation step the receiver CPU
checks this flag and switches to the latest consistent data buffer available. The
sender and receiver CPU never write to / read from the same buffer.

sender

next buffer -.• --.-....... ~ ... -... - -.. -.. t
.A-...... _ ... _ - CPU DMA

free access access

u[1](k-1) u[1](k) u[1](k+1)

u[2](k-1) u[2](k) u[2](k+ 1)

u[3](k-1) u[3](k)
DMA

u[3](k+1)

u[4](k-1) u[4](k) fills-- u[4](k-2)

u[5](k-1) u[5](k) buffer u[5](k-2)

• receiver

Figure 6. Swinging Buffer (SBUF) communication protocol.

The VSM and SBUF protocols have been implemented for both, the serial data
transfer via C40 communication ports and the parallel data transfer via the dual-port
memory between C40 and Alpha processors. In the graphical block diagram
representation of the simulation model this is fully transparent, i.e. the user needs not
to care about the physical type of a communication connection.

162 Real-Time Simulation on a Network of Alpha Processors and C40 DSPs

5. Interprocessor interrupts

Many control engineering applications require to service asynchronous interrupts. For
example, in automotive engine control applications there are typically some periodic
time-based tasks and other tasks, which have to be executed based on the crankshaft
angle (- speed) of the engine.

In a multiprocessor system an interrupt occurring on one CPU may trigger actions
on other CPUs too. This requires

the ability to send interprocessor interrupts,

interruptible, re-entrant communication routines, and

a priority-based multitasking real-time kernel with low latency running on each
CPU.

As'yflchroneous

'l event

1851<1 t • t
h C:J T851<2

Task 3
r· h
~ I,

Task 1

~~ 18sk2

o

't Timer Im.lrrupts ~

R

I

~
I
2

Time

b

3

..

't
CPU A

t1
~

CPU B
I I

4

Figure 7. Interprocessor interrupts in a two-processor system. CPU A executes two
periodic tasks with 1 ms and 2 ms sample time and CPU B another periodic task with
2 ms sample time. An asynchronous event interrupts the periodic tasks on both CPUs
and schedules another high-priority task.

Hardware interrupts between C40 and Alpha processors can be generated by writing a
logical interrupt number to a certain memory location in the dual-port memory. When
an interrupt occurs, the real-time kernel checks this logical interrupt number and
schedules (or queues) the corresponding task depending on the selected priority (see
figure 7).

To exchange interrupts between C40 processors a separate communication port
line is used. This allows to send interrupts at any time, even if the interrupted task
writes a large data block to another communication port at the same time. The DMA

Real-Time Simulation on a Network of Alpha Processors and C40 DSPs 163

coprocessor of the C40 generates an interrupt each time a data word (= logical
interrupt number) is received via the interrupt line and the corresponding interrupt
handler calls the scheduler to activate the desired task.

6. Real-time simulation frame

In a multiprocessor environment it is especially difficult to perform a coordinated
start and stop of the simulation. Upon simulation start all CPUs must (re-)initialize
their internal state variables. If the applications running on each CPU are
automatically generated and external 110 is involved, it is very difficult to predict how
much time the initialization process will need on each CPU, but for control
applications all CPUs in a multiprocessor system must start the simulation exactly at
the same point in time.

StartlStop

CPUA

task '-software
sched. ~IRQ

RTkemel

interprocessor
communication

interprocessor

CPUB

interrupts I..-~=:-___ --I

Figure 8. Software architecture of the real-time simulation frame.

With RTI-MP one of the processors is selected as the so called master CPU. Only
the master CPU can send the signal to start and stop the simulation to other CPUs. In
each simulation cycle the desired execution state (= RUN, PAUSE, or STOP) is sent
from the master to the slave CPUs. One cycle before the simulation state is actually
switched from STOP to RUN, the master CPU sends a command to all slaves to re­
initialize their states. This allows to perform a coordinated simulation start in the next
step.

164 Real-Time Simulation on a Network of Alpha Processors and C40 DSPs

Note, that RTI-MP maintains the interprocessor communication even if the
simulation is stopped. This is necessary if the user wants to adjust simulation
parameters on a distant CPU during STOP state before the next simulation run is
started. To transfer the new parameter settings to a CPU, which can not be reached
from the host directly, interprocessor communication must always be available.

