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Abstract Communication systems are composite systems which can conduct simulta­
neous communications with their environment. Such systems may require mul­
tiparty testing to determine their conformity. 

To develop an appropriate test suite, one should establish the required test 
method first. To decide whether multiparty testing is necessary, that is, whether 
the system truly accepts simultaneous signals from the environment, we 
describe the interconnection of system interfaces with internal buffers by a 
matrix, assuming the system structure and the way of communication of SDL. 
From this matrix we try to select independent signals, which can be accepted 
simultaneously by the system. The criterion of signal independence is that sig­
nals should be offered to different buffers. From sets of independent signals we 
generate composite inputs. We suggest to use these composite signals as selec­
tion criteria to develop the set of test purposes and apply them to generate a test 
suite. Accordingly we suggest a modification to the strong reasonable environ­
ment technique, most often used to generate test suites. We demonstrate the 
method on the foreign agent part of the IP Mobility Support. 

Keywords: SOL, communicating finite-state machines, interface-buffer interconnection 
matrix, required test method, reduced reachability tree 

1. INTRODUCTION 

Real protocol implementations are typically composite systems and can 
communicate simultaneously with several entities. However, most of the the­
oretical works done on conformance testing, were restricted to a single or, if 
multiple entities were involved, to a sequential communication with those 
entities. Only such sequential test cases could be specified in the first version 
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of TICN [CTMF], where all the communication between the tester and the 
system under test (SUT) was described as a single sequence, even if it 
involved multiple entities connected through different PCOs (point of control 
and observation). This lack of concurrency on the tester side resulted in the 
introduction of the methodology of multiparty testing. Accordingly TICN 
was extended to concurrent TICN [TTCNe] that would allow to specify mul­
tiple test components that makes the tester capable to send and receive simul­
taneous events. multiparty testing is still an open research area. 

In all cases, when a specification defines several interfaces between a sys­
tem and its environment one must consider multiparty testing, because an 
implementation of such a system might be able to accept and to process con­
current signals. Only multiparty testing can provide simultaneous inputs 
toward the SUT, although it can still not guarantee that these events will occur 
indeed concurrently. 

On the other hand, having several interfaces does not mean in all cases 
that signals provided simultaneously through them are indeed processed con­
currently by the system. To decide whether multiparty testing is really neces­
sary, one needs to take a closer look at the internal structure of the system 
specified, and the way it communicates to its environment. This greatly 
depends on the underlaying model of the formal description technique used 
for specification, provided that implementations follow both the specified 
structure and features of the model. 

A system internally can be specified as a single-entity system; or it can be 
distributed, and composed of multiple entities working in parallel and com­
municating with each other and possibly with the environment. 

A component's behavior can be sequential, i.e. it accepts only one stimu­
lus at a time; or it can synchronize on its inputs, i.e. waits until all required 
stimuli have been received. An example of the first case is the (extended) 
finite-state machine model, which defines the behavior as a reaction on a sin­
gle input received in a given state. An example of the second case is the Petri­
net model. In Petri-nets a transition may have several input places, and the 
transition may fire only when each input place holds at least one token. 

The communication between the entities of a system can be synchronous, 
such as in LOTOS, where participating processes are blocked until the 
required synchronization occurs; or asynchronous as it is in SDL [SDL], 
where signals are buffered in queues until consumption. 

All these and the specified system itself determine whether multiparty 
testing is a must. These factors define the required test method, which in turn, 
guides the test suite generation. 

The goal of our paper is to take a closer look at SDL and systems specified 
in SDL to decide whether multiparty testing is inevitable. We present a matrix 
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which helps us to decide what test method and tester configuration should be 
applied to a system. Then the result is used for selection of test purposes and 
in the generation of test cases. The novelty of our approach is that it takes a 
structural approach. It investigates first the structure of the system specified, 
then uses the results in the subsequent steps of test suite generation. Until 
now the question of determining of the required test method was hardly ever 
discussed further than enlisting the abstract test methods of appropriate stan­
dards [CTMF, FMCTa]. 

