
EXPERIENCES WITH BUSINESS
OBJECT-BASED WORKFLOW

SUPPORT
Alexander Schill1 and Christian Mittasch2

1 Fakultat Informatik, TU Dresden 0-01062 Dresden, Germany
21nstitut fOr Informatik, TU Bergakademie Freiberg 0-09596 Freiberg, Germany

[schill I chris]@ibdr.inf.tu-dresden.de

Abstract: Currently, the OMG standardises business objects as a paradigm for
encapsulating components of business functionality. This paper reviews this approach
and discusses its basic requirements concerning a scaleable middleware platform with
associated services. We show how higher-level workflow services can be provided and
implemented using business objects as their basic building blocks. A generic
architecture, language and runtime systems for distributed and decentralised workflow
execution are presented. Particular emphasis is dedicated to the use of business objects
and also to the integration of services such as naming, events and transactions.
Especially performance aspects are becoming a decisive factor for the success of such
component-based applications. Therefore, configuration management aspects and
performance results of our implementation are also discussed.

Keywords: Business objects, workflow management, distributed systems,
middleware, CORBA

1 INTRODUCTION AND MOTIVATION

The OMG (Object Management Group) currently standardises business objects as a
modelling basis for distributed business applications. A business object (BO) is a
coarse-grained object and a software component with a well-defined interface that
provides domain-specific, standardised and extensible functionality. It is described in
a unique manner using Component Description Language (CDL [12]). Thus, it
describes its behaviour very abstract, that is platform-independent. Then, an
interoperability layer allows using platform-specific characteristics. This abstraction
layer allows mapping BO-descriptions to different distributed platforms, too.

317
L. Kutvonen et al. (eds.), Distributed Applications and Interoperable Systems II
© Springer Science+Business Media New York 1999

318 WORKFLOW AND UML ISSUES

The use of business objects in a distributed environment requires a standardised
and stable middleware platform, e.g. CORBA or DCOM. Such platforms offer
uniform interface specification facilities, standardised inter-object communication
mechanisms, and a set of additional services ranging from naming via security to
transactions. If the platform CORBA is used, business objects are implemented with
the exploitation of ORB-mechanisms and CORBAservices.

Business object instances are associated with object types that are organised in an
inheritance hierarchy. Examples of business objects include bills, invoices, customer
records, or resources and workflows. Major benefits of standardised business objects
are heterogeneous interoperability at the domain-specific application level and easier
reuse of components. But, the lack of process frameworks for BOs causes problems
that effect the possible success of such software component architectures. Therefore,
the contribution emphasises the impact of runtime aspects to a business object-based
architecture in CORBA. It especially emphasises the need for performance dependent
architectures for distributed applications.

While business objects present major building blocks for complex applications,
even higher-level constructs for modelling and executing complex business processes
are desirable for many application domains of business information systems.
According to the Workflow Management Coalition's (WtMC) definition [25], a
workflow consists of a set of linked activities that collectively realise a business
objective within the context of an organisational structure. In other words, different
activities are executed within a highly distributed environment. In an initial design or
restructuring phase, BPR (business process reengineering) and associated tools can
support the adaptation of existing, conventional business processes of a company
towards a more systematic and partially automatic processing. Therefore, design
interfaces for mapping the results of BPR onto workflow management infrastructures
are also of particular importance.

The combination of business objects as major building blocks and workflows as
higher-level control structures promises to enable rather flexible and extensible
solutions [5, 24]. Developers and users expect two main advantages of business
object-based Workflow Management Systems (WtMS): (1) better reuse in other
business information systems, and (2) better scalability and adaptability.

In this paper, we first discuss aspects of the ongoing standardisation efforts
concerning business objects and the requirements and solutions concerning
underlying CORBA-middleware in section 2. Section 3 presents a generic workflow
management environment based on CORBA and on business objects. Section 4
addresses specific aspects concerning the required services and presents performance
results and experiences. Section 5 concludes with an outlook to future work.

