
A FLEXIBLE FRAMEWORK FOR
DEVELOPMENT OF

COMPONENT-BASED
DISTRIBUTED SYSTEMS

Arnor Solberg,Tor Neple,Jon Oldevik and Bard Kvalheim

SINTEF Telecom and Informatics
Forskningsveien 1 P.O.Box 124 Blindern, 0314 Oslo, NORWAY

Tel: +4722 06 73 00 fax: +4722067350

{Arnor.Solberg I Tor.Neple I Jon.Oldevik I baardk}@informatics.sintef.no

Abstract: This paper describes a generic framework facilitating the specification and
construction of component-based distributed systems. The framework integrates
methods for specification of systems with tools supporting the construction of those
systems. This is achieved by defining a reference architecture supported by a
metamodel, a Component Modelling Language and tools for code-generation. The
metamodel is an extension of the UML metamodel. The Component Modelling
Language is a lexical description language based on CORBA IDL.

Keywords: Business object framework, component modelling language, UML

1 INTRODUCTION

Over the last few years component-based system development has become
increasingly popular. The general concepts of building products by integrating a set
of parts with well defined interfaces and characteristics, has been known and used
for decades in industries like automotive manufacturing and electronics. The latter is
probably the best example of how design, configuration and assembly of standard
components provide products of higher quality and lower cost to the consumers.
Imagine what a 300$ CD player would cost if it contained no standard off the shelf
components.

Within software development, components were first used in the programming of
user interfaces. Rapid application development tools such as Microsoft Visual Basic,

149
L. Kutvonen et al. (eds.), Distributed Applications and Interoperable Systems II
© Springer Science+Business Media New York 1999

150 FRAMEWORKS AND TOOLS

Borland Delphi and Powerbuilder allowed the developer to build user interfaces by
assembling pre-built components such as grids, buttons, menus and so on. Such
components are also available for connecting the user interfaces to different
databases and performing different queries in a simple manner.

The new wave of client/server systems based on distributed object technologies
with thin clients and distributed application and business logic has sparked initiatives
and technologies for component-based server programming. Microsoft COMIDCOM
and their Transaction Service, Enterprise Java Beans and CORBA Components are
examples of standards and technologies that facilitate the development of such
systems.

In software development it is important that the developed systems conform to a
defined reference architecture. The quality of the reference architecture will directly
influence the quality of the system at hand, including vital aspects such as
maintainability and flexibility. Conforming to a well-defined architecture will also
assure technical interoperability and facilitate semantic interoperability. It is
important to emphasise that the focus on architecture has to be set in the design
phase of the development process, and that this focus is held throughout the different
phases of system development. Only through architecture-driven design and
implementation, the goal of conforming to the architecture can be reached.

In order to make architecture-driven development easier, and to achieve results of
higher quality in the lowest amount of time, a framework containing architecture
descriptions, standard architecture elements and tools, is of great help.

Most frameworks that exist today are either language, platform or product
specific. However, it is useful to be able to abstract away from platform and
language issues while creating the system description. The main focus and effort
should be on solving the business problems at hand, creating the systems the users
need. This paper presents a framework that allows this abstraction, letting the user
specify the system using models and lexical descriptions. These descriptions are then
used as input to tools that create mappings toward different platforms, languages and
middle-ware. The framework contains:

• a reference architecture,

• a metamodel which is a UML[I] metamodel extension,

• a component definition language (CML),

• scripts that generate CML definitions from UML models and

• a code generator that creates CORBA IDL[2] , ODMG ODL[3] and code
skeletons.

Each of the parts listed above are described in some detail in the following sections.
The framework architecture is related to the ISO RM-ODP architecture
framework[4-7], the relationships and mappings are described in a separate section
of this paper. The last part of the paper contains an example that describes how the
framework is used in system development.