According to SDL, we assume a compound system of asynchronously 
communicating finite state automata. To determine the required test method, 
we describe the interconnection of the system interfaces and the internal buff­
ers of the system by a matrix. From this matrix we derive the independent sig­
nal sets, from which we generate composite inputs used to control multiparty 
testing. The main criterion of signal independence is that signals are offered 
to different buffers. According to the methodology of multiparty testing, for 
each signal in the set we need to provide a separate test component in the 
tester. Also, the test generation method should take into account these simul­
taneous events. Hence we suggest to build a reduced reachability tree by 
applying a composite input (i.e. a set of simultaneous signals at the selected 
interfaces) at a time, whenever the system is in a stable global state. 

Our paper presents this approach as follows: First, we give an overview of 
test generation methods used for systems specified in SDL. We conclude this 
overview with our approach to the test suite generation. In the third section, 
we introduce a system of communicating finite-state machines (CFSM) as the 
basis of our further discussions. In section four, we analyze the features of 
SDL to determine the required test method for a system specified in SDL. We 
introduce the interface-buffer interconnection matrix, from which we derive 
sets of composite inputs are for multiparty testing. In section five a modifica­
tion of the algorithm of the generation of the reduced reachability tree is sug­
gested. Finally, section six presents an example: the model and the reduced 
reachability tree for the foreign agent part of the IP Mobility Support proto­
col. 

2. TEST GENERATION METHODS FOR COMPOS­
ITE SYSTEMS SPECIFIED IN SDL 

For standardized FDTs draft standards [FMCTa, FMCTb] suggest several 
test generation methods. Here we discuss only methods suggested for SDL. 

Most of the methods suggested for SDL, are based on a predefined set of 
test purposes given in MSC (Message Sequence Chart) [FMCTb, Ek97]. 
These methods generate the reachability tree of a system specified, then they 



112 TESTING OF COMMUNICATING SYSTEMS 

compare it with the set of test purposes. Whenever a part of the reachability 
tree covers a given test purpose scenario a test case is generated. The pre- and 
postambles, and the alternative behaviors are derived from the reachability 
tree. The pass verdict is assigned to the branch covering the test purpose, 
inconclusive verdicts are assigned to other behaviors derivable from the 
reachability tree, and a fail verdict is assigned to everything else, i.e. to 
behaviors which cannot be derived from the specification. According to the 
literature and tool descriptions, implementations of this method take into con­
sideration mostly single-process systems, but never more than a single input 
queue between the system and its environment (although this input queue 
may be connected to several interfaces) [FMCTb, Fem96b, Grab97]. In this 
methodology the set of test purposes is derived from the requirements speci­
fied for the protocol in the standard. 

Given a (standard) protocol specification in SDL, it is already a require­
ment specification that an implementation should satisfy. Indeed, it is the 
most detailed set of requirements that ever would be imposed by a standard. 
Any set of test purposes will only be a subset of this specification if it does 
not cover the full specification (in which case there is no reduction of com­
plexity). The question, whether a subset of requirements is sufficient to deter­
mine conformity, rises all the time. In addition, there is no established 
methodology to derive the test purposes from a system specification and it is 
mostly done by experts: 

A protocol/system lifecycle starts with the specification of the require­
ments, for example, in MSC. These message sequence charts are then used 
(1) to produce a skeleton of the system specification in SDL which will be 
refined then until the necessary level of details is achieved. The requirements 
also (2) compose the basis for test purpose definitions. Unfortunately this 
branching in the lifecycle means that the original set of requirements and the 
specification might not be consistent any more. The refinement of the specifi­
cation introduces new parts to the system behavior which might not be cov­
ered by the original requirements. That is, the original set of requirements 
cannot be used directly as set of test purposes. They have to be re-generated 
from the SDL specification, or at least validated and verified against the final 
system specification. Hence the question is: how to select the appropriate 
(sub)set of requirements from the specification? 

[Luo94a, Tan96] describe a different approach of test suite generation for 
SDL: A transformation of the SDL system into a system of communicating 
finite-state machines. Unfortunately the transformation of the SDL system 
cannot be generalized. Not all SDL systems can be transformed into an equiv­
alent system of communicating finite-state machines, even when only the 
control part of protocols is considered. 
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[Fern96a, Fern96b, Grab96] apply verification techniques to test suite 
generation. 

The method presented in [Fern96a, Fern96b] again uses test purpose spec­
ifications to generate the test suite. The algorithm interleaves the events at dif­
ferent PCOs, which is not necessary when one is allowed to define parallel 
test components. The goal of the introduction of concurrent TTCN and paral­
lel test components was to avoid this complexity. The method, as presented, 
deals primarily with the control part of a specification though it does not 
exploit this assumption. 