2 CORBA BUSINESS OBJECTS FOR DISTRIBUTED APPLICATIONS

In this section, we introduce the foundations of our approach, that is BOs and an
abstract software architecture.

EXPERIENCES WITH BUSINESS OBJECT-BASED WORKFLOW SUPPORT 319

2.1 Business Objects in CORBA

More recently, the notion of business objects [5, 12, 24] has been recognised by
standardisation bodies such as the OMG. Business objects encapsulate application­
specific functionality and provide standard interfaces. They are typically imbedded
into an inheritance hierarchy and can be reused this way. Such objects can flexibly be
integrated into a workflow processing environment for performing selected tasks
within a workflow. Essential additional characteristics are Autonomy: Each business
object is responsible for its own instantiation, atomicity, durability and access
control. Composition: Business objects can consist of hierarchical components; for
example a business process may include other business processes or sub-processes.
They may be fractale.

! Applicalion .JJ Domain Business
i Frameworks Objects
'--------------------------------

I Common Business Objects

Business Object Component
Architecture (BOCA) Business Object -------- - ---------

Interoperability Specification
Facility

CORBA and CORBAservices

Figure 1. Abstract architecture of OMG Business Objects.

We exploit the notion of business objects for modelling resources (such as objects
like orders or invoices [14], servers like order processing or shipping systems, and
human interactions with employees) and also processes (workflows, activities).

The OMG also works towards the integration of business objects into so-called
frameworks [3, 7]. A framework is a set of co-operating classes representing a
reusable design solution for a specific application area. In addition to this definition
we would like to stress further characteristics of frameworks: A framework for
workflow management should control workflows autonomously. It only should offer
interfaces to assign tasks to the framework. Meanwhile, OMG started a
standardisation initiative, the workflow resource protocol [15] dealing with this
problem, too.

These efforts resulted in the conceptual architecture shown in figure 1. On top of
CORBA and CORBA services, a business object framework has been discussed by
the OMG in the context of CORBA facilities . Actually it is called Business Object
Component Architecture (BOCA [12]). Specific application frameworks for
application areas such as finance, transport, or medicine are possibly being derived.
One specific example is a workflow framework [9] that deals with repository and
execution tasks of workflows. The CORBA workflow facility does actually not deal

320 WORKFLOW AND UML ISSUES

with runtime aspects of co-operating objects. It is currently restricted to the WfMC's
point of view (workflow clients API and audit data) [11, 17].

Common business objects [14] are base types of business behaviour, such as
address, partner, currency, task. They can be specialised and supplemented by
domain business objects for specific tasks, for example for transportation or financial
issues. An interoperability layer [13] allows to use transparently CORBA and
CORBA services. All standards are still under construction. They do not consider
CORBA Components [16] at the moment. But, it would be very promising because it
will be compatible to Enterprise Java Beans.

We consider these concepts a starting point for the development of our generic
workflow environment. The major challenge, however, is to detail these rather abst­
ract concepts significantly in order to provide an implementable systems solution.

Other software component technologies are of particular interest for office
automation tasks. Today DCOM and Java Beans are promising component
technologies, too. They are not discussed in this paper. DCOM is one of the leading
technologies for PC-based components. Java Beans is the major Web-oriented
technology for components. Different ways of co-operation are coming up for
software components:

• mapping of abstractly modelled BOs to different platforms,
• integration of Java Beans in CORBA-middleware, and
• cross-connected software for DCOM and CORBA components.

2.2 Software Architecture and Solution Frame

First of all, an information system that controls business processes uses almost the
same resources as other business applications. Therefore, the traditional way is to use
integrated, homogeneous solutions. Business objects allow to develop more flexible
and extendible solutions. A 3-tier abstract system structure is required. Data is
handled as a lower level concern that is used by all kinds of business objects via
appropriate CORBA services (externalisation service and persistent object service) or
ORB's POA-mechanism (Portable Object Adapter). This avoids problems with
multiple copies of business data.

