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Abstract: The use of multimedia in distributed systems has begun to include such 
complex and mission-critical domains as digital television production, 'video-on­
demand' services, medical and security systems. These applications impose more 
stringent requirements on the support mechanisms provided by underlying networks and 
operating systems than most currently deployed continuous media applications. This 
paper describes the DJINN multimedia programming framework, which is designed to 
support the construction and dynamic reconfiguration of distributed multimedia 
applications. We motivate the benefits of a runtime model of the quality of service and 
other characteristics of multimedia applications, and demonstrate a generic algorithm 
for scheduling dynamic reconfigurations that maintains QoS guarantees. QoS 
characteristics are modelled as piecewise-linear or quadratic relations, which are solved 
using standard constraint programming techniques. During reconfigurations, updates to 
active components are scheduled so as to maintain temporal constraints on the media 
streams. We illustrate our approach using experimental results from a real-world 
application domain. 
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1 INTRODUCTION 

The use of multimedia-or more particularly continuous, real-time media streams­
in distributed systems has begun to include such complex and mission-critical 
domains as digital television production, 'video-on-demand' services, medical 
applications and security systems. Because of the enrichment they bring to 
application content we believe that this trend will continue and that more and more 
distributed mission-critical applications will begin to incorporate continuous media 
data. These applications impose more stringent requirements on the support 
mechanisms provided by underlying networks and operating systems than currently 
more widely deployed continuous media applications such as videoconferencing, 
streaming audio and video on the Internet and (non-distributed) entertainment 
software. The quality of the media being presented is important-sometimes 
critically so-and thus resources must be properly allocated and scheduled in order 
to preserve this quality. The following three scenarios illustrate some of the problems 
that will need to be addressed by an application framework for the construction of 
mission-critical multimedia applications: 

• 

• 

Digital TV studio. The production of a digital TV newscast is likely to 
include: incoming live news footage in a variety of formats; the use of archive 
material from several sites and in different formats; a news reader (anchor) 
interviewing remote subjects; frequent changes of programme source on-the­
fly. The construction of a system to support such a demanding set of real-time 
activities while maintaining a continuously high quality of service seems well 
beyond the capacity of today's digital multimedia platforms. 

Distributed surgery. A distributed conferencing system could support a 
medical team undertaking a transplant operation. The scarcity of specialists 
makes it necessary to support remote participation in surgical and other 
procedures. A transplant operation might involve two patients (donor and 
recipient) undergoing concurrent operations in separate rooms with other 
specialist consultants participating remotely. Additional channels would 
provide remote monitoring of patients, remote manipulation of surgical probes, 
etc. These would also require strong QoS guarantees and consistency 
constraints. The reliability and quality of service in such an application may be 
life-critical. 

• Remote surveillance. A video surveillance system for a major public event 
(e.g. a political party congress) incorporates a control room accessing the 
majority of available video an~ audio sources, but with other agencies 
supplying and receiving additional streams of information in a variety of 
formats via land lines and radio. Some of the sources and destinations of audio 
and video streams are mobile with variable bandwidth and connectivity. Some 
of the key requirements are to keep certain audio and video channels open to 
mobile users, to switch transmission links in response to communication 
failures, and to upgrade the quality of service in order to provide closer 
observation in response to suspicious incidents. 

Applications such as these are often long-lived and subject to frequent 
reconfiguration and long-term evolution of application structure. The application 
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software that supports them must be highly adaptable and be capable of tolerating a 
wide variety of reconfigurations and extensions while still meeting their Quality of 
Service (QoS) guarantees. 

This paper describes the DJINN multimedia programming framework [13], which 
is designed to support the construction and dynamic reconfiguration of distributed 
multimedia applications. The main requirements addressed by DJINN are to provide 
QoS and integrity guarantees for complex multimedia applications, both in their 
steady state and during reconfigurations. In particular, DJINN includes: 

• Programming support for distributed multimedia applications. This includes 

• 

• 

the means to encapsulate potentially complex configurations of multimedia­
processing components, and to abstract away from the details of hardware . 