[Grab96] discusses different methods used for verification of SDL specifi­
cations to reduce the complexity of the state space exploration, and their 
application to test generation methods. In SDL the buffer size is unlimited 
and may be infinite. This feature makes the state space infinite, therefore a 
reasonable reduction technique is required. [Grab96] concludes that the most 
effective reduction technique for SDL is the strong reasonable environment, 
i.e. the application of a single external stimulus and only at a stable global 
state of a system. Similarly as it is used in the random walk methods (guided 
[Lee96], weighted [Kang97]). Obviously, this technique excludes simulta­
neous inputs what is necessary for multiparty testing. Therefore we suggest to 
modify this technique to adjust it to multiparty testing: 

That is, we allow at most one external signal at a time for each point of 
control. This means that if there are several PCOs, instead of a single external 
signal, a set of external signals is applied to the system at a time, but no more 
than one signal at each PCO. We apply a single set of input signals only to a 
stable global state of the system, i.e. all input queues are empty, so does the 
original method. Note that this requirement puts a limitation on the delay 
introduced by delaying channels of SDL, since a stable global state is reached 
only when all these buffers are emptied. The question is what sets of external 
inputs should be used to build the reachability tree. Is there any possibility to 
reduce this set compared to the set of all possible combinations of inputs? 

In addition random walk methods avoid the state space explosion by not 
creating the composite automaton for a CFSM system. They make the 
assumption, that stable global states of the implementation are observable. 
This may not be the case at the test campaign, however, one can safely 
assume the same at the test suite generation without introducing any limita­
tion regarding the implementation. At test suite generation, one can observe 
internal queues and states of the specification and determine the stable global 
states. Since these events are invisible and uncontrollable for a tester at the 
test campaign, one may only observe and should not control the internal com­
munication even at the test suite generation. Thus we have to evaluate all pos­
sible ordering of simultaneous signals in internal input queues. 
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Note: It is not our goal to introduce any new test suite generation tech­
nique. We aim merely at answering the question whether multiparty testing is 
necessary and if it is, what abstract test method should be used. We suggest to 
use the result to select test purposes and to produce a test suite by existing 
methods. We only demonstrate our approach on the method producing a 
reduced reachability tree and specifying a test case for each branch of the 
tree. For our demonstration we use a model of communicating finite-state 
machines as follows. 

3. COMMUNICATING FINITE-STATE MACHINES 
WITH EXTERNAL INTERFACES 

We simplify the SOL model to a system of n communicating finite-state 
machines, which has m external interfaces: 
CFSM = ( {Mp M 2, ... , Mn}, {1 1, 12, ... ,I m}). An automaton can have a dedicated 

interface or multiple interfaces or share an interface with other automata. 
Automata communicate asynchronously, thus each automaton has a single 

input queue, which collects all inputs signals for that given automaton. An 
automaton accepts input signals from automata of the system and from the 
system environment. 

An automaton of the system is described as M = (S, E, o, tr, s0, q), where 

S - the finite set of states of the automaton; 

E - the finite set of input signals of the automaton. It is composed of two sets 

E = L u E; where L is the set of external input signals and E; is the 
set of internal input signals; 

0 - the finite set of output signals of the automaton; similarly to input sig-

nals, it is composed of two sets 0 = oe u d where oe is the set of 

external output signals and d is the set of internal output signals; 
tr - the transition function of the automaton; 

s0 -the initial state of the automaton, s0 E s; 

q - the input queue of the automaton. 
The transition function is given as tr = (s_,., t, {q;;ro1 ... , qx;ro), se), and it 

determines for the (s,, t) state-input pair s, E s, t E E the resulting outputs 

ro;, ... , rox E 0 appended to appropriate queues (q;ro), and the next state seE S 

of the automaton. An input from the environment is put directly to the input 
queue of the appropriate automaton. To model delaying channels of SOL we 
allow spontaneous transitions, i.e. no input signal is required to trigger the 
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transition, which leads to a new state (tre = (s,, e, {qpJ)1 ... , qx;ro), se), where 

s, * se ). An automaton modeling a delaying channel is shown in Figure la. It 
has two states: s0 - delivering state (initial) - and s 1 - blocking state. The tran­
sitions between them are spontaneous transitions. In the blocking state the 
automaton introduces a delay; in the delivering state it forwards signals. A 
timer can be modelled in a similar way (see Figure 1 b). It is an automaton 
with two states: s0 - timer does not run - and s 1 - timer runs. From s0 state the 
timer is set by the set signal and moves to the s 1 state, from which a spontane­
ous transition or the reset signal leads back to the s0 state. In s 1 state the set 
signal triggers a null transition. 

