
8

DECISION ON TESTER CONFIGURATION FOR
MULTIPARTY TESTING

Maria Tbrb
Computer Science Department
The University of British Columbia
2366 Main Mall, Vancouver, B.C., V6T JZA Canada
toeroe@cs.ubc.ca

Abstract Communication systems are composite systems which can conduct simulta­
neous communications with their environment. Such systems may require mul­
tiparty testing to determine their conformity.

To develop an appropriate test suite, one should establish the required test
method first. To decide whether multiparty testing is necessary, that is, whether
the system truly accepts simultaneous signals from the environment, we
describe the interconnection of system interfaces with internal buffers by a
matrix, assuming the system structure and the way of communication of SDL.
From this matrix we try to select independent signals, which can be accepted
simultaneously by the system. The criterion of signal independence is that sig­
nals should be offered to different buffers. From sets of independent signals we
generate composite inputs. We suggest to use these composite signals as selec­
tion criteria to develop the set of test purposes and apply them to generate a test
suite. Accordingly we suggest a modification to the strong reasonable environ­
ment technique, most often used to generate test suites. We demonstrate the
method on the foreign agent part of the IP Mobility Support.

Keywords: SOL, communicating finite-state machines, interface-buffer interconnection
matrix, required test method, reduced reachability tree

1. INTRODUCTION

Real protocol implementations are typically composite systems and can
communicate simultaneously with several entities. However, most of the the­
oretical works done on conformance testing, were restricted to a single or, if
multiple entities were involved, to a sequential communication with those
entities. Only such sequential test cases could be specified in the first version

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing

10.1007/978-0-387-35567-2_25

1999
G. Csopaki et al. (eds.), Testing of Communicating Systems

http://dx.doi.org/10.1007/978-0-387-35567-2_25

II 0 TESTING OF COMMUNICATING SYSTEMS

of TICN [CTMF], where all the communication between the tester and the
system under test (SUT) was described as a single sequence, even if it
involved multiple entities connected through different PCOs (point of control
and observation). This lack of concurrency on the tester side resulted in the
introduction of the methodology of multiparty testing. Accordingly TICN
was extended to concurrent TICN [TTCNe] that would allow to specify mul­
tiple test components that makes the tester capable to send and receive simul­
taneous events. multiparty testing is still an open research area.

In all cases, when a specification defines several interfaces between a sys­
tem and its environment one must consider multiparty testing, because an
implementation of such a system might be able to accept and to process con­
current signals. Only multiparty testing can provide simultaneous inputs
toward the SUT, although it can still not guarantee that these events will occur
indeed concurrently.

On the other hand, having several interfaces does not mean in all cases
that signals provided simultaneously through them are indeed processed con­
currently by the system. To decide whether multiparty testing is really neces­
sary, one needs to take a closer look at the internal structure of the system
specified, and the way it communicates to its environment. This greatly
depends on the underlaying model of the formal description technique used
for specification, provided that implementations follow both the specified
structure and features of the model.

A system internally can be specified as a single-entity system; or it can be
distributed, and composed of multiple entities working in parallel and com­
municating with each other and possibly with the environment.

A component's behavior can be sequential, i.e. it accepts only one stimu­
lus at a time; or it can synchronize on its inputs, i.e. waits until all required
stimuli have been received. An example of the first case is the (extended)
finite-state machine model, which defines the behavior as a reaction on a sin­
gle input received in a given state. An example of the second case is the Petri­
net model. In Petri-nets a transition may have several input places, and the
transition may fire only when each input place holds at least one token.

The communication between the entities of a system can be synchronous,
such as in LOTOS, where participating processes are blocked until the
required synchronization occurs; or asynchronous as it is in SDL [SDL],
where signals are buffered in queues until consumption.

All these and the specified system itself determine whether multiparty
testing is a must. These factors define the required test method, which in turn,
guides the test suite generation.

The goal of our paper is to take a closer look at SDL and systems specified
in SDL to decide whether multiparty testing is inevitable. We present a matrix

Decision on Tester Configuration for Multiparty Testing 111

which helps us to decide what test method and tester configuration should be
applied to a system. Then the result is used for selection of test purposes and
in the generation of test cases. The novelty of our approach is that it takes a
structural approach. It investigates first the structure of the system specified,
then uses the results in the subsequent steps of test suite generation. Until
now the question of determining of the required test method was hardly ever
discussed further than enlisting the abstract test methods of appropriate stan­
dards [CTMF, FMCTa].