Dynamic reconfiguration. The requirement is to support dynamic changes to 
complex component structures, such as when users join and leave groupware 
sessions. These changes to the application's structure need to be performed 
atomically, and the application's structural integrity must be maintained-for 
example, ensuring that the media formats handled by interconnected 
components are compatible with one another . 

Support for QoS negotiation, admission control and the specification of 
integrity constraints. This support is available to concurrent applications that 
can alter their QoS characteristics (e.g. audio quality) at run-time. The QoS 
support in Djinn provides an environment for adaptable multimedia 
applications to rapidly converge into a sustainable level of quality. 

The rest of this paper is structured as follows. Section FiFure 2 is an overview of the 
DJINN architecture. Section 3 presents an illustrative efample of a real application 
built in Djinn and demonstrates our approach to QoS management and dynamic 
reconfiguration. Section 0 briefly reviews some related research while Section 5 
contains a summary and conclusions. 

2 FRAMEWORK ARCHITECTURE 

DJINN applications are constructed from networks of components consuming, 
producing and transforming media data streams and interconnected via their ports, in 
a similar fashion to other distributed multimedia programming frameworks such as 
[2], [8] & [9]. Our approach to meeting the requirements outlined above is based 
around the use of a dynamic runtime model of the application, which models the 
QoS, structural configuration and integrity properties of the application. The model 
is itself built from interconnected components, so that DJINN applications have a 
two-level structure as shown in Figure 1. The active components of an application 
are autonomous objects that produce, consume and transform multimedia data 
streams. Active components are distributed so as to meet the processing 
requirements of the application-in general, they must be co-located with the 
multimedia hardware that they control. On the other hand, model components do not 
directly process media data and can be located wherever is convenient for the 
application user or programmer. The model may be distributed, for example in a 
video-server system where the server and clients are under the control of different 
people or organisations. 
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Figure 1. Model and active components. 

The model components of an application are arranged in a tree-structured 
hierarchy, where the leaves of the tree are atomic model components, each 
corresponding to a single active component (for example, the Video Source and 
Display components in Figure 1). Atomic model components export a common 
interface to their underlying active components, such that all "Camera" components 
will offer a common set of operations irrespective of the physical type of camera 
controlled by the active component. Additionally, atomic model components model 
the QoS characteristics of their underlying active components as sets of linear and 
quadratic relations between attributes-such as frame rate and size--of the media 
streams being processed. These relations include the resource requirements of the 
active component and any constraints it imposes on the media streams. The 
connectivity of the active layer is mirrored by the atomic model components: each 
has the same set of ports and inter-component connections as its active counterpart. 

The interior nodes of the model component tree are composite components. These 
components do not correspond to anyone active component; rather, they encapsulate 
a sub-tree of the application model, with the composite component at the root. 
Composite components facilitate high-level application structuring and add 
additional behaviour to an application by providing operations to manipulate their 
encapsulated sub-components. For instance, a video-conferencing component would 
provide operations to add and remove conference participants. A composite 
component models the connectivity of its encapsulated sub-tree as a directed graph 
that can be expanded down to the atomic component level. The root composite 
component (the Video Player in Figure 1) also stores a cost-benefit function, which 
expresses the application's specific resource/QoS trade-offs. 

Application integrity is modelled by sets of predicates attached to model 
components. Predicates range from simple checks on atomic components-such"'iis 
ensuring that output ports are only ever connected to input ports-to complex 
consistency tests on high-level composite components-a video-conferencing 
component should maintain full connectivity between all participants as well as 
enforcing a floor-control policy. The predicates are evaluated in leaf-to-root order, 
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and all must be true for the application's configuration to be considered valid. The 
bottom-up ordering allows a composite component further up the tree to declare the 
configuration invalid when it fails to meet a condition unknown to the sub­
components. 