(a) Delaying channel (b) Timer Set/-

-I-

Reset/-

Figure 1 The timer and the channel automata 

An interface of the system is composed of two parts, one for each direc­
tion 1 = (Jnp, Out). The input part 1np = { (q;, L;) 11 ::; i::; n, L; E;} is the list of 

queues to which the interface delivers signals and the set of carried signals for 

each queue. The output part Out = (q, De) is the output queue and the set of 
n 

output signals at this interface oe u a:. 
i =I 

Such a system may accept simultaneous stimuli. In the next section we 
discuss whether the application of concurrent inputs, i.e. multiparty testing is 
necessary. 

4. DETERMINING THE REQUIRED TEST 
METHOD 

The required test method depends on the structure and the method of com­
munication of the system to be tested. The abstract test method determines 
the required test suite generation method. Since we focus on SDL we con­
sider of the structure and the way of communication of such systems. We also 



116 TESTING OF COMMUNICATING SYSTEMS 

take into account assumptions made by TTCN about the tester configuration: 
According to concurrent TTCN for each simultaneous thread of commu­

nication with the system under test, one needs a dedicated parallel test com­
ponent, because each parallel test component is able to control only a single 
thread of events (though these events may occur at different PCOs). Thus we 
have to determine the possible concurrent events in the communication with 
the system. 

We assume that a test campaign can and should use only the channels 
specified between the SDL system and its environment as PCOs. We refer to 
these channels as interfaces. In general a tester offers signals only at inter­
faces and it observes signals received only at interfaces. It cannot influence or 
even observe directly any internal communication. Therefore we focus on 
signals offered at interfaces. They also play an essential role in the test suite 
generation: They determine the tester configuration required to control the 
test campaign as each simultaneous signal requires a separate test component. 
The configuration required to observe test events is derived from the expected 
output events, after a test generation method has been applied (e.g. reachabil­
ity tree) to the specification. 

All these suggest that to cover all the possible behavior, one should offer 
all the combinations of valid input signals to the system at its interfaces. 
However after a closer look at the system structure it is possible to reduce this 
estimation: 

An SDL process has a single input queue and consumes a single signal at 
a time from its input queue. All signal routes leading to the process deliver 
signals to this single input queue, where simultaneous signals are ordered 
arbitrarily and buffered until consumption. The behavior of the process is 
sequential. Hence a single test component is sufficient to control a single pro­
cess if its input queue is exposed directly to the tester. The number of inter­
faces leading to this process, that is to its input queue, has no effect on this. 
The question is whether an input queue is exposed directly to the tester. 

A process, if applicable, is connected to the system environment by at 
least a channel and a signal route. Signal routes and non-delaying channels, 
deliver signals immediately. Therefore one may assume that they deliver 
simultaneous signals concurrently, i.e. they preserve the concurrency of inter­
faces. This also means that if a process connected to the environment only by 
non-delaying channels, it exposes its input queue directly to the environment. 
Thus the process itself serializes the incoming signals via buffering them in 
its input queue. 

In contrast, a delaying channel acts like an input queue itself. A delaying 
channel arbitrarily orders simultaneous signals at reception, then it delivers 
them one by one, after a non-deterministic delay. As we suggested in the pre-
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vious section, delaying channels can be represented as predefined automata 
with a single input queue, thus a single test component is sufficient to control 
a delaying channel and all the processes connected via it. 

That is, we need to investigate the interconnection of interfaces and buff­
ers (input queues of processes and delaying channels) to determine what 
combination of events may occur concurrently at the interfaces. 

Figure 2 shows the three basic cases of interface-buffer interconnections 
and a combination of them: 

(a) dedicated (b) shared (c) multiple (d) combination 

Il I2 I3 I4 Is I6 I7 ,, \1 

Figure 2 Interface-buffer interconnections 

(a) Dedicated interface: buffer q1 have a dedicated interface 11. 