7. Application example

The following industrial application example describes a Hardware-in-the-Loop (HIL)
simulation running on two C40 DSPs and two Alpha processors. This simulator was
developed by the locomotive manufacturer Adtranz to perform a system integration
test of the controller equipment of electric locomotives (Keller et aI, 1997). For this
purpose all power electronic devices, two asynchronous motors, and a mechanical
model of the locomotive had to be simulated.

Alpha 2: 'asm12'

IM1

1M2

Line and Motor Controller

Figure 9. Partitioning of the electrical model on four CPUs.

Modern power electronic switches, like GTOs and IGBTs, which are applied in the
line and motor converters of electric locomotives can switch currents with rise times
of up to 2 NilS. To keep the error in the simulated currents minimal, the
computational dead-time of the HIL simulator must be as small as possible. Off-line
simulations have shown that step sizes of 40 Ils or less are required to achieve
acceptable simulation results. Even with such small step sizes the error in the
simulated currents can be up to 80 A in the worst case, which is about 4 percent of the
whole range. Since the desired performance could not be achieved on a single
processor, Adtranz decided to implement the HIL simulator on a mUltiprocessor
system with RTI-MP.

Figure 9 shows the partitioning of the electrical model on two C40 DSPs and two
Alpha processors. The corresponding RTI-MP block diagram is given in figure 10.
The first Alpha computes the line side of the model including three rectifiers and the

Real-Time Simulation on a Network of Alpha Processors and C40 DSPs 165

intermediate DC link. The second Alpha simulates the two motor converters and
asynchronous motor models.

Both C40s are completely dedicated to the necessary I/O operations, while the
Alphas compute the main simulation model. Not all 84 I/O signals need to be sampled
with a step size of 40 JlS. To save execution time in the 40 JlS task some of the I/O
signals are serviced in the background process. The corresponding non-time-critical
I/O blocks are placed into the subsystem background I/O tasks on the top level of the
Simulink block diagram in figure 10.

,..-----..

PCI

.,
ooml2

...

SRC ' . ' tt'OM.mdIJSRt SoIOf'I : 1.2 $ Stbt • . UIOIA'lrni 118"'561,

EP10 - Project
AC·System

I NIT IZ.AJION

Figure 10. RTI-MP model of the HIL Simulator.

Adtranz has applied the described multiprocessor system successfully to a number
of HIL simulation projects. Meanwhile there exist 5 copies of the simulator in
different departments of Adtranz. Thus system integration tests by HIL simulation
have become a standard part of the development process.

8. Conclusions

RTI-MP provides an intUitive graphical programming of multiprocessor systems
based on Simulink block diagrams. All code for I/O operations, communication
between CPUs, interprocessor interrupts, and the underlying real-time frame is
generated fully automatical. This enables control engineers to apply multiprocessor
simulators to very practical problems in domains where big mainframe or expensive
analog computers were required before. The distribution of a control application over
the available processors is still a remaining task for the user.

166 Real-Time Simulation on a Network of Alpha Processors and C40 DSPs

References

Kiffmeier, U. (1995). Automatic Code Generation for Multi-DSP Networks on the Basis of
Simulink Block Diagrams. EUROSIM Congress '95, Wien, Austria, Sep. 11-15, 1995

Ouerbach, R. and Kiffmeier U. (1996). Eine neue Generation hochleistungsflihiger
Echtzeitsimulatoren auf der Basis des DEC Alpha Prozessors" AS 1M '96, Dresden,
Germany, 1996

Kiffmeier, U. (1997). Real-Time Simulation of a 3-D Vehicle Dynamics Model on the DEC
Alpha Processor." 15th IMACS World Congress, Berlin, Germany, August 24-29,1997

Keller, Th., Scheiben, E., and Terwiesch, P. (1997). Digital Real-Time Hardware-in-the-Loop
Simulation for Rail Vehicles: A Case Study." European Power Electronics Conference EPE
'97, Trondheim, Norwegen. Sep. 7-9, 1997.