Application programmers are unaware of the distinction between model and 
active components. All application-level programming in Djinn takes place at the 
model layer. Active components are created, configured and destroyed as required 
under the control of the application model. Components are controlled through a 
combination of remote invocations and inter-component events. Events can be 
transferred between components and additionally may flow along the same paths as 
media streams, interleaved with media data elements. Events enable heterogeneous 
components to respond to state changes; they also allow us to synchronise 
reconfigurations with media data flow. 

Our primary motivation for the use of an application model is to clearly separate 
the design of an application from its realisation at run-time [13]. The model is largely 
independent of location, hardware platform, operating system and the various 
technologies used to process and transport media data; it enables programmers to 
build and evolve applications at a high level of abstraction. Active components, on 
the other hand, have no notion of their place in the larger application-they simply 
carry out their tasks of producing, processing, transporting and consuming 
multimedia data. 

Multimedia Applications 

Model Components 

Reconfiguration 
Manager 

Reconfiguration QoS 
Scheduler Manager 

Active I 
Components Resource 

Managers 

Real-Time OS 
(Chorus) 

System Resources 

Figure 2. DJINN runtime architecture. 

Figure 2 shows the relationships between the main components of the Djinn 
runtime architecture. The QoS and resource managers provide QoS management 
support, including admission control and resource allocation. The reconfiguration 
manager is responsible for controlling and validating changes to the application 
model; the reconfiguration scheduler maps approved changes onto the active 
component layer. 
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DJINN'S QoS guarantees depend upon appropriate real-time support from host 
operating systems and networks. We have a real-time testbed system comprising a 
set of hosts running the Chorus/ClassiX RTOS [lOJ and a dedicated Ethernet. Active 
components on the Chorus hosts are implemented in C++ while the model 
components-which do not require a real-time platform-are implemented in Java. 
CORBA is used for inter-component control communication; media streams use 
protocols appropriate to the stream type and the underlying network. 

3 AN ILLUSTRATIVE EXAMPLE 

In this section we analyse an application scenario similar to that described by 
Yeadon et. al. in [22J, who are developing systems to provide mobile multimedia 
support and applications for the emergency services. The setting is a large security­
conscious site-such as a factory or research centre-equipped with fixed 
surveillance cameras feeding video to one or more central servers. Security 
personnel can monitor the live video streams via either fixed workstations or mobile 
terminals communicating over a WaveLAN wireless broadcast network [20J. Mobile 
users who move outside the coverage area of the WaveLAN are still able to receive 
video over a GSM cellular link [17J, albeit with significantly reduced quality. In the 
event of a major incident-say a factory fire-where the emergency services are 
called, the surveillance video streams can be routed to the police/fire brigade control 
room over a high-speed wired link. Relevant streams will then be forwarded to 
emergency units en route to the scene, again using a GSM connection or dedicated 
packet-radio network. Once on the scene, emergency services personnel should be 
able to receive the higher-quality video available from the WaveLAN at the incident 
site. If audio streams are also available, they can be treated in the same way. A high­
level view of this scenario is shown in Figure 3. 

Clearly this system is subject to frequent reconfiguration as video streams from 
different sources are switched between the different networks. One of the key 
requirements of the application domain is for high levels of availability and 

WaveLAN 
WaveLAN 

Cameras ....... \, // GSM 

~~':'b):»]~ 
High-speed Network 

Mobile Clients 

Figure 3. The example application. 
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Figure 4. Initial configuration. 

dependability of data [22]. This implies a need for seamless switching between 
network transports at the client end, and careful control of resource usage, especially 
in highly constrained environments such as the GSM network. 