(b) Shared interface: buffers q2 and q3 share a common interface 1z. We may 
or may not assume that a single interface can deliver simultaneous sig­
nals. 

(c) Multiple interfaces: buffer q4 has two interfaces 13 and 14. Although the 
two interfaces can deliver signals simultaneously, the signals will be 
ordered by the buffer, that is the interfaces exclude each other, i.e. they 
act sequentially. 

(d) Combination: To buffers qs and q6 three interfaces deliver signals: Is, 16 
and l7.ls delivers exclusively to qs, but 16 is shared between qs and q6.17 
is dedicated to q6. This means that if 16 delivers a signal either to qs or to 
q6, only one of the other interfaces can act in parallel: 17 in the first case, 
Is otherwise. If 16 is not used Is and 17 can deliver independently from 

each other. Whether 16 can deliver to both qs and q6, and exclude the 
other interfaces is a further issue 
We describe the interface-buffer interconnection (R) of a system by a 

matrix columns of which mean interfaces and rows of which represent buff­
ers. If an interface delivers signals to a given buffer, we put down the appro­
priate signal list (L) in the cell. Otherwise we put down the 0 symbol for the 
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empty set. For the example of Figure 2( d) the matrix is : 

interfaces: 

1:; \) 17 queues: 

R = [L6 L7 0l q5 
0 L 8 L 9j q6 

To select independent signals, one needs to select independent elements of 
the matrix. 

(1) Since input queues serialize signals, elements of the same row are 
dependent. To select independent sets one should chose only one signal at a 
time for each buffer. This means that at most one element per row can be 
selected. 

(2) If we also make the assumption that each interface delivers only one 
signal at a time, that will further restrict our selection of matrix elements. 
That is, in addition to the previous restriction of one element per row, one is 
allowed to select at most one element per column. 

These selections result in matrices, rows and columns of which linearly 
independent from each other. 

From matrix R we derived the following matrices: 

Rl = [L6 0 0l, R2 = [L6 0 0l, R3 = L7 0l, R4 = [L6 0 0l, 
-

Rs = [0 L7 0l, R = !0 0 0l, R = [0 0 0l, R = [0 0 0l 
0 0 0J 6 l0 Lg 0J 7 0 0 L9J 8 0 0 0j 

Each of the derived matrices represent a tester configuration for control, 
since the simultaneous signals can be offered only by parallel test compo­
nents. 

In our example R b R2 and R 3 represent configurations of multiparty test­

ing. Each of them requires simultaneous use of two interfaces: Is and 16, Is 

and 17, and 16 and 17 respectively. Configurations of R4, Rs, R6, and R7 offer a 

single external signal to the system. Finally in R8 no interface is selected for 

control, that allows to observe a behavior triggered by internal events, such as 
keep-a-live signals, etc. 

If we allow multiple signals at an interface, that is we do not make our 
second assumption about the interfaces, an additional matrix is derived: 

l0 L 8 0j 
We construct composite inputs from the possible independent inputs by 
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selecting one signal from each selected independent signal list. Thus we cre­
ate the Cartesian product of the selected signal lists of the matrices and create 
the union of these sets. The set of composite inputs for our example is: 
A = (L6 x L8 ) U(L6 x L9) U(L7 x L 9 ) UL6 UL7 UL8 UL9 U0. 

For R9 this set is extended with the set of (L1 x L8). 

5. GENERATION OF THE REDUCED REACHABIL­
ITYTREE 

As we suggested, we relaxed the strong reasonable environment technique 
to generate a reduced reachability tree. That is, we build the reduced reach­
ability tree by offering a composite input at a time to the system in a stable 
global state. We consider a system state as a tuple of the component autom­
ata's states coupled with their input queues and output queues of the system: 

(J = ( (sp ql}, (s2, q2}, ... , <sn, qn))' where si is the state, qi is the input queue 

of the ith automaton. 
A state is a stable global state when all of the input queues of automata are 

empty, hence such a system state is described as an tuple of the automata's 
• ,'it states, I.e. cr = (sp s2, ... , sn> . 