The medium level deals with all business objects: the organisational structure, all
processes (workflows, activities) and all resources (employees, servers, and data­
objects). Dis'tribution and integration of the middleware platform (CORBA) are
realised here. WfMS are inherently distributed. Distribution is an implicit concern of
business objects in the 3-tier architecture. That means they are responsible for hiding
the technological impact of their distribution. On the other hand, the mapping of
abstract descriptions of business objects to middleware platforms is a main concern
of the development of WfMS.

The top level contains applications, for example a WfMS with their front-ends.
They are composed of visualisation components. All office applications have to use
business objects wrapped by CORBA-interfaces for their special purposes. They use
specialised views of the business objects. A WfMS has to integrate state
characteristics of an enterprise (organisational structure, i.e. working groups,

EXPERIENCES WITH BUSINESS OBJECT-BASED WORKFLOW SUPPORT 321

departments and their resources). Its main task is to model the pool of workflow
types and activities.

3 BPAFRAME, A BUSINESS OBJECT-WFMS

In this section, we describe our prototype implementation of a business object-based
WtMS, BPAFrame (Framework for Business Process Automation).

3.1 System Architecture and Workflow Specification

Considering the discussion in section 2, we designed a CORBA- and BO-based
environment for the generic support of workflow management systems. It is called
BPAFrame and has evolved from subsequent predecessors [7]. The system
implementation is based on Windows NT 4.0 with Microsoft Visual C++ and the
CORBA implementation Orbix (Version 2.3) ofIONA [4] .

User Services
(W orkspace. worltflow­

monitor)

Internet based
client access

Visua lis tion Services

BPAFrame • runtime

distribution platform CORBA

Administration Services
(Workflow-Type Editor,

Resource-Editor, Monitor)

Legacy
appli­

cations

Figure 2. System architecture.

App li­
cations

2
Comp­
onents

3
Data

An implementation-oriented view of the system architecture is given in figure 2. The
main constituents are a visualisation services framework (administration services,
user services, and Internet-client), and the CORBA-based distributed runtime
environment. All administration and user tools inherit from our visualisation services
framework. Within the user services, a so-called workspace realises the front-end
application for authenticated users of BP AFrame. It contains a task list for users
involved in the processing of workflows, the list of started workflows and the list of
workflow types that may be started by the user. A monitor component is also being
developed that enables the inspection of active workflows and of resources as well.
User services contain so-called interaction servers, that negotiate data to local
applications (for instance a desktop publishing system). A front-end written in Java

322 WORKFLOW AND UML ISSUES

exists in a webpage, that allows to start and monitor workflows. Our prototype does
not contain special design tools at the moment. Organisational structure, resources
and workflow types must be implemented with simple text editors.

Workflows are always associated with predefined workflow types. Their control
structure is specified by an execution graph of sequential, parallel or conditional
controlled activities. Workflow instances are able to switch between different states
with different behaviour during their life cycle (working, suspended, successfully
terminated, mobile-working, or aborted). Workflow instances contain an interpreter
object that is able to interpret the textual description of the execution graph at
runtime. The interpreter accesses adequate resources (modelled by BOs) for activity
control. Resources can also be reserved in advance. That allows to guarantee the
processing quality of workflows. The runtime environment makes use of ORB
communication, naming (Orbix Naming), and own implementations of
CORBAservices: event handling, persistence and several other services.
Encapsulated legacy applications can also be accessed based on object wrapping.
Currently, BPAFrame works in a single administrative domain. Co-operation of
domains takes place on the level of the workflow-resource protocol, i.e. by invoking
sub-workflows and activities of other domains.

