
SECURE DATA-TRANSFER FOR WEB-BASED 
APPLICATIONS 

Wolf gang Platzer 
Institute for Applied Information Processing and Communications, 
Graz University ofTechnology, Inffeldgasse 16a, A-8010 Graz, 
e-mail: Wolfgang.Platzer@iaiktu-graz.ac.at 

Abstract: This paper demonstrates a way to let companies offer web-based applications 
or services over the Internet where the data is transmitted over a highly 
secured SSL connection, even for exportable browsers providing only a weak 
SSL implementation. The solution is based on a Java Applet which itself 
implements the SSL protocol and therefore is independent of the browsers 
implementation. After the Applet has been started it reopens a strong SSL 
connection back to the server where it was loaded from. Further this paper 
discusses problems related to firewalls which don't allow an Applet to connect 
directly to another host outside the LAN. Using a demo Applet, some 
restrictions of SSL connections opened in that way are shown. In addition, 
problems concerning the different JDK implementations found in common 
web browsers and a technology called Java Activator are analyzed with respect 
to our example. 

Keywords: Java Applet, Strong SSL, Secure Data Transfer 

1. INTRODUCTION 

Today more and more companies provide web-based applications for 
their customers. These applications let the users easily modify data 
associated with them or they provide various services. Such web-based 
applications are possible through the huge increase of bandwidth on one side 

B. Preneel (ed.), Secure Information Networks
© Springer Science+Business Media Dordrecht 1999



292 

and through more powerful technologies for browsers like Java [1] or 
JavaScript [2] on the other side. 

The advantages for both, c1ients and companies, are obvious: The c1ient 
always uses the newest software without the need of installing something to 
his local system. There is no need to distribute new versions of the software 
and the user does not have to configure his software. Some areas where such 
applications are very useful are for example: banking applications (account 
management or money transactions), mobile phones (a company wants a 
simple way of configuring the mobile phones of its employees) or 
communication with administrative bodies (submit a tax form). 

All these applications have in common, that the information transferred 
over a public network like the Internet is very sensitive for the c1ient and 
therefore must be protected in an appropriate way. For the two browsers 
most commonly used to navigate through the Internet today (Microsoft's 
Internet Explorer and Navigator from Netscape) there are only 2 
possibilities: Transmit the information without protection or use a very weak 
mode of the SSL protocol. 

The SSL (Secure Socket Layer, [5]) protocol, developed by Netscape 
Communications Corporation, is very appropriate for securing point-to-point 
connections. But SSL distinguishes between strong, domestic and weak 
exportable encryption modes. This fact is caused by the so ca1led U.S. export 
restrictions which do not a1low to export software that uses strong 
cryptography. And it has already been shown for several times that this weak 
SSL modes provide a very low level of security. 

One possible solution for this problem is the usage of a Java Applet [4], 
which opens a strong SSL connection itself and therefore does not depend on 
the browsers weak SSL implementation. Through the usage of this 
technology it is possible to take the advantages of web-based applications 
combined with a secure data transfer over an insecure public network like 
the Internet. 

2. SECURE DATA-TRANSFER WITH BROWSERS 

To establish a secure connection between an application executed within 
a browser and the corresponding web server one has 2 possibilities: HTML 
forms post the input to a target over SSL or a Java Applet opens itself a 
secure connection to the server. 



293 

2.1 HTTP "POST" method over SSL 

The first possibility is to use the POST method defined in the HTIP [6] 
protocol for sending data from a form. As protocol for the target URL https', 
which denotes HTTP over SSL, must be chosen. 

<form method="POST" name="SECURE" 

target= .. https://www.test.com/servlets/GetData .. > 
Value:<input type="text" size="20" 

name="value"> 
<input type="submit" name="submitButton" 

value="Send"> 
</form> 

Sample code for POST over SSL 

This solution uses the browsers SSL implementation, and therefore 
mostly is limited to exportable 40 bit ciphers. Another disadvantage of this 
solutions is the fact, that through HTML [7] forms only very simple 
applications are possible. Only a few data types are supported and the state 
ofthe "application" must be maintained by the server. 