States having spontaneous transitions are stable if the automaton's input 
queue is empty. However at the generation of the reachability tree one has to 
treat spontaneous inputs as well. We calculate the successor states for the 
spontaneous transition i.e. we add to the set of reachable states, states reached 
by firing the spontaneous transition. 

We generate the reduced reachability tree by the following algorithm: 

begin 
l: = 0; 

= (s01, s02, ... , sOn} ; 

d = 0; 

l:o = { ; 

do{ 
l: = l: u l:d; 

r,d+l = 0; 

II reached stable global states 

II the initial stable global state 

II the current depth of the reachability tree 

II stable global states at depth 0 

II add newly reached stable global states 

for ( i = I, i :5: Jl:dl• i = i + I ) II for all stable global states of depth d 

for (j = I, j :5: I AI. j = j + I ) { II for all composite inputs 
II apply the composite input to the stable global state 
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II and generate the reachable stable global states: 
[. 

{a,.1ja"1 = ((s1,0}, (s2,0}, ... , (sn,0}}} 

h " w ere l; e A , aj e 

II store a stable global states iff it has not been reached before: 

if(a"1 e = u{a .. 1}; 

d = d+ I; 

} while ;t 0 ); 

end 
II until new stable global states have been reached 

To generate all reachable stable global states from a stable global state 

a·;' e by applying a composite input lj e A, we do a breadth first explora­

tion (similarly as it is presented in [ObjG]). For each automaton we interleave 
simultaneous signals from different senders and take into account possible 
spontaneous transitions. We also interleave signals at the same output queue. 
According to the algorithm we check each newly reached stable global state 
with the set of stable global states reached before and if it is already in the set, 
we truncate the reachability tree. 

Note that until now we discussed the tester configuration only with respect 
to composite inputs, i.e. from the point of view of control. We determine the 
configuration for observation from the generated output events each time we 
reach a stable global state: We define an observer at each output queue which 
contains output signals. Any time a control point and a point of observation 
belong to the same interface, they are merged into a single test component. 
This way we assign a tester configuration to each arc of the reduced reach­
ability tree. 

Undoubtedly the presented change increases the state space exploration. 
However it will determine test cases which would not be generated otherwise. 
As small example of two automata is shown in Figure 3. By application of the 
two external inputs a and d, one at a time one can generate only the right part 
of the reachability (solid lines), since the first automaton will go always 
through state S2 and generate the output ol. Only when the two signals are 
applied simultaneously the automaton will move to S3 and produce output 
o2. 

In the following section we demonstrate our approach on the example of 
the foreign agent of the IP Mobility Support. 
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I I 

• ol,o2 
(SO,SO) 

12 

(S2,SO) (SO,SO) 

die 

Figure 3 Example CFSM system 

6. IP MOBILITY SUPPORT 

The IP Mobility Support provides host mobility on the Internet. Accord­
ingly, a mobile host obtains a temporary IP address for the time it visits a for­
eign subnetwork. This temporary care-of address is used then to re-route 
packets sent to the mobile host. The mobile host registers its care-of address 
with a foreign agent of the visited subnetwork and with its home agent. After 
registration the home agent intercepts packets addressed to the mobile host, 
and tunnels them to the registered care-of address of the mobile host. 

Since the three interoperating components: the mobile host, the foreign 
agent and the home agent likely to have different ownerships and vendorships 
we develop a separate test suite for each of them. Here we present the test 
suite generation only for the foreign agent. 

6.1 Foreign Agent 

We modeled the case when the foreign agent serves at most one mobile 
host at a time, i.e. the first registration request is accepted, any other new reg­
istration request is rejected until this registration is valid. 

The foreign agent is composed of four communicating finite-state 
machines of Figure 4, two of which are timers and have no external interface 
(Figure 4b, 4c). The third automaton (Figure 4a) advertises the foreign agent. 
It generates the appropriate agent advertisement indicating the agents avail­
ability. Accordingly the transition between these states are initiated by the 
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SIAO 
ATIAO, SetAT 

SetAT/-
a) Advertiser 

b) Advertisement timer 

d) Registration 

SIAl 
AT/Al, SetAT 

SetRT/-

c) Registration timer 

Figure 4 The four automata of the foreign agent 

signal of the fourth automaton, which handles the registration (Figure 4d). 
This automaton becomes busy after forwarding the registration request to the 
home agent and becomes the end point for tunneling of data packets to the 
registered mobile host (we neglected the loop transition of forwarding data 
packets). The automaton distinguishes requests coming from the registered 
and from a non-registered mobile hosts. We do not model delaying channels 
for the foreign agent. 