II Extract of a workflow example Online-Shopping: workflow initiation
and lot activity

extern Any shoppingorder; II input data for the workflow

II declaration of required interpreter functions,
extern getObject(String name, Object obj); II resolve name
extern suspend(); II possibility to suspend the workflow

Object CustomerCheck,AbortBehavior, DetailedCustomerCheck, Stock,
SupplierOfFunds,

Controlling, Shipping;
String rc; II returncode

void main() {
initGlobalObjects();
try {
CustomerCheck.checkOrder(in shoppingorder, out rc);
catch(...) {

}

printErrorMsg ("The customer check failed ... ");
return;

if(rc == "not clear") { II condition complied branch to "decide by
responsible"

try {
getObject ("manager", DetailedCustomerCheck);
DetailedCustomerCheck.checkOrder(in shoppingorder, out rc); }

catch(...) {
printErrorMsg"The customer check by the manager failed ... ");
return;

} II catch
} II if(rc == "not clear")

Figure 3. Extract of a workflow specification example.

EXPERIENCES WITH BUSINESS OBJECT-BASED WORKFLOW SUPPORT 323

Each workflow type specifies its associated execution graph and all associated
resources. Within BP AFrame, we developed a textual description language for
distributed applications, called AgentScript2; it is not workflow-specific. It allows to
describe processing structures, resources and application-dependent parameters, see
figure 3. After the definition of auxiliary data types and external operations, the
execution graph is specified within the main body. Each activity specification also
comprises an exception handling clause. Parallel execution (for example, of packing
and invoice processing) is implemented by subworkflows that are managed
independently. Execution is synchronised by using a CORBA event channel. Thus,
the successful termination of a subworkflow leads to an appropriate event notification
at its event channel. This allows the interpreter of the superworkflow to synchronise
the processing. In addition to the constructs shown in the example, repetitive task
execution is also possible.

A workflow type description is checked for syntactic and semantic correctness by
a parser as part of our architecture. It transforms the definition into an internal
representation and passes this to the interpreter component. Standard compiler tools
(Lex and Y acc) were used for the parser.

3.2 Class Structure and Runtime Support

Role Ressource

AddRessourceO +RequestO
RemoveRessourceO +ReleaseO

! ~oo".
UserAgent Workflow Job

UserServer
activates AddWorkfiowO +ActivateO manages IA

+LoginO RemoveWorkfiowO +SuspendO I QuerylnitialRessourceO
+LogoutO AddRoleO +ResumeO QueryAssignedRessourceO

RemoveRoleO +AbortO

creates creates

WorkflowType JobType

+CreateWorkfiowO " +CreateJobO

Figure 4. Class structure of the workflow control framework.

Basic components of the runtime-system are workflows and resources. Business
process models are described in the workflowtype class. Its instances are results of
the application of workflow development tools. During runtime they are only

324 WORKFLOW AND UML ISSUES

responsible for the instantiation process of corresponding workflow objects.
Workflow objects contain all necessary functions for the processing of workflows.
An interpreter controls the processing of the workflow graph and the invocation of
resources. Figure 4 shows the class structure of the workflow control framework.

Client ParaFact : Parameters Type:
TParameterList TPararn1lterList WorkflowType

I,· CreateParameterList (J

U I
2: SetParameter (TParaiterName, TP8JU'eterVaIUe) I

3: CreateWorkfiow (TPara~eterList, String) TTimeout, CORB~::Object)

14: NOtifYOnStatJrans ()

I I
6: connecCpull_ponsumer ()
I I
I I 7: pull ()

.~

I
I

I
I

la: QuervResult (I)
I 9: disconneccpJ,uuPPlier ()

1,0: remove () I

Workflow: ConsumerAdmin: EventSupplier:
Workflow CConsumerAdmin ProxyPuliSupplier

u
I

I
I

u
I
I

y
I

-~

I

Figure 5. Use of a workflow object from the point of view of a client.

A workflow type factory enables the creation of individual workflow types via tools
of the user services. Each workflow type is represented by a business object and
offers methods for creating dedicated instances and for querying instantiated
workflows. The workflow interface allows its clients to change the workflow's state
and to query its parameters. This way, workflows can be inspected interactively via
different tools. Sub-workflows are running autonomously. Workflow factories and
workflow-type factories are responsible for the distributed life-cycle management of
their objects. They are key components in order to control their distribution and to
manage system configuration with performance aspects and reliability requirements.