For the purposes of illustration we will consider just one aspect of this application 
with particular relevance to DJINN: a single mobile video unit that joins the system, 
then moves from the local WaveLAN to a dialup GSM link. This allows us to 
address two important aspects of DJINN: First, the admission control mechanisms 
that allow a new client to join the application with an appropriate guaranteed QoS 
level; and, second, the algorithms used to schedule a smooth hand-over between the 
two networks with minimum disruption to the output seen by the user. The initial 
state of this system is shown in Figure 4. 

3.1 Application Setup 

Programmers build DJINN applications by creating and interconnecting model 
components. Before the active components are created and started the model must 
pass through integrity tests-as described in Section 2-and an admission test. These 
tests aim to find an application configuration which does not break any of its 
constraints and for which enough system resources can be reserved. As an example 
of the former, the main video server in the surveillance application can support a 
fixed maximum number of GSM connections, determined by the number of attached 
modems. Any configuration of the model that exceeds this limit must be rejected. 

Admission Test. Each admission test utilises the application's QoS model, and is 
performed in three stages: to gather application-imposed constraints, to determine 
constraints on resources, and to generate a solution using a cost-benefit analysis. In 
the first stage components are asked to provide a list of their QoS characteristics 
(Table 1), expressed as simple numerical relations. This includes the amount of 
resources required by each component along with any constraints imposed by these 
components on the streams they process. Consider the remote surveillance example 
shown in Figure 4. The Video Source component imposes the constraint S1.rate ~ 30 
due to its frame-rate limitations. The constraint Ss ~ 5 imposed by Display is user­
specified and ensures that the displayed video will have a frame rate of at least 5 
frames per second. The MPEG Encoder also imposes constraints on the frame sizes 
it can produce. Note that to simplify this discussion Table 1 shows only the CPU 
requirements of components; other resources are treated in a similar fashion. 
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The QoS characteristics of components are stored within individual model 
components. The component programmer specifies inter-stream constraints when she 
creates the component. Our approach to modelling the resource requirements has 
been to perform direct measurements of these values. We are currently developing a 
test-harness, which provides the modeller with information related to the 
component's resource utilisation characteristics. The user wishing to model the 
component inputs multimedia elements of known attributes (for example, video of 
known frame rate and size). The harness measures the resource usage. Currently, we 
measure CPU, memory and network utilisation. We provide a tool for the user to 
match the resultant data points to linear functions or piecewise linear functions. 
Sometimes they are functions of products of attributes (for example, frame size times 
frame rate)-and so we obtain a quadratic function of attributes. Another 
complication is that resource utilisation may depend on media values. For example, 
an MPEG decoder may take differing amounts of time to decode two frames of the 
same type (I, P or B) and size. We therefore can derive several linear or quadratic 
relations, corresponding, in the case of MPEG, to video of differing classifications 
[18] (e.g. streams with low level of motion, computer generated animations etc). 

Component Constraints Resource Requirement (ms/sec) 

Video St.rate:5: 30 CPUatX 6.46xl0-4St.rate*St.size 
Source 

MPEG (St.x = 128, St.y =96) or 1.61xl0-4St.rate*St.size 
Encoder (St.x = 176, St.y = 144) or 

(St.x =352, St.y = 176) or 
(St.x = 704, St.y = 575) or 
(S1.x = 1408, St.y = 1152) 

WaveLAN S2 = S3 (all attributes) CPUatX 8.07xl0-5St.rate*St.size 
Connector 

CPUatY 8.07xl0-5St.rate*St.size 

MPEG S3 = S4 (all attributes) CPYatY 1.08xl0-3St.rate*St.size 
Decoder 

Display S4.rate ~ 5 CPU atY 3.22xlO-4St.rate*St.size 
120:5: S4. width ~ 704 
80 ~ S4.height:5: 575 

Table 1. QoS Characteristics. 