DEVELOPMENT OF COMPONENT-BASED DISTRIBUTED SYSTEMS 151

2 REFERENCE ARCHITECTURE

The reference architecture is partly developed within the ESPRIT IV project
OBOE[8]. The OBOE project focuses on specifying and building a generic and open
infrastructure running distributed business objects. It has also been used to build an
information system for monitoring, reporting and planning the marine seismic
acquisition process. This system is used world wide within Geco Schlumberger, a
partner in the OBOE project. Figure 1 depicts the generic service-oriented
architecture. It is based on a common three tiered architecture. Within each of the
three layers additional layers are added, with the intent to increase flexibility and
robustness.

me
r-;

Presentation UIC impIemeDIatioo

Layer: UserService

~ UIaScnia

BusinessService ~
Business

I Layer: BusinessEntitv

:~::

Data U U I-
Layer: I,,',

Databases
'--

Figure 1. Reference architecture.

The reference architecture separates implementation as distinct parts to explicitly
achieve technology transparency. The implementation parts of the architecture apply
to the technology viewpoint of the RM ODP framework.

2.1 The tiers of the reference architecture

In the following we describe each of the tiers of the reference architecture shown in
Figure 1.

The User Interface Component layer (UIC) includes the user interface
components and the user interface control logic. It includes user presentation and
handles user interface events such as mouse clicks, keyboard input, etc.

The UIC is typically implemented in a programming language such as Java,
Visual Basic or C++. The UIC implementation is basically the realisation of the user
interface and the control logic handling user interactions It utilises the services
provided by the UserService layer to accomplish its tasks.
The UserService layer provides services needed for a particular application. These
services are packaged in one or more UserServices. A UserService is an interface,

152 FRAMEWORKS AND TOOLS

which manifests a set of services as operation signatures. The main purpose of the
UserService layer is to be a facade that shields the UIC from being aware of any
other part of the system. The services are typically derived from the use-cases
describing the requirements for the particular application. The UserService layer
includes all the services that the UIC needs for satisfying the application users in
respect of the specified functional requirements. The services defined in the
UserService layer are not distributed. For services to be available on the net they
must be defined in the BusinessService layer.

A UserService implementation will typically relate to a chosen component
infrastructure technology. By having several implementations of the UserService
component, one gets a system that run on different technologies. For instance one
UserService might bind to a CORBA ORB, one might bind to Java RMI and one
might even be local and for instance wrap local files. The UIC is unaware of this
remains untouched in all these cases.

The BusinessService layer also describes a set of services. These services are
packaged in what we have called BusinessServices. While the UserService layer
describes services needed for a particular application, the BusinessService layer
describes common services applicable for several applications. Typically a
BusinessService also use services offered by other BusinessServices. The services
described in the BusinessService layer are distributed.

The BusinessService implementation is the actual implementation of the services
described in the BusinessService layer. The implementation will utilise the chosen
component infrastructure to distribute the BusinessService components. To
accomplish the offered services, the BusinessService implementation uses the
BusinessEntities described in the BusinessEntity layer. Delegation to other available
BusinessService components is also typically utilised. A common service operation
within a BusinessService is to collect a set of BusinessEntity components and send
these components to the requesting client.

The BusinessEntity layer describes the information model for the system. The
information model contains the Business Entity components and describes their
attributes, operations and relationships. Business Entity components represent things
such as customer, vessel, report, car, etc. It is typically the Business Entity
components that "travel around" according to client requests.

The BusinessEntity implementation is the actual implementation of the Business
Entity components and their relationships. The implementation will utilise the
chosen component infrastructure to distribute the Business Entity components. The
implementation also handles the wrapping to the actual data storage. There are
several possible wrapping techniques, for instance:

• using direct binding to the actual data storage,

• using a de facto database protocol such as ODBC, JDBC or Java Blend or

• using relevant services offered by component technologies, e.g. Persistent
State Service offered by CORBA.

The Data Layer describes the mapping to the actual storage.
The Component infrastructure is the infrastructure required to support components
in a distributed component-environment. This might for instance be CORBA,

DEVELOPMENT OF COMPONENT-BASED DISTRIBUTED SYSTEMS 153

DCOM or Enterprise Java Beans. The component infrastructure will handle
component distribution and typically offers services that support some level of
technical and semantic interoperability.