Signals occurring at interfaces - both inputs and outputs - are set in bold­
italic in Figure 4. 

The foreign agent has three interfaces: two toward mobile hosts and one 
toward a home agent as it is shown in Figure 5. Only the Advertiser and the 
Registration automata have external inputs, i.e. communicate through these 
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interfaces, so only their input queues are represented. The matrix of the inter­

face-buffer interconnection is:R == [{RpO, Rpl} {Rql} {Rq2}] 
0 {SI} {S2} 

Registration Advertiser 

Figure 5 The interface-buffer interconnection in the foreign agent 

We do not allow multiple signals at any interface. The matrices of inde­
pendent signal lists are: 

RI == [{RpO, Rpl} 0 0l, 
0 {SI} 0j 

R == [{RpO,Rpl} 0 0 J· R == r0 {Rql} 0 J· 
2 0 0 { S2} 3 L 0 0 { S2} 

R4 == r0 0 {Rq2}l, 
L0 {SI} 0 J 

R = [{RpO,Rpl} 0 0l, R = [0 {Rql} 0l, 
5 0 0 0j 6 0 0 0j 

R1 = R8 = R9 = R 10 = 

We use at most two interfaces in any of these case. The set of composite 
inputs is: A={<SJ, RpO>, <Sl, Rpl>, <S2, RpO>, <S2, Rpl>, <S2, Rql>, <Sl, 
Rq2>,<Rp0>,<Rpl>,<Rql>,<Rq2>,<Sl>,<S2>,<>}. 

The generated reduced reachability tree of the CFSM model with use of 
the A set of composite inputs is shown in Figure 6. The notation used in the 
reachability tree is the following: 
• Nodes represent stable global states of the system. Each ofthem denote a 

4-tuple composed of the states of automata in the form 
<Advertiser, Registration, Advertisement timer, Registration timer>. 

• Arcs have labels of three parts: <inputs> I timer events I <outputs> 
- the set of inputs which initiated the transition, in angle brackets; 
- between slashes internal timer related events if applicable; 
- the generated outputs again in angle brackets. 

Listing the timer events in the graph let us derive timer events for test 
cases if necessary. 
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• sO 

o/A'f;SetA'fi<\1A0,21A<D 

s2 

sO 

s2 sl 

Timers: AT- Advertiser Timer, RT- Registration Timer 

Interfaces: I - IMHI' 2- I MH2' 3- I HA 

s2 

States: sO -<AI, I, R, S>, sl - <AB, WR I, R, R>, s2- <AB, B I, R, R>, 
s3 - <AB, WR2, R, R>, s4 - <AB, B2, R, R> 

Advertiser: Al - Advldle 
AB- AdvBusy 

Registration: I - Idle 1imer.1: S -Stop 
WR1,2- WaitForReplyl,2 R- Run 

Bl,2- Busyl,2 

Figure 6 The reachability tree of the foreign agent 

sO 

s2 
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• In front of each input/output event we indicate the interface at which it 
takes place. Simultaneous input/output events of different interfaces are 
separated by comma. 

• Alternate outputs at the same interface are separated by a vertical bar "1". 
• A sequence of output events is concatenated by semicolon";". 

In the reachability tree we indicated but did not expand a subtree rooted in 
state "s3", which is symmetrical to the subtree rooted in the stable global 
state "sl ". We derived test cases for each arc of the reachability tree, except 
the subtree rooted in "s3". A certain care had to be taken regarding the timers 
and the coordination of the test components. One can notice in the reachabil­
ity tree, that once the foreign agent accepted a registration the only way back 
to the initial state of the system is the expiration of the registration timer. This 
means no actions from the tester side, i.e. it has to wait at least for the amount 
of time the registration was accepted. Therefore these - no input from the 
tester - branches of the reachability tree were selected "to reset" the IUT to 
the initial state. 41 test cases and 30 test steps were derived manually from the 
reachability tree for the MIP foreign agent. 18 of the test cases take into 
account simultaneous inputs, and they require 16 of the test steps. This means 
that the application of composite inputs doubled the size of the generated test 
suite compared to the approach of the strong reasonable environment with a 
single input signal at a time. 