2.2 By me ans of a Java Applet 

A much more comfortable browser based application can be realized 
through the usage of a Java Applet. A Java Applet on the other hand has two 
possibilities to perform a secure data transfer. 

2.2.1 Use the Browsers URLConnection over SSL 

The Java API provides a dass called URLConnection [8] that represents 
a communications link between an application and a URL. Instances of this 
dass can be used both to read from and to write to the resource referenced 
by the URL. The management of the connection itself is done through the 
browser. Therefore it is possible to use the browsers SSL implementation by 
specifying an URL where the protocol is set to https. 

A Java sampie code for establishing such an connection looks like: 



294 

URL url = new 
URL ("https: / /www.test.com/secure .. ) ; 
URLConnection con = 
url.openConnection(); 
InputStream is = 
con.getInputStream(); 
OutputStream os = 
con.getOutputStream(); 

Sample code for an URLConnection over SSL 

But this solution also depends on the strength of the SSL implementation 
ofthe browser. And exportable browsers can only use 40 bit. 

2.2.2 Provide Applet with security 

Since Java is a very powerful programming language an Applet has also 
access to the network. Through the standard Java class "Socket" it is 
possible to let the Applet itself make asecure connection. Using this solution 
the application is independent of the browsers weak security 
implementation. And for the data transfer a proprietary or a standard 
protocol can be chosen. 

Use a proprietary protocol 
Theoretically any protocol can be used for the seeure data transfer. 
Only the server at the other end of the connection must be aware of 
it. 

- Use a standard as SSL 
There is one big advantage of selecting a standard protocollike SSL: 
As endpoint of the connection a ordinary strong SSL server without 
modification can be used. Furthermore SSL version 3.0 is already 
investigated very weIl and there are no potential weaknesses known. 

3. WEB BROWSERS AND JAVAAPPLETS 

Nowadays nearly every software for browsing the web supports HTML 
pages with embedded Java Applets [4]. An Applet is a smaIl, platform 
independent piece of software, which is loaded from a web server like a 
pieture and executed within the browser of auser. To prevent an Applet 
from damaging critical data or spying sensitive information, an Applet has 
nearly no privileges on the computer on which it is executed [3]. For 
example an Applet has no access to the local file system or to the system 



295 

properties and is also not allowed to open a connection to another host, 
except to the one it was loaded from. 

All classes which are needed to execute the Applet can be packed in one 
compressed file, an so called Java ARchieve (JAR, [9]) file. To ensure the 
integrity and authenticity of a JAR file, digital signatures can be used (since 
JDK 1.1) [10]. The browser verifies the signature after downloading the jar 
file and only executes the Applet if the signature is ok and the certificate of 
the signer has been found it the database of trusted code signers. 

3.1 Different Versions OfThe JDK 

One problem when dealing with Java Applets is the fact, that the various 
browsers implement different versions of the Java Development Kit [11] 
more or less completely. At this time, different browsers are still being used 
widely, that support four major versions of the JDK, which show the 
following characteristics in concern to our needs: 

3.1.1 JDK 1.0.2 

This was the first version of the JDK which was mainly developed for 
enhancing web pages with the help of Java Applets. JDK 1.0.2 provides an 
Applet developer with some basic classes for elementary usage. The main 
advantage of JDK 1.0.2 is the fact, that every Java enhanced browser fully 
supports this version. 

One primary drawback of JDK 1.0.2 is the lack of some essential classes 
and packages which are needed for developing secure applications (e.g. 
java. math.Biglnteger or java.security. *). 

3.1.2 JDK 1.1.x 

The second generation of the JDK introduced some basic security 
features, such as signatures, certificates, key pairs, message digests, etc. and 
a c1ass for dealing with arbitrary-precision integers, which are of great 
interest for our purposes. Unfortunately Internet Explorer 4.x is the only 
current available browser which completely supports the new security 
c1asses. 