In the second stage of the admission test, relevant resource managers are asked 
about the availability of their resources. The components' resource requirement 
functions are turned into a set of inequalities (one for each resource) which express 
the bound on the resources that can be used by the application. This allows the 
current resource availability to be expressed within the model. This is shown in 
Table 2. 
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The third stage of the admission test attempts to solve the constraint relations. We 
currently use techniques borrowed from operations research used in optimisation 
problems. These techniques utilise a benefit function (in our case the application­
specific cost-benefit function) to find optimum values for a set of variables (the 
stream attributes) given a set of constraints (the stream and resource constraints). For 
our example we use a cost-benefit j=WI *S4. rate + w2*S4.size + w3*(RcpuX +RcpuY). 
This is a weighted function (the weights are WI W2 and W3) of the frame rate and size 
(which we want to maximise) and the total resource utilisation (which we want to 
minimise). We use WI = W2 = J(I and W3 = 1 to express the relative importance of 
good QoS over resource costs. 

These numerical relations are then solved at run-time with the application's 
benefit function to determine an optimum QoS state. In this example this has a frame 
rate of 10fps and a frame size of 352x176. This reflects the limited CPU resource 
availability at host Y. At present we use a freely available linear solver, which limits 
or models to one stream attribute. We are currently evaluating other more general­
purpose solvers, which do not have this restriction. 

Resource CPU Availability (ms/sec) 

CPU atX 800 

CPU atY 920 

Resource Constraint 

8.877xlO·4S4.rate*St.size:5 800 

1.482xlO-3S4.rate*St.size:5 920 

Table 2. Resource constraints. 

3.2 Dynamic Reconfiguration 

We now consider the problem of reconfiguring the system in response to a user 
request or changes in the operating environment of the program. An example of the 
latter occurs when the mobile handset moves outside the range of the WaveLAN-if 
video playback is to continue the application must be reconfigured to deliver the 
video data over the lower-bandwidth GSM network 

Application configuration-and reconfiguration-is expressed in terms of paths: 
model layer end-to-end management constructs describing the media data flow 
between a pair of endpoints chosen by the application. A path encapsulates an 
arbitrary sequence of ports and intervening components that carry its data. It declares 
the end-to-end QoS properties of that sequence, including latency, jitter and error 
rate. It is up to each individual application to identify the end-to-end flows that are of 
interest to it and specify paths accordingly. Flows that are not part of a path do not 
receive any end-to-end guarantees either for their normal operation or during 
reconfiguration. 

A reconfiguration moves the application from one consistent state to another in an 
atomic manner. That is, if it is not possible to successfully perform all of the actions 
required to execute the reconfiguration, then none of the actions will be performed 
and the application will remairi in its initial state. The reconfiguration is initially 
enacted on the application model; no changes are made to any active components 
until the new configuration has been approved by the admission control mechanism 
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and validated against any application-defined integrity constraints. If it turns out that 
the requested changes cannot be successfully applied, the model components are 
'rolled back' to their previous consistent state, leaving the application configuration 
unchanged. 

The continuous media streams processed by the active components have 
constraints that must be maintained during the transition between the initial and final 
configurations. For example, it would not generally be acceptable for the arrival of a 
new mobile handset in the system to disrupt the video playback on other handsets. 
Therefore, we apply an ordering or schedule to the active component updates,. to 
maintain the temporal consistency of streams across reconfiguration boundaries, a 
requirement we have informally named the 'smoothness' condition [14]: "The 
execution of a reconfiguration on a live system must not break any temporal 
constraint of any active path. " 

The schedule ensures that the streams will be free of, or at least not unacceptably 
affected by, 'glitches'. Glitches are lost data or loss of synchronisation, which 
appears to users as frozen frames, silences or unsynchronised sound and vision. 