Figure 5 illustrates the actual use of a workflow object by a client, for example by
the initiator. After inspecting the offered workflow types, a specific type is selected,
and an input parameter list for a workflow is generated and instantiated. Then, the
workflow object is created passing these parameters, and an event channel object is
established. A monitor object and a recorder object are two of the event consumers
listening to the event channel object of the workflow. Legitimated users (owner of the
workflow, responsible agent of the organisation) may also listen to interesting events

EXPERIENCES WITH BUSINESS OBJECT-BASED WORKFLOW SUPPORT 325

of the processing of the workflow. A user may invoke methods to control and
influence the processing (change time-outs, abort, etc.). Finally, the workflow object
switches into the state "finished", and the event channel is released. Additionally the
owner of the workflow is informed about the successful termination and about the
location of the collected execution results.

As a basis for workflow execution by business objects, the organisational structure
of the business environment has to be specified and represented explicitly, too. This
structure is represented in a hierarchical way by a logical tree. All organisational
units have URL-based addresses as found in WWW. These addresses are managed
by the CORBA naming service. The organisational units contain all business objects
of their administrative domain, e.g. associated resources (users, roles, software
servers) with their appropriate activities and workflows.
Job objects control resources that are used within activities of the workflow. At the
moment all kinds of resources in our WtMS are non-exclusive resources. Roles,
departments and non-exclusive users maintain lists with currently associated clients.
Mobile working users can only work non-exclusively. They are included in
BPAMobile, a specialisation of BPAFrame for some tele-working scenarios.

The communication subsystem of BP AFrame defines interfaces of the internal
event communication. The supplier delivers information of all kinds of events (i.e.
user accepts job, object is created, etc.). There exist four modes of event channel
communication: push or pull supplier and push or pull consumer. Supplier and
consumer may be interconnected indirectly via event channel objects in different
communication modes, in order to fulfil different communication protocols.

Clients can act as event consumers (push or pull) to monitor workflows, to collect
all information of their current workflows, or to collect history information in a
workflow data recorder. Additionally, the subsystem uses factories as already
discussed for the remote creation of objects (object life cycle). Workflow objects
contain additional characteristics (i.e. time-out-value(s), owner, priority) and
operations necessary for interactions with active workflows (abort, reduce time-out,
etc.). The job control subsystem works like the workflow control, but for single tasks.
The main difference is the necessity to reserve resources and to interact with them.
Roles only organise the notification of resources.

For all remote interactions, the dynamic invocation interface (DU) of CORBA is
used. The invocations can be implemented within the basic platform independent
from the actual type of the invoked resources. The specific type information is then
accessed at runtime, enabling a type-conforming call structure. The distribution
platform is able to manage all distribution aspects. That liberates the workflow
control from tasks, like invocation, start of objects (if required), or distribution-error
detection. Moreover, the runtime system must not be aware of the persistent state of
objects. Orbix activation services [4] together with our own implementation of the
CORBA persistence service manage the reload of passive objects, if necessary.
Abstractions from security details can be provided in a similar way.

326 WORKFLOW AND UML ISSUES

3.3 Performance Aspects

The described runtime environment has been implemented completely under
Windows NT with Orbix 2.3 and C++, and its functionality has been validated by
concrete applications. All components co-operate successfully. The use of CORBA
has significantly facilitated the implementation and has contributed to a relatively
rapid completion of the system. Basic measurements of throughput and delay of such
CORBA invocations were introduced in [19].

'iii'
§.
CI)

E
~
1:11
I::
iii
III
CI)
u
0
~
Q.