According to SDL, we assume a compound system of asynchronously
communicating finite state automata. To determine the required test method,
we describe the interconnection of the system interfaces and the internal buff­
ers of the system by a matrix. From this matrix we derive the independent sig­
nal sets, from which we generate composite inputs used to control multiparty
testing. The main criterion of signal independence is that signals are offered
to different buffers. According to the methodology of multiparty testing, for
each signal in the set we need to provide a separate test component in the
tester. Also, the test generation method should take into account these simul­
taneous events. Hence we suggest to build a reduced reachability tree by
applying a composite input (i.e. a set of simultaneous signals at the selected
interfaces) at a time, whenever the system is in a stable global state.

Our paper presents this approach as follows: First, we give an overview of
test generation methods used for systems specified in SDL. We conclude this
overview with our approach to the test suite generation. In the third section,
we introduce a system of communicating finite-state machines (CFSM) as the
basis of our further discussions. In section four, we analyze the features of
SDL to determine the required test method for a system specified in SDL. We
introduce the interface-buffer interconnection matrix, from which we derive
sets of composite inputs are for multiparty testing. In section five a modifica­
tion of the algorithm of the generation of the reduced reachability tree is sug­
gested. Finally, section six presents an example: the model and the reduced
reachability tree for the foreign agent part of the IP Mobility Support proto­
col.

2. TEST GENERATION METHODS FOR COMPOS­
ITE SYSTEMS SPECIFIED IN SDL

For standardized FDTs draft standards [FMCTa, FMCTb] suggest several
test generation methods. Here we discuss only methods suggested for SDL.

Most of the methods suggested for SDL, are based on a predefined set of
test purposes given in MSC (Message Sequence Chart) [FMCTb, Ek97].
These methods generate the reachability tree of a system specified, then they

112 TESTING OF COMMUNICATING SYSTEMS

compare it with the set of test purposes. Whenever a part of the reachability
tree covers a given test purpose scenario a test case is generated. The pre- and
postambles, and the alternative behaviors are derived from the reachability
tree. The pass verdict is assigned to the branch covering the test purpose,
inconclusive verdicts are assigned to other behaviors derivable from the
reachability tree, and a fail verdict is assigned to everything else, i.e. to
behaviors which cannot be derived from the specification. According to the
literature and tool descriptions, implementations of this method take into con­
sideration mostly single-process systems, but never more than a single input
queue between the system and its environment (although this input queue
may be connected to several interfaces) [FMCTb, Fem96b, Grab97]. In this
methodology the set of test purposes is derived from the requirements speci­
fied for the protocol in the standard.

Given a (standard) protocol specification in SDL, it is already a require­
ment specification that an implementation should satisfy. Indeed, it is the
most detailed set of requirements that ever would be imposed by a standard.
Any set of test purposes will only be a subset of this specification if it does
not cover the full specification (in which case there is no reduction of com­
plexity). The question, whether a subset of requirements is sufficient to deter­
mine conformity, rises all the time. In addition, there is no established
methodology to derive the test purposes from a system specification and it is
mostly done by experts:

A protocol/system lifecycle starts with the specification of the require­
ments, for example, in MSC. These message sequence charts are then used
(1) to produce a skeleton of the system specification in SDL which will be
refined then until the necessary level of details is achieved. The requirements
also (2) compose the basis for test purpose definitions. Unfortunately this
branching in the lifecycle means that the original set of requirements and the
specification might not be consistent any more. The refinement of the specifi­
cation introduces new parts to the system behavior which might not be cov­
ered by the original requirements. That is, the original set of requirements
cannot be used directly as set of test purposes. They have to be re-generated
from the SDL specification, or at least validated and verified against the final
system specification. Hence the question is: how to select the appropriate
(sub)set of requirements from the specification?

[Luo94a, Tan96] describe a different approach of test suite generation for
SDL: A transformation of the SDL system into a system of communicating
finite-state machines. Unfortunately the transformation of the SDL system
cannot be generalized. Not all SDL systems can be transformed into an equiv­
alent system of communicating finite-state machines, even when only the
control part of protocols is considered.

Decision on Tester Configuration for Multiparty Testing 113

[Fern96a, Fern96b, Grab96] apply verification techniques to test suite
generation.

The method presented in [Fern96a, Fern96b] again uses test purpose spec­
ifications to generate the test suite. The algorithm interleaves the events at dif­
ferent PCOs, which is not necessary when one is allowed to define parallel
test components. The goal of the introduction of concurrent TTCN and paral­
lel test components was to avoid this complexity. The method, as presented,
deals primarily with the control part of a specification though it does not
exploit this assumption.