Table I: Sample test step: Preamble 

Name Preamble (A: PCO, B: PCO) 

Label Dynamic Behavior Verdict prev. 
notation 

A ! RegistrationRequest, Start (RegistTimer) Rq 

B ? RegistrationRequest PASS Rq 

B ? otherwise FAIL 

Table 2: Sample test step: Parallel Test Component_! 

Name ParallelTestComponent_l (A: PCO) 

Label Dynamic Behavior Verdict prev. 
notation 

A ! RegistrationReply(reject) (pass) RpO 
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Table 3: Sample test step: Parallel Test Component_2 

Name ParallelTestComponen_2 (A: PCO) 

Label Dynamic Behavior Verdict prev. 
notation 

A ! Solicitation s 
A ? RegistrationReply(reject), Cancel (RegistTimer) RpO 

A ? AgentAdvertisement(idle) PASS AO 

A ? AgentAdvertisement(busy) AI 

A ? RegistartionReply(reject)Cancel (RegistTimer) PASS RpO 

A ? Otherwise FAIL 

Table 4: Sample test case 

Label Dynamic Behavior Verdict prev. 
notation 

+Preamble (MHI, HA) 

create ( PTC_I: ParalleJTestComponent_l (HA) 
PTC_2: ParallelTestComponent_2 (MH 1) ) 

[R=pass] PASS 

[R=fail] FAIL 

An example test case presented in Tables 1-4 which was derived from the 
consecutive arcs: sO <1 !Rq> /SetRT/ <3?Rq> sl and sl <1 !S, 3!Rp0> I 
ResetRT/ <1 ?RpO;AO I 1 ?Al;RpO> sO. The first arc is used as the preamble 
for the second one. 

The test case specifies two parallel test components: PTC_l which has a 
PCO toward the HA(3) interface (Table 2) and PTC_2 which has a PCO con­
nected to the MHl (I) interface (Table 3). The main test component starts 
with the preamble then creates the two parallel test components and finally 
evaluates the verdict (Table 4).We found that testing of this mobile protocol 
does not differ from stationary protocols except that it requires multiparty 
testing and the timers play essential role in the protocol, so testing of them is 
inevitable. We also found that the timer handling is ambiguous in the exten­
sion of TTCN in the case of parallel test components: Each newly created test 
component receives a copy of all running timers, however it is not clear how a 
timer is stopped if only one of the components detects the appropriate event. 
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7. CONCLUSION 

We approached the problem of test suite generation for composite systems 
from a structural point of view. We investigate the question of signal depen­
dency to determine the re4uired test method. I.e. we establish, for a system 
specified in SDL, the sets of signals that can happen simultaneously, therefore 
need to be offered concurrently to verify the system's conformity. To offer 
simultaneous signals one has to apply multiparty testing. 

In SDL the communication happens via queues buffering, and serializing 
concurrent signals. Therefore our main criterion of signal independence is 
being submitted to different buffers. We use the interface-buffer interconnec­
tion matrix to determine signal independence. In the matrix signal lists of the 
same row belong to the same buffer, so only one of them is selected at a time. 
Additionally one may assume that an interface delivers only a single signal at 
a time, which restricts further the selection by allowing at most one element 
in each column. After the selection of independent signal lists we create the 
set of composite inputs taking at most one signal from each list. Subsequently 
we use these composite inputs to generate the reduced reachability tree of the 
system. This approach can be interpreted as an adaptation of the strong rea­
sonable environment reduction technique to multiparty testing. 

We have demonstrated this method on the example of the foreign agent 
part of the IP Mobility Support protocol. The work was done manually with 
the use of an SDL simulator. The next step will be to implement the algo­
rithm. The critical point is the derivation of the synchronization messages of 
test components. We found that timer handling of parallel test components is 
ambiguous in the extension of TTCN. In the MIP protocol due to mobility, 
timer events could be detected by a different test component than the one, 
which sent the message setting the timer. At the moment, we had to specify 
explicitly the synchronization between relevant test components. However 
this work was very cumbersome and errorprone, at the same time testing of 
these features for mobile protocols is essential. Therefore an implicit syn­
chronization of timer events between test components provided by TTCN 
standard would be highly beneficial. 
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