In our example, the WaveLAN infrastructure is able to detect a change in signal 
strength indicating that the user is moving outside the coverage area of the network 
[7],[15]. When this occurs, an event is delivered to the application model causing it 
to initiate a hand-over to the GSM network. We assume that the WaveLAN can 
provide sufficient advance notice of an impending loss of service that we can have 
the GSM link fully up and running in time for a seamless hand-over. The reduced 
bandwidth of a GSM link (only 9600 bits/s) necessitates a reduction in frame rate 
and a switch to a more efficient-but lower quality-H.236 codec [5]. Figure 5 
shows the final state of the path undergoing the reconfiguration (cf. the initial 
configuration in Figure 4). 

The temporal constraints on this reconfiguration are: 

• That the interval between the arrival at P4 of the last frame from the initial 
configuration and the first frame from the final configuration is less than 
200ms . 

• That the play-out times of these two frames should not differ by more than 
400ms, i.e. no more than two frames lost or repeated. 

Deriving the Schedule. Table 3 shows the latencies and startup times for the 
components in both configurations, where the latter is the time required to get a 
newly created active component into a state where it is ready to process media data. 
This is particularly relevant to this example, since the GSM network components 

Figure 5. Final configuration. 
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have startup times three orders of magnitude greater than their operating latency. 
While the startup delay cannot be avoided, it is possible to reduce or eliminate its 
impact in the relatively common case that the application receives some advance 
warning of the need to reconfigure. The achieve this, we divide the active component 
updates into two phases: 

• Setup. This phase encompasses the creation of new active components and 
reservation of their resources. The initial configuration remains operational 
throughout. However, some of the new components may be started running if 
the smoothness requirements of the reconfiguration demand it. 

• Integrate. This phase is started by an event delivered after the end of the setup 
phase-in our remote surveillance example this event arises when the signal 
strength reaches a lower threshold. It completes the transition to the final 
configuration according to a schedule computed to maintain the temporal 
constraints of the reconfiguration. 

Component Latency (ms) Startup time (ms) 

Video Source 40 500 

Display 20 100 

MPEG Encoder 100 1000 

MPEG Decoder 67 1000 

H.263 Encoder 200 1000 

H.263 Decoder 100 1000 

WaveLAN Source 5 100 

WaveLAN Sink 5 100 

GSM Source 5 5000 

GSMSink 5 5000 

Table 3. Component latencies. 

Each active component is 'primed' during the setup phase with the actions to 
perform during integration. The actions are triggered by receipt of an event from an 
external source or on an input port; the event is also propagated downstream along 
the reconfiguration path. Integration is thus performed by scheduled delivery of 
integrate events to the farthest upstream points of the reconfiguration. 

The scheduling algorithm works upstream along both versions of the path from 
P 4, summing the latencies of each component encountered. When the configurations 
converge again at port P J, the differences in latencies along each path allows us to 
calculate when the last MPEG and first H.263 frames should be delivered to ports P2 

and Pz' respectively. Thus, for the frames to arrive simultaneously at P4, we should 
inject the 'start' event into Pz' 133ms before sending the 'stop' event to P2• We may 
stretch or compress this schedule by up to 200ms and still meet the first constraint. 
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Because the difference in the latency of the two configurations is less than 400ms, 
the second constraint is also maintained. 

Dynamic Admissions. The above schedule assumes that sufficient resources are 
reserved, by a dynamic admission test that is part of the atomic action. Dynamic 
admission tests are slightly different from the initial admission test explained above. 
The major difference is that these tests must take into account the period during the 
transition from the initial configuration to the final configuration, where components 
from both configurations may be executing concurrently. We thus perform two 
admission tests, one for the final configuration and one for the transitional period. 

Dynamic admission tests use the initial state of the model when looking for a 
solution to the final configuration. The techniques used are similar to those found in 
sensitivity analysis [12] and can greatly increase the performance of these tests. 
Furthermore components and resource managers that are not affected by the 
reconfiguration need not be consulted since their information is already present in 
the model. This is particularly useful since in many cases it is the QoS characteristics 
of just a few localised components that are affected. Table 4 shows the time taken to 
perform admission control calculation with and without re-use of previous 
calculations. 