[Grab96] discusses different methods used for verification of SDL specifi­
cations to reduce the complexity of the state space exploration, and their
application to test generation methods. In SDL the buffer size is unlimited
and may be infinite. This feature makes the state space infinite, therefore a
reasonable reduction technique is required. [Grab96] concludes that the most
effective reduction technique for SDL is the strong reasonable environment,
i.e. the application of a single external stimulus and only at a stable global
state of a system. Similarly as it is used in the random walk methods (guided
[Lee96], weighted [Kang97]). Obviously, this technique excludes simulta­
neous inputs what is necessary for multiparty testing. Therefore we suggest to
modify this technique to adjust it to multiparty testing:

That is, we allow at most one external signal at a time for each point of
control. This means that if there are several PCOs, instead of a single external
signal, a set of external signals is applied to the system at a time, but no more
than one signal at each PCO. We apply a single set of input signals only to a
stable global state of the system, i.e. all input queues are empty, so does the
original method. Note that this requirement puts a limitation on the delay
introduced by delaying channels of SDL, since a stable global state is reached
only when all these buffers are emptied. The question is what sets of external
inputs should be used to build the reachability tree. Is there any possibility to
reduce this set compared to the set of all possible combinations of inputs?

In addition random walk methods avoid the state space explosion by not
creating the composite automaton for a CFSM system. They make the
assumption, that stable global states of the implementation are observable.
This may not be the case at the test campaign, however, one can safely
assume the same at the test suite generation without introducing any limita­
tion regarding the implementation. At test suite generation, one can observe
internal queues and states of the specification and determine the stable global
states. Since these events are invisible and uncontrollable for a tester at the
test campaign, one may only observe and should not control the internal com­
munication even at the test suite generation. Thus we have to evaluate all pos­
sible ordering of simultaneous signals in internal input queues.

114 TESTING OF COMMUNICATING SYSTEMS

Note: It is not our goal to introduce any new test suite generation tech­
nique. We aim merely at answering the question whether multiparty testing is
necessary and if it is, what abstract test method should be used. We suggest to
use the result to select test purposes and to produce a test suite by existing
methods. We only demonstrate our approach on the method producing a
reduced reachability tree and specifying a test case for each branch of the
tree. For our demonstration we use a model of communicating finite-state
machines as follows.

3. COMMUNICATING FINITE-STATE MACHINES
WITH EXTERNAL INTERFACES

We simplify the SOL model to a system of n communicating finite-state
machines, which has m external interfaces:
CFSM = ({Mp M 2, ... , Mn}, {1 1, 12, ... ,I m}). An automaton can have a dedicated

interface or multiple interfaces or share an interface with other automata.
Automata communicate asynchronously, thus each automaton has a single

input queue, which collects all inputs signals for that given automaton. An
automaton accepts input signals from automata of the system and from the
system environment.

An automaton of the system is described as M = (S, E, o, tr, s0, q), where

S - the finite set of states of the automaton;

E - the finite set of input signals of the automaton. It is composed of two sets

E = L u E; where L is the set of external input signals and E; is the
set of internal input signals;

0 - the finite set of output signals of the automaton; similarly to input sig-

nals, it is composed of two sets 0 = oe u d where oe is the set of

external output signals and d is the set of internal output signals;
tr - the transition function of the automaton;

s0 -the initial state of the automaton, s0 E s;

q - the input queue of the automaton.
The transition function is given as tr = (s_,., t, {q;;ro1 ... , qx;ro), se), and it

determines for the (s,, t) state-input pair s, E s, t E E the resulting outputs

ro;, ... , rox E 0 appended to appropriate queues (q;ro), and the next state seE S

of the automaton. An input from the environment is put directly to the input
queue of the appropriate automaton. To model delaying channels of SOL we
allow spontaneous transitions, i.e. no input signal is required to trigger the

Decision on Tester Configuration for Multiparty Testing 115

transition, which leads to a new state (tre = (s,, e, {qpJ)1 ... , qx;ro), se), where

s, * se). An automaton modeling a delaying channel is shown in Figure la. It
has two states: s0 - delivering state (initial) - and s 1 - blocking state. The tran­
sitions between them are spontaneous transitions. In the blocking state the
automaton introduces a delay; in the delivering state it forwards signals. A
timer can be modelled in a similar way (see Figure 1 b). It is an automaton
with two states: s0 - timer does not run - and s 1 - timer runs. From s0 state the
timer is set by the set signal and moves to the s 1 state, from which a spontane­
ous transition or the reset signal leads back to the s0 state. In s 1 state the set
signal triggers a null transition.

(a) Delaying channel (b) Timer Set/-

-I-

Reset/-

Figure 1 The timer and the channel automata

An interface of the system is composed of two parts, one for each direc­
tion 1 = (Jnp, Out). The input part 1np = { (q;, L;) 11 ::; i::; n, L; E;} is the list of

queues to which the interface delivers signals and the set of carried signals for

each queue. The output part Out = (q, De) is the output queue and the set of
n

output signals at this interface oe u a:.
i =I

Such a system may accept simultaneous stimuli. In the next section we
discuss whether the application of concurrent inputs, i.e. multiparty testing is
necessary.