It is true that N etscape claims to support JD K 1.1 , but in their 
implementation all classes from the java.security package are missing. In 
addition it is impossible to dynamically download and install theses classes 



296 

from a web server too, because Navigator does not allow to load system 
classes (all classes in packages starting withjava. *) over the web. 

3.1.3 JDK 1.2 

This is the newest version of the JDK. At this time only a beta version 
exits and the final version is planned for this summer. Because it is not clear 
if any browsers will actually support this new version, JDK 1.2 will not be 
taken in consideration for the rest ofthis paper. 

3.1.4 Java Activator 

To solve the problems with poor Java implementations in web browsers 
Sun, the inventor of the Java programming language, introduced a new 
technology called Java Activator [12]. Java Activator uses ActiveX [13] in 
the case of Internet Explorer and Plug-In's [14] in the case of Navigator to 
activate their own implementation of a full JDK 1.1 compatible Java Virtual 
Machine (JVM) whenever an Applet is loaded over the web. Although this is 
a very clever solution, there are still some major problems: 

All HTML pages must be changed, because the standard Applet tag 
solution would invoke the browser's original NM. Instead of the 
Applet tag a Java Script has to be used, which is executed by the 
browser. This script determines, if it shall launch a compatible JVM 
(e.g. Suns HotJava), the ActiveX - JVM or the Plug-In - JVM. 
A user has to download and install a file, which is several megabytes 
big. 
A user has to manage the certificates for dealing with signed Applets 
twice: for his favorite browser and for the Java Activator. 

Another problem common to all JDK versions is the fact that an Applet 
has no access to the local file system. This in consideration of security issues 
necessary restriction prevents an Applet from storing configuration 
information or loading a certificate and its corresponding private key for 
client authentication. 

Due to several problems with the browsers implementations of the JVM 
as well as with the Java Activator approach, the only way to ensure that an 
Applet works in almost all popular browsers used today is to base the 
implementation on the JDK 1.0.2. The lack of some required classes cause 
no big problem since for Navigator the missing classes have to be re­
implemented, too. 



297 

3.2 The Firewall Problem 

If a local area network (LAN) is protected through a frrewall system, a 
computer within that network is not allowed to open a direct connection to a 
machine outside the scope of the frrewall. To use browsers in such an 
environment, one only has to configure the browser to connect over a proxy 
when communicating with foreign hosts. 

For Applets, a frrewall causes a very big problem. As the Applet has no 
means to access configuration information, there is no way for the Applet to 
find out the name of the proxy host which must be used to connect to a host 
outside the LAN. Therefore an Applet cannot open a new SSL socket 
connection to the host where it was loaded from. 

As already described the class java.net. URLConnection offers another 
technique to open a connection to an URL located at the web server. If this 
method is used, the browser opens a connection over the proxy to the 
specified resource and provides the Applet with an output and an input 
stream. All further communication can now take place over this established 
connection. 

The resource accessed in that way must be an active component (CGI 
script, Java Servlet, web server extension, etc.) which builds the endpoint of 
this embedded SSL connection. Any data received must frrst be decrypted 
and then passed to the module which performs the required operations. 
Another way is to use a special, for this purpose adapted SSL proxy server 
which also decrypts the received data and forwards it to a specified URL. 
The advantage of this second solution is the possibility to use any kind of 
SSL server (not onlya HTTP server) to securely communicate with. 

4. SECURE SOCKETS LAYER (SSL) 

The SSL [5] Handshake Protocol was developed by Netscape 
Communications Corporation to provide security and privacy over the 
Internet. The protocol supports both server and client authentication. The 
SSL protocol maintains the security and integrity ofthe transmission channel 
by using encryption, authentication and message authentication codes 
(MAC). 