3 THE METAMODEL

The UML standard offers the possibility of making extensions to the UML
metamodel. At the model level these extensions appear as stereotypes. By using this
mechanism, desired concepts may be integrated into the UML models.
Commercially available UML tools like Rational Rose that enables integration
through API's or scripting, make it possible to perform model checking and
specialised code generation to support specific needs. Thus, UML metamodel
extensions facilitate a flexible way of supporting context, domain or architecture­
driven concepts at the model level.

I Package (from UML MM) I Classifier (from UML core) I

J ~

l
Intelface (from UML Core) I I SubSystem (from UML Model Managment) I

I islnsIlU1Iiabl. : Boolean I

- -
p.f u.r8ervIce I I BusnIII8SeMca I I I!uIIneeI£JIIly I I &.It I

1,-

Figure 2. The metamodel.

The metamodel defined in Figure 2 extends the UML metamodel with concepts that
corresponds to the reference architecture. This includes the UserService, the
BusinessService and the BusinessEntity concepts. In addition the metamodel
supports an event model for handling business events. This includes the Event, the
EventListenerDep and the EventSourceDep concepts. The new concepts are marked
with grey background in Figure 2.

3.1 The metamodel concepts

The UserService is a subclass of Interface from the UML core package. A
UserService is only a collection of operations with a name.

154 FRAMEWORKS AND TOOLS

The BusinessService inherits SubSystem from UML Model Management. A
Business Service logically contains a set of BusinessEntities, and serves as the
controller of the BusinessEntity interactions. A BusinessService component is
instantiable and access transparent. Access transparent means that the
BusinessService components are registered and available on the net, so a
BusinessService component will be a CORBA object in a CORBA implementation.
A restriction defined for the BusinessService components is that they only may have
relationships to BusinessEntities or to other BusinessServices. This to ensure the
described independence between the layers defined in the reference architecture. The
following OCL[9] statement defines this formally:

self.allOppositeAssociationEnds -> forAll (a I a.type.oclIsTypeOf
(BusinessService) or a.type.oclIsTypeOf (BusinessEntity»

The BusinessEntity inherits Classifier from the UML core package. A
BusinessEntity component is persistent and is access-transparent. A restriction
defined for the BusinessEntity components is that they may only have relationships
to other BusinessEntities. This again to ensure that the BusinessEntity components
are independent of the rest of the system. This is defined in OCL as follows:

self.allOppositeAssociationEnds -> forAll(a I
a.type.oclIsTypeOf(Entity»

The metamodel supports an event model that includes the concepts Event,
EventListenerDep and EventSourceDep. The event model is based on the lavaBeans
event model. However, the event model has only an event hierarchy, not an event
interface hierarchy as in lavaBeans.

I«BusinessEnti~
«EventSourceDep.> ... ABusinessEnti

«Event»
AnEvent Event

Source
<<EventL stenerDe p.>

,I,
«BusinessService»

ABusinessService Listener

Figure 3. Event Model example.

An event is represented as an object. An event can only have attributes. The only
methods in an event object is the constructor and getO operations for the attributes.
The attributes are read-only. An event is dependent of an event-source to be
instantiated, and event listeners register themselves to be notified of events.
BusinessServices and BusinessEntities may be event sources and event listeners,
while UserService may register to be an event listener. The event model is illustrated
with the example in Figure 3.

DEVELOPMENT OF COMPONENT-BASED DISTRffiUTED SYSTEMS 155

The figure shows a BusinessEntity that generate events of type AnEvent and a
BusinessService that has registered to be a listener of that event.

4 COMPONENT MODELLING LANGUAGE (CML)

A part of the framework is the Component Modelling Language, which is a lexical
description language for describing systems in a technology independent manner.
CML is a superset of CORBA 2.0 IDL. The new concepts in CML are:
Relationships, Events and the concepts UserService, BusinessService and
B usinessEntity .

Since IDL is only an interface description language, it does not have the
possibility to describe anything else than the interfaces used in a system. CML,
which includes these new concepts, has more descriptive power than IDL. Below we
will describe the IDL extensions in CML.

Relationships in CML corresponds semantically and syntactically to the
relationship concept used in ODMG's ODL. In CML there are three different
appearances of relationships: BusinessEntity - BusinessEntity, BusinessService -
BusinessEntity, BusinessService - BusinessService. The semantics of all three
appearances are the same. From the system programmer's point of view, it should be
perfectly transparent whether it is an entity - entity or service - entity relationship. In
addition to the three appearances, there are four relationship types as defined in the
ODMG standard: list, bag, set and dictionary.