4. DETERMINING THE REQUIRED TEST
METHOD

The required test method depends on the structure and the method of com­
munication of the system to be tested. The abstract test method determines
the required test suite generation method. Since we focus on SDL we con­
sider of the structure and the way of communication of such systems. We also

116 TESTING OF COMMUNICATING SYSTEMS

take into account assumptions made by TTCN about the tester configuration:
According to concurrent TTCN for each simultaneous thread of commu­

nication with the system under test, one needs a dedicated parallel test com­
ponent, because each parallel test component is able to control only a single
thread of events (though these events may occur at different PCOs). Thus we
have to determine the possible concurrent events in the communication with
the system.

We assume that a test campaign can and should use only the channels
specified between the SDL system and its environment as PCOs. We refer to
these channels as interfaces. In general a tester offers signals only at inter­
faces and it observes signals received only at interfaces. It cannot influence or
even observe directly any internal communication. Therefore we focus on
signals offered at interfaces. They also play an essential role in the test suite
generation: They determine the tester configuration required to control the
test campaign as each simultaneous signal requires a separate test component.
The configuration required to observe test events is derived from the expected
output events, after a test generation method has been applied (e.g. reachabil­
ity tree) to the specification.

All these suggest that to cover all the possible behavior, one should offer
all the combinations of valid input signals to the system at its interfaces.
However after a closer look at the system structure it is possible to reduce this
estimation:

An SDL process has a single input queue and consumes a single signal at
a time from its input queue. All signal routes leading to the process deliver
signals to this single input queue, where simultaneous signals are ordered
arbitrarily and buffered until consumption. The behavior of the process is
sequential. Hence a single test component is sufficient to control a single pro­
cess if its input queue is exposed directly to the tester. The number of inter­
faces leading to this process, that is to its input queue, has no effect on this.
The question is whether an input queue is exposed directly to the tester.

A process, if applicable, is connected to the system environment by at
least a channel and a signal route. Signal routes and non-delaying channels,
deliver signals immediately. Therefore one may assume that they deliver
simultaneous signals concurrently, i.e. they preserve the concurrency of inter­
faces. This also means that if a process connected to the environment only by
non-delaying channels, it exposes its input queue directly to the environment.
Thus the process itself serializes the incoming signals via buffering them in
its input queue.

In contrast, a delaying channel acts like an input queue itself. A delaying
channel arbitrarily orders simultaneous signals at reception, then it delivers
them one by one, after a non-deterministic delay. As we suggested in the pre-

Decision on Tester Configuration for Multiparty Testing 117

vious section, delaying channels can be represented as predefined automata
with a single input queue, thus a single test component is sufficient to control
a delaying channel and all the processes connected via it.

That is, we need to investigate the interconnection of interfaces and buff­
ers (input queues of processes and delaying channels) to determine what
combination of events may occur concurrently at the interfaces.

Figure 2 shows the three basic cases of interface-buffer interconnections
and a combination of them:

(a) dedicated (b) shared (c) multiple (d) combination

Il I2 I3 I4 Is I6 I7 ,, \1

Figure 2 Interface-buffer interconnections

(a) Dedicated interface: buffer q1 have a dedicated interface 11.

(b) Shared interface: buffers q2 and q3 share a common interface 1z. We may
or may not assume that a single interface can deliver simultaneous sig­
nals.

(c) Multiple interfaces: buffer q4 has two interfaces 13 and 14. Although the
two interfaces can deliver signals simultaneously, the signals will be
ordered by the buffer, that is the interfaces exclude each other, i.e. they
act sequentially.

(d) Combination: To buffers qs and q6 three interfaces deliver signals: Is, 16
and l7.ls delivers exclusively to qs, but 16 is shared between qs and q6.17
is dedicated to q6. This means that if 16 delivers a signal either to qs or to
q6, only one of the other interfaces can act in parallel: 17 in the first case,
Is otherwise. If 16 is not used Is and 17 can deliver independently from

each other. Whether 16 can deliver to both qs and q6, and exclude the
other interfaces is a further issue
We describe the interface-buffer interconnection (R) of a system by a

matrix columns of which mean interfaces and rows of which represent buff­
ers. If an interface delivers signals to a given buffer, we put down the appro­
priate signal list (L) in the cell. Otherwise we put down the 0 symbol for the

118 TESTING OF COMMUNICATING SYSTEMS

empty set. For the example of Figure 2(d) the matrix is :

interfaces:

1:; \) 17 queues:

R = [L6 L7 0l q5
0 L 8 L 9j q6

To select independent signals, one needs to select independent elements of
the matrix.