The SSL Handshake Protocol consists of two phases, server 
authentication and key exchange with an optional client authentication. In 
the first phase after receiving a client hello message the server sends its 



298 

certificate and agrees with the dient on a common cipher suite which 
consists of a combination of 

a key exchange algorithm (Diffie Hellman, RSA) 
a symmetric cipher (RC2, RC4, IDEA, DES and triple-DES) 
and a hash algorithm for the MAC (MD5, SHA) 

In the second phase a shared secret (also called master secret) is 
exchanged according to the key exchange algorithm specified in the first 
phase. If the server requested dient authentication the dient sends its 
certificate and a signed piece of data to prove that it is also the owner of the 
private key. Subsequent data is encrypted with keys derived from this master 
secret. To avoid reputation attacks, a dose notify alert message is sent to 
indicate the termination ofthe connection. 

5. THE IAIK SOLUTION 

IAlK developed a package [15] for establishing high secure connections 
from an Applet back to the server it was loaded from by using the SSL 
version 3.0 protocol. Because only those minimal properties of SSL useful 
for an Applet are implemented, the size of the jar file containing the whole 
package is less than 40 Kbytes which ensures minimalloading times. 

The core of the package builds the dass SSLConneclion, which allows to 
setup secure connections either directly to the host through a socket, or over 
an URL connection provided by the browser. 

5.1 Direct Connection Over A Socket 

If the browser runs on a computer which is located in a LAN not 
protected through a firewall, the Applet is able to open a direct connection to 
the SSL server. From the servers point of view this is an ordinary SSL 
connection, using strong encryption, as it would be the case if an V.S. 
domestic version of the browser was used. The advantage of this solution is 
the fact that no additional processing has to be done for an Applet-SSL 
connection on the server side. 

The only requirement for this kind of application is that the SSL server 
also must support strong SSL encryption. 



299 

128 Bit SSL: 
Application Data 

NM 

Browser 
o Bit SSL: HTML 
Applet, Parameters Server 

os OS 

Figure 1: Direct Socket connection 

5.2 URL Connection Over The Browser 

As already described in section 3.2 there is no way for an Applet to 
discover the name and the port of a possibly existing firewall which does not 
allow hosts to open direct connections to other hosts on the internet. 

Through the usage of the URL class implemented from the browser the 
correct way for opening connections over the frrewall will be applied. Using 
this approach it is further feasible to encrypt the connection to the SSL 
server twice. First the application data is encrypted through the 
SSLConnection and then the encrypted data is sent over the weak 40 bit SSL 
connection provided by the browser. 

ServletR .... 
Applet ~ __ 128Ji!..?~: ___ .. 

.-1 

Application Data Servlet I ': 1--
~~ ., 

NM NM 
.. .. -... ..... 

Browser .... Firewa11 .... Strong SSL Server ..... .... 
40 bit 40 bit 

Figure 2: Connection via Browser 



300 

On the server side this solution means additional computation: The active 
component specified through the URL has to act as the endpoint of the SSL 
connection and therefore decrypt the data and pass it to the second Servlet as 
with a direct socket connection which performs the required actions. 

5.3 Security Of The SSL Connection 

The only problem relating to the security of this solution is that the user 
downloads another Applet from a server which elaims to be the requested 
server (Man in the Middle Attack). This uncertainty can be eliminated by 
only allowing to download the Applet over the 40 bit SSL connection. When 
the browser opens the connection for the first time the server authenticates 
itself by sending its certificate to the browser. If the server certificate is 
trusted everything is ok and the procedure continues. Hut if the browser does 
not trust the server certificate it will show an alert box and the user may 
cancel the connection. 

After the Applet from the authenticated server has been loaded and 
initialized, a number of secure random bytes are generated. This could be 
managed by tracing the movement of the mouse or recording other events 
caused through some user interaction. Now the user can enter a username/ 
password combination or a PIN to authenticate hirnself to the server. After 
that the Applet opens a connection to the server and verifies the data. If 
everything is all right the user can start to use the service provided through 
the Applet. 