The syntax to describe a relationship in CML is defined in the following way
(BNF grammar):

<relationship_dcl>

<relationship_type>

::= "Relationship" <relationship_type>
<identifier> ["inverse" <scoped_name>]

: : = <param_type_spec>
I "list" "<" <param_type_spec> ">"
I "bag" "<" <param_type_spec> 11>"
I "set" "<" <param_type_spec> ">"
I "dictionary" "<" <param_type_spec> ","
<param_type_spec> ">"

The identifier, scoped_name and param_type_spec are derived from the CORBA 2.0
IDL specification (later productions that end with Jrom_corbaidl are also from
CORBA 2.0 IDL). This part of the CML grammar also illustrates the four different
types of relationship that exist in CML. The semantics of the inverse relationship are
identical to the inverse relationship in the ODMG standard.

The BusinessServices are full-blown distributed components that the client
typically binds to. This means that BusinessServices may include methods, attributes
and relationships. A BusinessService might also be an event source and an event
listener. The CML syntax is defined in the following way:

<businessService_dcl>

<businessService_
body_dcl>

: :=

: :=

"BusinessService" <identifier>
[<inheritance_spec_froID_corbaidl>]
"{" <businessService_body_dcl> "}"

<export_businessService>*

156 FRAMEWORKS AND TOOLS

<export_businessService> :: = <type_dcl_from_corbaidl>" ; "
I <const_dcl_from_corbaidl> ";"
I <except_dcl_from_corbaidl> ";"
I <attr_dcl_from_corbaidl> ";"
I <op_dcl_froITLcorbaidl> ";"
I <signal_dcl> ";"
I <subscribe_dcl> ";"
I <relationship_dcl> ";"

The Business Entities are the "data objects" within a system. The syntax in CML is
defined in the following way:

<businessEntity_dcl> ::= "BusinessEntity" <identifier>
[<inheritance_spec_from_corbaidl>J
"{" <businessEntitybody_dcl> "}"

<businessEntitybody_dcl> ::= <export_businessEntity>*

<export_businessEntity> ::= <export_businessService>

The UserService is an interface defining different services for an application. The
implementation of a UserService marshals the request from the client application
typically to a BusinessService. The syntax in CML is as follows:

<userService_dcl> : : = "UserService n <identifier>
[<inheritance_spec_from_corbaidl>J
"{" <userservicebody_dcl> "}"

<userServicebody_dcl> :: = <export_userService>*

<export_userService> : : = <subscribe_dcl> ";"
I<op_dcl_from_corbaidl> ";"

The Event model in CML is based on Java 1.1 event model. In our framework
BusinessServices and BusinessEntities can both subscribe to and generate events,
whilst UserServices only may subscribe to events. The BNF syntax for event, event
production and event subscription is:

<eventbody_dcl>

<event export>

<event_attr_dcl>
<signal_dcl>

<subscribe_dcl>

::= "event" <identifier> "{" <eventbody_dcl> "}"

: : = <eventexport>*

::= <event_attr_dcl> ";"

::= <param_type_spec> <declarators_from_corbaidl>
::= "Signal" <scoped_event_name>

::= "Subscribe" <scoped_event_name>

5 PARSING AND CODE GENERATION TOOLS

The framework includes parser and code generation tools, both for parsing UML
models, generating CML and parsing CML. Currently the CML parser generate IDL,
Java and ODMG's ODL.

DEVELOPMENT OF COMPONENT-BASED DISTRIBUTED SYSTEMS 157

This means that code is generated for the chosen component infrastructure binding
based on a UML model. Java skeletons and the persistence binding to an ODL based
database are also generated.
The UML parser is built using the scripting language in Rational Rose, which parses
the active model and generates CML.

The CML parser is built using JavaCC (Java Compiler Compiler). The parser has
been built using the IDL grammar as well as the grammar for the new concepts of
CML described in section 4.