(1) Since input queues serialize signals, elements of the same row are
dependent. To select independent sets one should chose only one signal at a
time for each buffer. This means that at most one element per row can be
selected.

(2) If we also make the assumption that each interface delivers only one
signal at a time, that will further restrict our selection of matrix elements.
That is, in addition to the previous restriction of one element per row, one is
allowed to select at most one element per column.

These selections result in matrices, rows and columns of which linearly
independent from each other.

From matrix R we derived the following matrices:

Rl = [L6 0 0l, R2 = [L6 0 0l, R3 = L7 0l, R4 = [L6 0 0l,
-

Rs = [0 L7 0l, R = !0 0 0l, R = [0 0 0l, R = [0 0 0l
0 0 0J 6 l0 Lg 0J 7 0 0 L9J 8 0 0 0j

Each of the derived matrices represent a tester configuration for control,
since the simultaneous signals can be offered only by parallel test compo­
nents.

In our example R b R2 and R 3 represent configurations of multiparty test­

ing. Each of them requires simultaneous use of two interfaces: Is and 16, Is

and 17, and 16 and 17 respectively. Configurations of R4, Rs, R6, and R7 offer a

single external signal to the system. Finally in R8 no interface is selected for

control, that allows to observe a behavior triggered by internal events, such as
keep-a-live signals, etc.

If we allow multiple signals at an interface, that is we do not make our
second assumption about the interfaces, an additional matrix is derived:

l0 L 8 0j
We construct composite inputs from the possible independent inputs by

Decision on Tester Configuration for Multiparty Testing 119

selecting one signal from each selected independent signal list. Thus we cre­
ate the Cartesian product of the selected signal lists of the matrices and create
the union of these sets. The set of composite inputs for our example is:
A = (L6 x L8) U(L6 x L9) U(L7 x L 9) UL6 UL7 UL8 UL9 U0.

For R9 this set is extended with the set of (L1 x L8).

5. GENERATION OF THE REDUCED REACHABIL­
ITYTREE

As we suggested, we relaxed the strong reasonable environment technique
to generate a reduced reachability tree. That is, we build the reduced reach­
ability tree by offering a composite input at a time to the system in a stable
global state. We consider a system state as a tuple of the component autom­
ata's states coupled with their input queues and output queues of the system:

(J = ((sp ql}, (s2, q2}, ... , <sn, qn))' where si is the state, qi is the input queue

of the ith automaton.
A state is a stable global state when all of the input queues of automata are

empty, hence such a system state is described as an tuple of the automata's
• ,'it states, I.e. cr = (sp s2, ... , sn> .

States having spontaneous transitions are stable if the automaton's input
queue is empty. However at the generation of the reachability tree one has to
treat spontaneous inputs as well. We calculate the successor states for the
spontaneous transition i.e. we add to the set of reachable states, states reached
by firing the spontaneous transition.

We generate the reduced reachability tree by the following algorithm:

begin
l: = 0;

= (s01, s02, ... , sOn} ;

d = 0;

l:o = { ;

do{
l: = l: u l:d;

r,d+l = 0;

II reached stable global states

II the initial stable global state

II the current depth of the reachability tree

II stable global states at depth 0

II add newly reached stable global states

for (i = I, i :5: Jl:dl• i = i + I) II for all stable global states of depth d

for (j = I, j :5: I AI. j = j + I) { II for all composite inputs
II apply the composite input to the stable global state

120 TESTING OF COMMUNICATING SYSTEMS

II and generate the reachable stable global states:
[.

{a,.1ja"1 = ((s1,0}, (s2,0}, ... , (sn,0}}}

h " w ere l; e A , aj e

II store a stable global states iff it has not been reached before:

if(a"1 e = u{a .. 1};

d = d+ I;

} while ;t 0);

end
II until new stable global states have been reached

To generate all reachable stable global states from a stable global state

a·;' e by applying a composite input lj e A, we do a breadth first explora­

tion (similarly as it is presented in [ObjG]). For each automaton we interleave
simultaneous signals from different senders and take into account possible
spontaneous transitions. We also interleave signals at the same output queue.
According to the algorithm we check each newly reached stable global state
with the set of stable global states reached before and if it is already in the set,
we truncate the reachability tree.

Note that until now we discussed the tester configuration only with respect
to composite inputs, i.e. from the point of view of control. We determine the
configuration for observation from the generated output events each time we
reach a stable global state: We define an observer at each output queue which
contains output signals. Any time a control point and a point of observation
belong to the same interface, they are merged into a single test component.
This way we assign a tester configuration to each arc of the reduced reach­
ability tree.

Undoubtedly the presented change increases the state space exploration.
However it will determine test cases which would not be generated otherwise.
As small example of two automata is shown in Figure 3. By application of the
two external inputs a and d, one at a time one can generate only the right part
of the reachability (solid lines), since the first automaton will go always
through state S2 and generate the output ol. Only when the two signals are
applied simultaneously the automaton will move to S3 and produce output
o2.