120

DO

.!!!.
Q) 80
E
."
01 60
I::
·iii
II)

40 Q)
0
e
Co 20

0

7000

6000

5000

4000

3000

2000

1000

0

D ~ ~ 40 00 00 m w ~ DO

nurTber of w orkf low s

2 3 4 5 6 7

-+-single rmchine

-ll-separate workflow
type server

--..- separate event channel
server

-+- 3 Server

---II--- 2 S e rver

-.- 1 Server

8 9 10
Number of parallel working Clients

Figure 6. Performance of different server configurations in BPAFrame.

Nevertheless, there are still potential bottlenecks within the current prototype,
although these problems are not a design but only an implementation issue. For

EXPERIENCES WITH BUSINESS OBJECT-BASED WORKFLOW SUPPORT 327

example, there is only a single factory for all workflow type objects and just one
factory per type for workflow instances. The diagrams of figure 6 give a short
overview of the measured performance of different server configurations. The first
diagram shows the speed-up of the workflow control framework, if the event channel
server runs on a separate machine (empty workflows with constant delay time for
activities). One reason to replace it has been the bad performance of most event
channel implementations [20].

Figure 6b shows the influence of replication on processing times. If all server
processes are available on three machines, the processing overhead decreases more
than two times. Additionally a much larger number of workflows can be managed
without considerable delay of the workflow processing. The diagram illustrates a
main advantage of such decentralised information systems. All PCs can be used to
optimise the performance of the entire system without fast servers.

As already mentioned in the previous section, BP AFrame uses the Orbix-narning
service in conjunction with environment objects of the workflow control framework.
The latter are responsible for the caching of naming information in smaller domains
(in organisational units). The naming service takes control of the general names:
Start-up servers, the organisational structure, names of related organisations and so
on. With other words, naming is responsible for general (and open useable)
information, that does not remain under control of domains. Additionally, this way of
information sharing reduces the security problem with names of essential parts of an
organisation: only freely available names are stored in the naming service.

Other identified improvements of the performance are:
• Some very shortly running subworkflows could be managed more effectively, if

such subworkflows could start in threads instead of sub-workflows.
• Role servers could playa more active role for the scalability of resources, if they

would actively take part in the workflow-resource protocol. We intend to
compare the current protocol with alternative role servers, that are responsible
for resource invocation and substitute management.

3.4 Comparison with Other Workflow Approaches

Due to the importance of workflows to most companies, a large number of WtMS
with middleware-extensions have been developed in the recent past; examples are
FlowMark [6], Exotica [1] and Meteor [21,22] (for more detail see [19]. Moreover,
standardisation efforts were made by the WtMC [25, 26, 27, 28] and by the OMG
[17] in order to achieve interoperability, portability of workflow applications and
integration into existing standards. This is being continued with the above mentioned
initiative of OMG for a workflow-resource-protocol [15] and for workflows on the
Internet.

Most of the existing approaches, however, are based on a rather centralised view
and are implemented on top of a particular database system [1]. This led to a lack of
scalability and adaptability in the context of widely distributed environments. In
addition, the interfaces of existing systems are mostly proprietary; therefore, it is
often difficult to interface between such an overall workflow management system and

328 WORKFLOW AND UML ISSUES

arbitrary local resources involved in workflow processing. It is difficult to customise
the implementation of workflow management systems for specific application areas.

Most of these systems also fall short in addressing other requirements, especially
encapsulation and re-use of resources and workflows, flexible task mapping, and
decentralised control. Additionally, they can not quickly adapt to new business tasks
of an enterprise. Earlier research approaches addressed these problems - especially
distributed systems aspects - to some larger degree; examples are Mentor [30],
WASA [29] and Mobile [2]. Some approaches also address specific aspects such as
web integration [10, 23], or virtual enterprises [18]. However, they were not using
standardised middleware but relied on either proprietary or rather low-level
protocols.