Number of relations Complete recalculation (sec) Re-using calculations (sec) 

220 0.20 0.02 

1860 2.00 0.18 

5100 11.00 0.70 

Table 4. Speedup from calculation reuse. 

4 RELATED WORK 

The component-based approach to application construction is used by a variety of 
multimedia programming frameworks, such as that of Gibbs & Tsichritzis [9], 
Medusa [21] and CINEMA [2]. CINEMA also makes use of composite components 
and a separate 'model' of the application that is used for control and reconfiguration. 
However, CINEMA's idea of what constitutes a reconfiguration is quite limited and 
has no equivalent of the 'smoothness' property for ensuring clean transitions 
between consistent states. It does allow inter-stream dependencies to be taken into 
account when performing admission control, but it requires application components 
to be created from the outset in order to provide information about constraints, rather 
than using a separate model. Also, the application components individually attempt 
to reserve resources during the admission test. This can lead to admission failing, 
even in situations where sufficient resources might be found. 

The need for smoothness support in the real-world domain of digital television­
where there is a requirement to "splice" together MPEG streams within the resource 
constraints of hardware decoders whilst still meeting QoS guarantees-is illustrated 
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by [4]. In [19], Sztipanovitz, Karsai and Bapty present a similar two-level approach 
to component-based application composition in the context of a signal-processing 
system whose applications share many of the real-time requirements of multimedia. 

The use of a QoS model can also be found in the Quorum project [6]. They model 
the structural and QoS characteristics of applications and use benefit function to 
capture user preferences, although they do not consider smoothness properties. 

5 SUMMARY AND CONCLUSIONS 

This paper has motivated the benefits of a runtime model of the quality of service 
and structural integrity characteristics of multimedia applications. It has also 
demonstrated an algorithm for scheduling dynamic reconfigurations which maintains 
QoS guarantees. QoS characteristics are modelled as piecewise-linear or quadratic 
relations, which are solved using standard constraint programming techniques. The 
result is a negotiation between the application and the system, with user-configurable 
bounds. During reconfigurations, updates to active components are scheduled so as 
to maintain temporal constraints on the media streams. A generic software solver 
computes the schedule. We have illustrated our approach using preliminary 
experimental results from a real-world application domain. 

A number of issues remain unresolved regarding the utility of our approach. It is 
not yet clear that resource requirements can always be modelled accurately as 
piecewise linear or quadratic functions, or that the model is sufficiently generic to be 
transparently reused in different application domains. In the example presented in 
this paper we have made some simplifications (in addition to considering only CPU 
resources). In particular the cost-benefit function should express trade-offs between 
various streams and between the quality of the application versus its resource 
requirements. Furthermore, compressed streams would have attributes related to the 
compression parameters, allowing for further trade-offs between stream quality and 
resource usage to be expressed. 

Likewise, our reconfiguration scheduling algorithm is only fully developed for the 
single path case-we are still exploring the issues that arise when reconfiguring 
mUltiple paths with inter-path dependencies. With reference to the requirements 
outlined in Section I, this paper has addressed the reconfiguration and QoS aspects. 
Further details of DJINN can be found in [13] and our approaches to reconfiguration 
scheduling and application integrity management appear in [14],[16]. 

References 

[1] ATKINSON M., DAYNEs L., JORDAN M., PRINTEZIS T., SPENCE S., An Orthogonally 
Persistent Java, ACM SIGMOD Record 25(4), December 1996. 

[2] BARTH I., Configuring Distributed Multimedia Applications Using CINEMA, Proc. IEEE 
Workshop on Multimedia Software Development (MMSD'96), Germany, March 1996. 

[3] BELLISSARD L. & RIVEILL M., Olan: A Language and Runtime Support for Distributed 
Application Configuration, Joumees du GDR du Programmation, Grenoble, France, 
November 1995. 

[4] BHATT B., BIRKS D., HERMRECK D., Digital Television: Making it Work, IEEE Spectrum 
34(10), pp 19-28, October 1997. 