In the following section we demonstrate our approach on the example of
the foreign agent of the IP Mobility Support.

Decision on Tester Configuration for Multiparty Testing 121

I I

• ol,o2
(SO,SO)

12

(S2,SO) (SO,SO)

die

Figure 3 Example CFSM system

6. IP MOBILITY SUPPORT

The IP Mobility Support provides host mobility on the Internet. Accord­
ingly, a mobile host obtains a temporary IP address for the time it visits a for­
eign subnetwork. This temporary care-of address is used then to re-route
packets sent to the mobile host. The mobile host registers its care-of address
with a foreign agent of the visited subnetwork and with its home agent. After
registration the home agent intercepts packets addressed to the mobile host,
and tunnels them to the registered care-of address of the mobile host.

Since the three interoperating components: the mobile host, the foreign
agent and the home agent likely to have different ownerships and vendorships
we develop a separate test suite for each of them. Here we present the test
suite generation only for the foreign agent.

6.1 Foreign Agent

We modeled the case when the foreign agent serves at most one mobile
host at a time, i.e. the first registration request is accepted, any other new reg­
istration request is rejected until this registration is valid.

The foreign agent is composed of four communicating finite-state
machines of Figure 4, two of which are timers and have no external interface
(Figure 4b, 4c). The third automaton (Figure 4a) advertises the foreign agent.
It generates the appropriate agent advertisement indicating the agents avail­
ability. Accordingly the transition between these states are initiated by the

122 TESTING OF COMMUNICATING SYSTEMS

SIAO
ATIAO, SetAT

SetAT/-
a) Advertiser

b) Advertisement timer

d) Registration

SIAl
AT/Al, SetAT

SetRT/-

c) Registration timer

Figure 4 The four automata of the foreign agent

signal of the fourth automaton, which handles the registration (Figure 4d).
This automaton becomes busy after forwarding the registration request to the
home agent and becomes the end point for tunneling of data packets to the
registered mobile host (we neglected the loop transition of forwarding data
packets). The automaton distinguishes requests coming from the registered
and from a non-registered mobile hosts. We do not model delaying channels
for the foreign agent.

Signals occurring at interfaces - both inputs and outputs - are set in bold­
italic in Figure 4.

The foreign agent has three interfaces: two toward mobile hosts and one
toward a home agent as it is shown in Figure 5. Only the Advertiser and the
Registration automata have external inputs, i.e. communicate through these

Decision on Tester Configuration for Multiparty Testing 123

interfaces, so only their input queues are represented. The matrix of the inter­

face-buffer interconnection is:R == [{RpO, Rpl} {Rql} {Rq2}]
0 {SI} {S2}

Registration Advertiser

Figure 5 The interface-buffer interconnection in the foreign agent

We do not allow multiple signals at any interface. The matrices of inde­
pendent signal lists are:

RI == [{RpO, Rpl} 0 0l,
0 {SI} 0j

R == [{RpO,Rpl} 0 0 J· R == r0 {Rql} 0 J·
2 0 0 { S2} 3 L 0 0 { S2}

R4 == r0 0 {Rq2}l,
L0 {SI} 0 J

R = [{RpO,Rpl} 0 0l, R = [0 {Rql} 0l,
5 0 0 0j 6 0 0 0j

R1 = R8 = R9 = R 10 =

We use at most two interfaces in any of these case. The set of composite
inputs is: A={<SJ, RpO>, <Sl, Rpl>, <S2, RpO>, <S2, Rpl>, <S2, Rql>, <Sl,
Rq2>,<Rp0>,<Rpl>,<Rql>,<Rq2>,<Sl>,<S2>,<>}.

The generated reduced reachability tree of the CFSM model with use of
the A set of composite inputs is shown in Figure 6. The notation used in the
reachability tree is the following:
• Nodes represent stable global states of the system. Each ofthem denote a

4-tuple composed of the states of automata in the form
<Advertiser, Registration, Advertisement timer, Registration timer>.

• Arcs have labels of three parts: <inputs> I timer events I <outputs>
- the set of inputs which initiated the transition, in angle brackets;
- between slashes internal timer related events if applicable;
- the generated outputs again in angle brackets.

Listing the timer events in the graph let us derive timer events for test
cases if necessary.