4 CONCLUSIONS AND FUTURE WORK

This paper has discussed the paradigm of business objects in open distributed
systems and the current standardisation efforts in this area. Based on this background,
we presented a CORBA- and business object-based environment for workflow
management. We outlined that workflows require generic support with special
emphasis on decentralisation, reuse of components, encapsulation of resources, and
the use of standards. We also demonstrated that the notion of business objects
provides advantages in terms of flexibility and adaptability in the context of
workflow management. CORBA and CORBAservices had been proven to present a
viable middleware platform for such applications.

Current implementation work focuses on the integration of additional tools for
workflow specification and management. Our set of front-ends has been augmented
with Internet access facilities based on HTML and CORBA-Java-Applet
communication. BP AMobile has been developed, an extension for mobile users in
BPAFrame. Future work will address design and implementation of other, possibly
application-dependent workflow management schemes. Finally, the integration of
distributed multimedia components like video-conferencing is an additional issues.
Especially the integration of asynchronous co-operation support by WtMS and
synchronous co-operation, for instance in group discussions is of particular interest of
our further investigations. The current approach in this direction is, to support such
scenarios by ad-hoc workflows. Ad-hoc workflows are already supported by
BP AFrame, due to the flexible communication facilities based on DI!. They allow
changing processing graphs during runtime, that is adaptively.

The mechanism of substitutes has to be enhanced in conjunction with the load of
resources. Another future extension deals with the integration of a start-up service
based on the corresponding CORBA service to assist configuration management
issues. Moreover, selected interactions within a workflow should also be embedded
into transactions, making use of the CORBA transaction service. The organisational
model also has to be extended in order to reflect the real-world co-operation of
organisations and organisational units more appropriately. Here, investigations for
virtual enterprises supported by co-operating WtMS on a more abstract level are
planned. Each WtMS will itself interact as a business object offering a number of
services.

EXPERIENCES WITH BUSINESS OBJECT-BASED WORKFLOW SUPPORT 329

References

[1] ALONSO G., AGRAWAL D., EL ABBADI A., MOHAN c., Functionalities and Limitations of
Current Workflow Management Systems, 1997,
http://www.almaden.ibm.com/cs/exotica/exotica.

[2] BUSSLER C.; JABLONSKI S., Scalability and Extensibility through Modularity: Architecture
of the MOBILE Workflow Management System, Proc. Of the 5th Workshop on Inf.
Techn. And Systems, p.98-107, Amsterdam, Dec. 1995.

[3] COTTER S.; POTEL M., Inside Taligent Technology. Reading (Mass.), Addison-Wesley,
1995.

[4] IONA, Orbix - Distributed Object Technology, Programmer's Guide. - Dublin, IONA
Techn.Ltd.1997.

[5] JACOBSON I., GRISS M., JONSON P., Software Reuse, New York: ACM Press, 1997.
[6] LEYMANN F., ROLLER D., Workflow-based applications; IBM Systems Journal. Vol 36

(1997), No.1 - Application Development, 1997.
[7] MITIASCH, lRMsCHER, ZIEGERT, Design and Use of BPAFrame - a Decentralized

CORBA-based WtMS, IFIP World Computer Congress, Canberra, Sept. 1996,
Terashima N.; Altman E. (Eds.): Advanced IT Tools, Chapman & Hall, S. 303-310, 1996.

[8] MOHAN C., Recent Trends in Workflow Management Products, Standards and Research,
To appear in Proc. NATO Advanced Study Institute (ASI) on Workflow Management
Systems and Interoperability, Istanbul, August 1997, Springer Verlag, 1998.

[9] MILLER, J., SHETH, A., KOCHUT, K., WANG, X., CORBA-Based Runtime Architectures

for Workflow Management Systems. Journal of Database Management, Special Issue on
Multidatabases, pp.16-27, vol. 7 (1996), No.1.

[10] MILLER J., SHETH A., KOCHUT K. AND PALANISWAMI D., The Future of Web-Based
Workflows, Proc. Of the Int. Workshop on Research Directions in Process Technology,
Nancy, France, July 1997.