30 QUALITY OF SERVICE 

[5] BJONTEGAARD G., Very Low Bitrate Videocoding using H.263 and Foreseen Extensions 
Proc. European Conference on Multimedia Applications, Services and Teachniques 
(ECMAST '96), pp 825-838, Louvain-la-Neuve, Belgium, May 1996. 

[6] CHATTERJEE S., SYDIR J., SABATA B., LAWRENCE T., Modeling Applications for Adaptive 
QoS-base Resource Management, Proc. 2nd IEEE High-Assurance System Engineering 
Workshop (HASE97), August 1997. 

[7] DAVIES N. & FRIDAY A., Applications of Video in Mobile Environments, IEEE 
Communications, June 1998. 

[8] FossA H. & SLOMAN M., Implementing Interactive Configuration Management for 
Distributed Systems, Proc. 4th International Conference on Configurable Distributed 
Systems (CDS '96) ,pp 44-51, Maryland, USA, May 1996. 

[9] GIBBS S. & TSICHRITZIS D., Multimedia Programming: Objects, Frameworks and 
Environments, Addison-Wesley, Wokingham, England, 1995. 

[10] GUILLEMONT M., CHORUS/ClassiX r3 Technical Overview Chorus Systems Technical 
Report, May 1997. 

[11] HARDER T. & REUTER A., Principles of Transaction-Oriented Database Recovery, ACM 
Computing Surveys 15(4), 1983. 

[12] HILLIER F. & LIEBERMAN G., Introduction to Operations Research. McGraw-Hill 
International Editions, New York, USA, 1995. 

[13] MITCHELL S., NAGUIB H., COULOURIS G. & KINDBERG T., A Framework for Configurable 
Distributed Multimedia Applications, 3rd Cabernet Plenary Workshop, Rennes, France, 
April 1997. 

[14] MITCHELL S., NAGUIB H., COULOURIS G. & KINDBERG T., Dynamically Configuring 
Multimedia Components: A Model-based Approach, Proc. 8th SIGOPS European 
Workshop, Sintra, Portugal, pp 40-47, September 1998. 

[15] MOURA J., JASINSCm R., SHIOJIRI H. & LIN J., Video Over Wireless, IEEE Personal 
Communications 3(1), pp44-54, February 1996. 

[16] MITCHELL S., NAGUIB H., COULOURIS G. & KINDBERG T. Modelling QoS Characteristics 
of Multimedia Applications, Proc. 13th IEEE Real-Time Systems Symposium (RTSS '98), 
Madrid, Spain, December 1998. 

[17] RAHNEMA M., Overview of the GSM System and Protocol Architecture, IEEE 
Communications Magazine 31(4), pp 92-100, April 1993. 

[18] SHEN K., ROWE L. & DELP E., A Parallel Implementation of an MPEG-1 Encoder: Faster 
than Real-Time, Proc. SPIE Digital Video Compression: Algorithms and Techniques, 
San Jose, CA, USA, February 1995. 

[19] SZTIPANOVITS J., KARSAI G. & BAPTY T., Self-Adaptive Software for Signal Processing: 
Evolving Systems in Changing Environments without Growing Pains, Communications 
of the ACM 41(5), pp 66-73, May 1998. 

[20] TuCH B., Development of WaveLAN, an ISM Band Wireless LAN, AT&T Technical 
Journal 72(4), pp 27-37, July/August 1993. 

[21] WRAY S., GLAUERT T. & HOPPER A., The Medusa Applications Environment, Technical 
Report 94.3, Ollivetti Research Limited, Cambridge, England, 1994. 

[22] YEADON N., DAVIES N., FRIDAY A. & BLAIR G., Supporting Video in Heterogeneous 
Mobile Environments, Proc. Symposium on Applied Computing, Atlanta, GA, USA, 
February 1998. 