After the user has finished his work he presses the logout button to elose 
the connection. It is also possible to open a new connection for every piece 
of data which is transmitted to the server. In that case the server has to 
maintain a session which will be terminated when the user presses the logout 
button. 

5.4 Restrictions Of The Applet-SSL Connection 

Due to the fact that this SSL connection is built from an Applet executed 
in a browser, some SSL features are unnecessary and therefore not 
implemented: 

The certificate presented by the SSL server is ignored and instead of 
it the public key of the server is hard-coded into the Applet source. 
This restriction does not limit the general applicability of this 
solution, because an Applet can only connect to one server in any 
case, the one where it was loaded from. If an Applet have to run on 



301 

several machines, it only needs to be recompiled with the correct 
public key set. The benefit of this simplification is, that one saves the 
whole ASN.1 implementation which would be needed to parse X.S09 
certificates thus enormously reducing the size of the Applet. 

- The ServerKeyExchange message can also be ignored because the 
public key is hard-coded in the program. The SSL handshake 
message ServerKeyExchange is only sent if the public key from the 
server certificate cannot be used for key exchanging. 

- Client authentication cannot be used, since an Applet has no access 
to the local file system (especially in JDK 1.0.2) from where a 
certificate and a private key could be read. To authenticate the user to 
the server, some kind of PIN code can be used. This restrietion does 
not affect the security of the system because every data transmission 
is performed over a strong SSL connection. 
The session caching mechanism of SSL version 3.0 can be simplified 
through the fact that only connections to one specific host are 
possible. 

5.5 Features 

The current implementation of the SSL connections shows the following 
features: 

128 bit IDEA, 64 bit DES or 168 bit triple-DES as symmetric cipher 
- RSA or Diffie-Hellman for exchanging the master secret (keys) 

Session caching for faster further connections to the server 
- MD5 or SHA as internal hash algorithm for the MAC 
- A jar file with less than 40 Kbytes induding all necessary c1asses 

Works on every Java enabled browser 

6. CONCLUSION 

The usage of SSL connections within Applets lets companies elegantly 
resolve the low security problem of exportable browsers and therefore 
offering secure services over the Internet. It is true that there are some 
restrictions in comparison to ordinary SSL connections, especially dient 
authentication is not available. But as there are other authentication schemes 
like usemame and password or PIN codes, of course over the strong SSL 
connection, this restriction should cause no problems. 



302 

REFERENCES 

[I] Java Oevelopment Kit, Sun Microsystems, http://wwwjavasoft.com/products/jdk 

[2] JavaScript, Netscape, http://developer.netscape.com/tech/javascript/index.html 

[3] Java Applet Security, Javasoft, http://java.sun.com/security/SRM.html 

[4] Java Applets, Sun Microsystems, http://wwwjavasoft.com/applets/index.html 

[5] SSL, Netscape, http://home.netscape.com/eng/ssl3/index.html 

[6] HTTP, W3C, http://www.w3.orglProtocols/ 

[7] HTML, W3C, http://www.w3.org/MarkUp/ 

[8] URLConnection, lOK Oocumentation, 
http://www.javasoft.com/products/jdk/l.0.2/api/java.net.URLConnection.html 

[9] Java Archive, Sun Microsystems, 
http://wwwjavasoft.com/products/jdk/I.I/docs/guide/jar/index.html 

[10] Signed JAR files, Sun Microsystems, http://java.sun.com/security/signExample/ 

[11] JOK Versions, Sun Microsystems, http://java.sun.com/products/OV.JdkProduct.html 

[12] Java Activator, Sun Microsystems, 
http://wwwjavasoft.com/products/activator/index.html 

[13] ActiveX, Microsoft, http://www.microsoft.com/com/default.asp 

[14] Plugln, Netscape, http://home.netscape.com/plugins/ 

[15] SSL Applet, IAIK, http://jcewww.iaik.tu-graz.ac.at/ Applet/ Applet.html 