124 TESTING OF COMMUNICATING SYSTEMS

• sO

o/A'f;SetA'fi<\1A0,21A<D

s2

sO

s2 sl

Timers: AT- Advertiser Timer, RT- Registration Timer

Interfaces: I - IMHI' 2- I MH2' 3- I HA

s2

States: sO -<AI, I, R, S>, sl - <AB, WR I, R, R>, s2- <AB, B I, R, R>,
s3 - <AB, WR2, R, R>, s4 - <AB, B2, R, R>

Advertiser: Al - Advldle
AB- AdvBusy

Registration: I - Idle 1imer.1: S -Stop
WR1,2- WaitForReplyl,2 R- Run

Bl,2- Busyl,2

Figure 6 The reachability tree of the foreign agent

sO

s2

Decision on Tester Configuration for Multiparty Testing 125

• In front of each input/output event we indicate the interface at which it
takes place. Simultaneous input/output events of different interfaces are
separated by comma.

• Alternate outputs at the same interface are separated by a vertical bar "1".
• A sequence of output events is concatenated by semicolon";".

In the reachability tree we indicated but did not expand a subtree rooted in
state "s3", which is symmetrical to the subtree rooted in the stable global
state "sl ". We derived test cases for each arc of the reachability tree, except
the subtree rooted in "s3". A certain care had to be taken regarding the timers
and the coordination of the test components. One can notice in the reachabil­
ity tree, that once the foreign agent accepted a registration the only way back
to the initial state of the system is the expiration of the registration timer. This
means no actions from the tester side, i.e. it has to wait at least for the amount
of time the registration was accepted. Therefore these - no input from the
tester - branches of the reachability tree were selected "to reset" the IUT to
the initial state. 41 test cases and 30 test steps were derived manually from the
reachability tree for the MIP foreign agent. 18 of the test cases take into
account simultaneous inputs, and they require 16 of the test steps. This means
that the application of composite inputs doubled the size of the generated test
suite compared to the approach of the strong reasonable environment with a
single input signal at a time.

Table I: Sample test step: Preamble

Name Preamble (A: PCO, B: PCO)

Label Dynamic Behavior Verdict prev.
notation

A ! RegistrationRequest, Start (RegistTimer) Rq

B ? RegistrationRequest PASS Rq

B ? otherwise FAIL

Table 2: Sample test step: Parallel Test Component_!

Name ParallelTestComponent_l (A: PCO)

Label Dynamic Behavior Verdict prev.
notation

A ! RegistrationReply(reject) (pass) RpO

126 TESTING OF COMMUNICATING SYSTEMS

Table 3: Sample test step: Parallel Test Component_2

Name ParallelTestComponen_2 (A: PCO)

Label Dynamic Behavior Verdict prev.
notation

A ! Solicitation s
A ? RegistrationReply(reject), Cancel (RegistTimer) RpO

A ? AgentAdvertisement(idle) PASS AO

A ? AgentAdvertisement(busy) AI

A ? RegistartionReply(reject)Cancel (RegistTimer) PASS RpO

A ? Otherwise FAIL

Table 4: Sample test case

Label Dynamic Behavior Verdict prev.
notation

+Preamble (MHI, HA)

create (PTC_I: ParalleJTestComponent_l (HA)
PTC_2: ParallelTestComponent_2 (MH 1))

[R=pass] PASS

[R=fail] FAIL

An example test case presented in Tables 1-4 which was derived from the
consecutive arcs: sO <1 !Rq> /SetRT/ <3?Rq> sl and sl <1 !S, 3!Rp0> I
ResetRT/ <1 ?RpO;AO I 1 ?Al;RpO> sO. The first arc is used as the preamble
for the second one.

The test case specifies two parallel test components: PTC_l which has a
PCO toward the HA(3) interface (Table 2) and PTC_2 which has a PCO con­
nected to the MHl (I) interface (Table 3). The main test component starts
with the preamble then creates the two parallel test components and finally
evaluates the verdict (Table 4).We found that testing of this mobile protocol
does not differ from stationary protocols except that it requires multiparty
testing and the timers play essential role in the protocol, so testing of them is
inevitable. We also found that the timer handling is ambiguous in the exten­
sion of TTCN in the case of parallel test components: Each newly created test
component receives a copy of all running timers, however it is not clear how a
timer is stopped if only one of the components detects the appropriate event.

Decision on Tester Configuration for Multiparty Testing 127

7. CONCLUSION

We approached the problem of test suite generation for composite systems
from a structural point of view. We investigate the question of signal depen­
dency to determine the re4uired test method. I.e. we establish, for a system
specified in SDL, the sets of signals that can happen simultaneously, therefore
need to be offered concurrently to verify the system's conformity. To offer
simultaneous signals one has to apply multiparty testing.