[11] OMG BusINESS OBJECT DOMAIN TASK FORCE, Workflow Management Facility
Submission Nortel, Aug. 97.

[12] OMG, BODTF Combined Business Object Facility Business Object Component
Architecture (BOCA), Proposal, Rev. ·1.1, OMG-Docu. 98/01107, Framingham: OMG,
Jan. 1998.

[13] OMG BODTF: Combined Business Object Facility Interoperability Spec., BODTF-RFP
1 Submission, March 1998.

[14] OMG: Joint Common Business Objects Revised Submission to BODTF-RFP 1
Submission, Framingham: OMG, March 1998.

[15] OMG: Draft RFP Workflow Resource Management Facility (RMF), OMG

Document: born/98-12-01, Dec. 98.

[16] OMG: CORBA Components, Joint Revised Submission, OMG Document orbos/98-10-18,
Nov.98.

[17] OMG BUSINESS OBJECT DOMAIN TASK FORCE: Workflow Management Facility
Revised SubmissionjFlow, April, 98.

[18] OTT M., NASTANSKY L., Modelling Organizational Forms of Virtual Enterprises, Griese,
J.; Sieber, P. (Eds.): VoNet, The Newsletter Institute of Information Systems Department
of Information Management University of Berne, pp. 20-39, Vol. 1, No.4, September 1,
1997.

330 WORKFLOW AND UML ISSUES

[19) SCHILL A., MITTASCH C., A Generic Workflow Environment based on CORBA Business
Objects. Middleware'98, The Lake District, England, September 1998, Davis, N.;
Raymond, K.; Seitz, J.: Middleware, IFIP Int. Con! on Distributed System Platforms and
Open Distributed Processing, pp. 19-34, London: Springer 1998.

[20] SCHMIDT D.C., VINOSKI S., Overcoming Drawbacks With the OMG Events Service,
SIGS, Vol. 9, No 6. June, 1997.

[21] SHETH A, From Contemporary Workflow Process Automation to Adaptive and Dynamic
Work Activity Coordination and Collaboration, Workshop on Workflows in Scientific and
Engineering Applications, Toulouse, France, September 1997.

[22] SHETH A, The METEOR Workflow Management System and its Use in Prototyping
Significant Healthcare Applications, Proceedings of the Towards An Electronic Patient
Record (TEPR '97) Conference, April-May 1997, Nashville.

[23] SIKKEL K., NEUMANN N., SACHWEH S., Process Support for Cooperative Work on the
World Wide Web, Proceedings 6th EuroMicro Workshop on Parallel and Distributed
Processing, pp. 325-331, Madrid, January 1998, IEEE Computer Society Press.

[24] TAYWRD., Business Engineering with Object Technology, 1995.
[25] WORKFLOW MANAGEMENT COALITION, The Workflow Reference Model. TCOO-1003, issue

1.1, Nov. 94.
[26]WORKFLOW MANAGEMENT COAUTION: Interface 1, Workflow Process Definition

ReadlWrite IF: RfC, WFMC-WGOJ-JOOO, Feb 1995.
[27] WORKFLOW MANAGEMENT COALITION: WtMC Spec. Terminology and Glossary, Docu.

No WFMC-TC-lOJJ, Issue 2.0, June 1996.
[28] WORKFLOW MANAGEMENT COALITION, Interface 4 - Interoperability - Abstract

Specification, WFMC-TC-1012, issue 1.0, Oct. 96.
[29] WESKE, M.; VOSSEN, G.; BAUZER MEDEIROS, C.: Scientific Workflow Management:

WASA Architecture and Applications, Fachbericht Angew. Mathematik und Informatik
03/96-1, Uni. Munster, 1996.

[30] WODTKE, D.; WEISSENFELS, J.; WEIKUM, G.; KOlZ DITTRICH, A: The Mentor Project:
Steps Towards Enterprise-Wide Workflow Management. -ICDE'96, New Orleans 1996.