5.1 Mapping

The CML concepts are mapped to IDL using the following mapping strategies:

• The UserService, BusinessService and BusinessEntity concepts are mapped to
interfaces in IDL.

• Relationships are mapped to IDL using iterators.

• Any CML interface that signal events is transformed into the equivalent IDL
interface derived from the Notification service structured event supplier
interface.

• Any CML interface that subscribes to events is mapped to the equivalent IDL
interface derived from the Notification service structured event consumer
interface.

• Subscribe and unsubscribe methods for handling event subscription appears
within in the supplier's interface in the IDL file to make these methods
accessible on the ORB.

The added CML concepts are mapped to ODL in the following way:
• The UserService, BusinessService and BusinessEntity concepts are mapped to

interfaces in ODL.

• Relationships in CML are mapped to ODL relationships (their semantics are
the same).

The added CML concepts are mapped to Java in the following way:
• The UserService, BusinessService and BusinessEntity concepts are mapped to

Java classes.

• Relationships in CML are mapped to Java using hash tables and vectors.

• The CML event model is mapped to Java by creating a Java class for the event,
a Java interface for handling the event and event supplier and consumer classes
that derive and use the CORBA notification service.

6 THE RELATIONSHIP WITH RM-ODP

ISO RM-ODP[4-7] defines a set of frameworks within which support for
distribution, interworking, interoperability and portability can be integrated. ODP
standardisation considers distributed systems spanning many organisations and

158 FRAMEWORKS AND TOOLS

technological boundaries. This section will study how the architectural framework of
ODP can be related to the reference architecture described in section 2 and 3.

In general, an ODP system can be described in terms of related, interacting
objects. The ODP foundation is defined by a set of basic modelling concepts,
specification concepts and structuring concepts, being the building blocks upon
which the viewpoints, the viewpoint languages, the conformance framework and the
distribution framework is based. RM ODP defines the architectural framework for
structuring ODP systems in terms of viewpoint specifications and distribution
transparencies. An ODP system is specified in terms of a set of related but separated
viewpoints. Five viewpoints are defined in ODP: enterprise, information,
computational, engineering and technology, each associated with a viewpoint
language that defines a set of concepts for each viewpoint.

The enterprise viewpoint is concerned with the purpose, scope and policies of the
enterprise related to the specified system or service. It covers the role of the system
in the business, and the human user roles and business policies related to the service.

The information viewpoint is concerned with the semantics of information and
information processing. It covers the information held by a system and the
information processing carried out by the system.

The computational viewpoint is concerned with the interaction patterns between
the components (services) of the system, described through their interfaces. It covers
the service interfaces as seen from a client and the interactions between components.

The engineering viewpoint is concerned with the design of distribution-oriented
aspects, i.e. the infrastructure required to support distribution and provide
distribution transparencies. The main concern is the support of interactions between
computational objects. The following transparencies are defined by ODP: access,
location, persistence, transaction, failure, migration, replication and relocation

The technology viewpoint is concerned with the provision of an underlying
infrastructure. A technology specification defines how a system is structured in terms
of hardware and software components, and underlying supporting infrastructure.

ODP provides a reference model for distributed systems, and it is timely to
identify correlation points between this and the logical architecture described in
section 2 and 3. This will help assuring that standard models and ways of thinking
are preserved. Figure 4 gives a high-level perspective on this relationship.

The enterprise viewpoint drives requirements to all levels of the architecture. The
information viewpoint is represented by the business entities (the persistent objects)
in the architecture. The computational viewpoint is represented by the user business
services. The engineering viewpoint is represented by requirement-statements for
distribution transparencies that are described jointly with the architecture. The
technology viewpoint is represented by implementations, explicit infrastructure
mappings and other technology choices.

From an architectural perspective, it is interesting to analyse how the multi-tier
architecture (and the framework) can accommodate engineering requirements
(transparency requirements) and map these to underlying services supported by the
component infrastructure. We will se that many distribution transparencies can be
supported directly by such mappings.

Access transparency can be directly provided by the component infrastructure,
e.g. by CORBA, Java or DCOM.

DEVELOPMENT OF COMPONENT-BASED DISTRIBUTED SYSTEMS 159

Location transparency can be partly provided by infrastructure services like
naming or trader services, e.g. COREA Naming Service or Java Naming and
Directory Interface (JNDI).