In SDL the communication happens via queues buffering, and serializing
concurrent signals. Therefore our main criterion of signal independence is
being submitted to different buffers. We use the interface-buffer interconnec­
tion matrix to determine signal independence. In the matrix signal lists of the
same row belong to the same buffer, so only one of them is selected at a time.
Additionally one may assume that an interface delivers only a single signal at
a time, which restricts further the selection by allowing at most one element
in each column. After the selection of independent signal lists we create the
set of composite inputs taking at most one signal from each list. Subsequently
we use these composite inputs to generate the reduced reachability tree of the
system. This approach can be interpreted as an adaptation of the strong rea­
sonable environment reduction technique to multiparty testing.

We have demonstrated this method on the example of the foreign agent
part of the IP Mobility Support protocol. The work was done manually with
the use of an SDL simulator. The next step will be to implement the algo­
rithm. The critical point is the derivation of the synchronization messages of
test components. We found that timer handling of parallel test components is
ambiguous in the extension of TTCN. In the MIP protocol due to mobility,
timer events could be detected by a different test component than the one,
which sent the message setting the timer. At the moment, we had to specify
explicitly the synchronization between relevant test components. However
this work was very cumbersome and errorprone, at the same time testing of
these features for mobile protocols is essential. Therefore an implicit syn­
chronization of timer events between test components provided by TTCN
standard would be highly beneficial.

REFERENCES

[CTMF] ISO/IEC 9646 IT-OSI, OSI Conformance Testing Methodology and
Framework

[Ek97] A.Ek, J.Grabowski, D.Hogrefe, R.Jerome, B.Koch, M.Schmitt:
Towards the Industrial Use of Validation Techniques and Automatic
Test Generation Methods for SDL Specifications, Institute for
Telematics, University ofLiibeck, Technical Report A-97-03, 1997

128 TESTING OF COMMUNICATING SYSTEMS

[Fern96a] J.C.Fernandez, C.Jard, T.Jeron, L.Nedelka, C.Viho: Using on-the­
fly verification techniques for test generation of test suites, INRIA
Technical Report No 2987, France, 1996

[Fern96b] J.C.Fernandez, C.Jard, T.Jeron, L.Nedelka, C.Viho: An Experi­
ment in Automatic Generation of Test Suites for Protocols with Veri­
fication Technology, INRIA Technical Report No 2923, France, 1996

[FMCTa] Revised Working Draft on "Framework: Formal Methods in Con­
formance Testing", JTC 1 /SC21/WG 1 /Project 54.1, January 1995

[FMCTb] Revised Working Draft on "FMCT guidelines on Test Generation
Methods from Formal Descriptions", JTC1/SC21/WG1/Project 54.2,
February 1995

[Grab96] J.Grabowski, R.Scheurer, D.Toggweiler, D.Hogrefe: Dealing with
the complexity of state space exploration algorithms for SDL, Pro­
ceedings of the 6th GI/ITG techn. meeting on FDTs for Distributed
Systems, University of Erlagen, Germany, 1996

[Grab97] J.Grabowski, R.Scheurer, Z.R.Dai, D.Hogrefe: Applying SAM­
STAG to the B-ISDN Protocol SSCOP, Institute for Telematics, Uni­
versity of Liibeck, Technical Report A-97-01, 1997

[Kang97] D.Kang, M.Kim, S.Kang: A Weighted Random Walk Approach for
Conformance Testing of a System Specified as Communicating
Finite State Machines, FORTE/PSTV'97

[Lee96] D.Lee, K.K.Sabnani, D.M.Kristol, S.Paul: Conformance Testing of
Protocols Specified as Communicating Finite State Machines - A
Guided Random Walk Based Approach, IEEE Trans on Communica­
tions, Vol.44, No. 5, May 1996

[Luo94a] G.Luo, A.Das, G.v.Bochmann: Software Testing Based on SDL
Specifications with Save, IEEE Trans. on Software Engineering, Vol.
20, No. 1, 1994

[ObjG] ObjectGEODE on-line documentation, Verilog, 1998
[SDL] ITU-T Z.100, Specification and Description Language (SDL)
[Tan96] Q.M.Tan, A.Petrenko, G.v.Bochmann: A Test Generation Tool for

Specifications in the Form of State Machines, ISBN-0-7803-3250-4/
96, IEEE 1996

[TTCNe] Amendment 1 to ISO/IEC 9646-3:1992 TTCN extensions

	8DECISION ON TESTER CONFIGURATION FOR MULTIPARTY TESTING
	1. INTRODUCTION
	2. TEST GENERATION METHODS FOR COMPOSITE SYSTEMS SPECIFIED IN SDL
	3. COMMUNICATING FINITE-STATE MACHINES WITH EXTERNAL INTERFACES
	4. DETERMINING THE REQUIRED TEST METHOD
	5. GENERATION OF THE REDUCED REACHABILITY TREE
	6. IP MOBILITY SUPPORT
	6.1 Foreign Agent

	7. CONCLUSION
	REFERENCES