Persistence transparency can be provided by support from persistence services or
automatic generation of database language mappings. In the reference architecture,
all BusinessEntities are assumed to be persistent. Automatic mappings to ODL
databases are performed.

Technology

Business
layer

viewpoint Data
layer

Engineering
viewpoint

Figure 4. Relationship between the logical architecture and RM-ODP.

Transaction transparency can be provided by support from transaction services, e.g.
COREA, Microsoft or Java Transactions Service. Also, transactional support in
underlying databases may be used. During analysis, transaction requirements can be
identified in modelling (e.g. as tagged values on services/entities). This can be used
to create automatic mappings to the chosen transaction technology.

Similar strategies can be applied for supporting additional transparencies and
services in the framework, adding value to the design process as well as the
flexibility of the architecture.

7 U~NGTHEFRAMEWORK

This section demonstrates how to specify and construct a component-based,
distributed system based on the framework. The system to construct is a simple car
rental system, handling car reservations. The system also handles overdue events if a
car is not checked in or not checked out according to the dates specified in the car
reservation. A car reservation comprises a customer, a car and a period of time. The
UserService and the BusinessServices defined in the system offers the services
needed for handling reservations of cars. This includes making reservations and
checking in and out cars.

160 FRAMEWORKS AND TOOLS

7.1 Model

The simple car rental system includes one UserService: CarRental, two
BusinessServices: RentalService and CustomerService, three BusinessEntities:
Reservation, Customer and Car, and two events: NotCheckedln and NotCheckedOut.
These components, their attributes, relationships and operations are modelled in
UML using Rational Rose. The UML model is shown in Figure 5.

«Service»
Rentalservice «EventUstenerDep»

«EventUstenerDep»
r-::--:---:::---,

«UserServiC9»
CarRentaJ

newCustomer()

0 .. 1
~-------i=~~~~~=t-------:1getCustomer()
L makeReservationO

when: Dale
+res tions

freeCars «Event ourceDep»

r--'--'-'O",-.. "_, 0 .. " r--«-=Ec'-nti,-·ty>->---,

getReservationO
checkOutCarO

«Service»
CustomerService

newCustomer()

«Entity» ReservaJion «Entity»
Car fromDate : Date Customer

carRegNr : string +cars +reservation toDate: Date id : string
type: string r--~---::-:--jrefld: long I::-:----------jnarne: string
price: long 0 .. " 0 .. 1 actualOutDate : Date 0 . ." +reservations 0 .. 1 adress: string
yearModel : long autuaJlnDate : Date phoneNumber: string

Figure 5. The UML model of the car rental example.

Note that the concepts defined in the framework appear as stereotypes in the model.

7.2 CML code

The UML parser is now used to generate CML. Parts of the generated CML code is
listed below.

II CML mapping generated from Rational Rose BOF MetaModel
II File: 'I:\PROJECTS\OBOE\Metamodel\CarRental.cml'
II Date: '03-oct-98'
businessEntity Reservation {
relationship list <Car> cars;
relationship Customer customer inverse Customer::reservations;
attribute Date fromDate;

II The remaining attribute declarations are left out
signal NotCheckedIn;
signal NotCheckedOut;
string status(); };

businesService Rentalservice
subscribe NotCheckedIn;
subscribe NotCheckedOut;

DEVELOPMENT OF COMPONENT-BASED DISTRffiUTED SYSTEMS 161

relationship list <Car> freeCars;
II The remaining relationship declarations are left out
long makeReservation(in CustomerService::Customer theCustomer, in Car
theCar, in Date from, in Date to);
II The remaining method declarations are left out };

event NotCheckedOut {
Date when; };

II The remaining CML code is left out

7.3 IDL, Java and ODL

Using tools included in the framework, IDL, ODL and Java class skeletons will be
generated based on the CML file. The IDL then is compiled using a Java IDL
compiler, generating stubs and skeletons. The ODL file is the database schema and is
used to generate the implementation of the data layer for the system. The appropriate
Java class skeletons are also generated. These skeletons also include event handling.

Parts of the generated IDL is listed below.

1* IDL file generated from CMLParser - Tue Jan 26 13:21:01 CET 1999*1
module CarRental{ II forward declarations of the interfaces:

interface Reservation;
interface RentalService;
II The remaining interface declarations are left out

interface ReservationDictionarylterator{
Reservation nextReservation();
boolean hasMoreReservations() ;};

interface CarListlterator (
Car nextCar();
boolean hasMoreCars(); };

II The remaining iterator declarations are left out

II Event interfaces (the NotChecedln event declaration are left out)
interface NotCheckedOutConsumer:CosNotifyComm::StructuredPushConsumer
{ };

interface NotCheckedOutSupplier:CosNotifyComm::StructuredPushSupplier{
boolean addNotCheckedOutConsumer(in NotCheckedOutConsumer consumer);
boolean removeNotCheckedOutConsumer(in NotCheckedOutConsumer
consumer); };

interface Reservation : NotCheckedlnSupplier, NotCheckedOutSupplier{
CarListlterator getCars();
Customer getCustomer();
long getFromDate(); void setFromDate(in long fromDate);
II The remaining declarations are left out };

interface RentalService (
attribute NotCheckedOutConsumer notCheckedOutConsumer;
ReservationDictionarylterator getReservations();
long makeReservation(in Customer theCustomer, in Car theCar,
in long from, in long to);
void checkOutCar(in long reservationld);
void checklnCar(in long reservationld);
II the remaining declarations. are left out};

II The remaining IDL are left out
} ;

162 FRAMEWORKS AND TOOLS

8 SUMMARY

This paper has presented a framework for architecture-driven development of
component-based distributed systems. The framework has been used with success in
the OBOE project mentioned in the text. As illustrated, the innovations presented
here facilitate easier and more flexible architecture-driven development, aiming at
supporting the central concepts of business object and component architectures.

Based on the experiences from this project, and internal usage of the framework,
we intend to develop the ideas and tools further. Among the issues we are working
on is incorporating support for transaction management, and mappings toward other
infrastructures. The work on using the framework toward a Microsoft DCOM
environment with Microsoft Transaction Server will start shortly. Other target
environments such as Enterprise Java Beans and CORBA components will also be
investigated. Further development will also be done to enable the automatic
management and mapping of changes to implementation and models at all levels.

Currently the tool that converts from UML to CML is specific for Rational
Rose98. In the next iteration we will make a tool that generates CML from a XMI
representation of the UML model. This work will start when the OMG XMI (XML
Model Interchange) standard has stabilised.

References

[1] UML CONSORTIUM, UML Semantics, Rational Software Corporation Version 1.1, 1
September 1997.

[2] OMG, Object Management Architecture Guide, Third ed: John Wiley & Sons, Inc., 1995.
[3] CATIELL R., BARRY D., BARTELS D., BERLER M., EASTMAN 1., GAMERMAN S., JORDAN D.,

SPRINGER A., STRICKLAND H., AND WADE D., The Object Database Standard: ODMG 2.0,
pp. 288 The Morgan Kaufmann Series in Data Management Systems, J. Gray, Ed. San
Francisco: Morgan Kaufmann Publishers, 1997.

[4] ISO/IEC JTCl/SC21, Basic reference model of open distributed processing, part 1:
Overview, lTU-T X.901 - ISO/IEC 10746-1, August 1995.

[5] ISO/IEC JTCl/SC21, Basic reference model of open distributed processing - part 2:
Foundations, lTU-T X.902 - ISO/IEC 10746-2, August 1994.

[6] ISO/IEC JTCl/SC21, Basic reference model of open distributed processing, part 3:
Architecture, lTU-T X.903 - ISO/IEC 10746-3, 1995.

[7] ISO/IEC JTCl/SC21, Basic reference model of open distributed processing, part 4:
Architectural Semantics, lTU-T X.904 - ISO/IEC 10746-4, 1995.

[8] OBOE, OBOE whitepaper, ESPRIT project no 23.233 revision 0.7, 1999.
[9] UML CONSORTIUM, Object Constraint Language Specification, Object Management

Group Version 1.1,1 September 1997.

