
A COMPONENT FRAMEWORK FOR
THE CONFIGURATION MANAGEMENT

OF NETWORKS
Michael Wimmers1, Arnulf Mester 1,2 and Heiko Krumm 2

1 Dr. Materna GmbH, Vosskuhle 37,0-44141 Dortmund, GERMANY

2 Dept. of Compo SCience, Univ. of Dortmund, 0-44221 Dortmund, GERMANY

Michael.wimmers@materna.de, mester@acm.org, krumm@ls4.cs.uni-dortmund.de

Abstract: Currently the approach of component-oriented software development is in
discussion. It aims to the cost-effective construction of flexible applications from meg­
amodules. We report on an application of this approach to the configuration management
of networks. A corresponding component framework was developed and encouraging
experiences from application developments and their operation were gathered. We de­
scribe the framework which in particular supports scalable, easily extensible, and resource
saving management applications. Moreover, an example application is outlined.

Keywords: Component framework, configuration management, management ap­
plications

1 INTRODUCTION

Modern network management systems can be classified as complex and demanding
distributed applications. They control high numbers of heterogeneous network, com­
puter, and application elements in order to keep up a growing spectrum of information
processing and communication services. As enterprises rely upon the services, their
quality has to comply with agreed service levels. Moreover, future demands have
to be anticipated and pro-active changes shall provide for an efficient and lasting in­
frastructure. So, the information society technologies (1ST) program of the European
Commission recognizes the essential role of management systems and proposes corre­
sponding objectives within the essential technology and infrastructure key action [5].

While changing future demands plead for open, flexible, and combinable man­
agement systems, most present systems are marked by a proprietary and monolithic

135

L. Kutvonen et al. (eds.), Distributed Applications and Interoperable Systems II
© Springer Science+Business Media New York 1999

136 FRAMEWORKS AND TOOLS

architecture. Open standards only apply to the distribution between agents and man­
agers (cf. [7,3]), while the main functions reside in relatively complex and inflexible
manager applications.

Meanwhile first research prototypes and products, however, recognized the benefits
of component-based software development (cf. [18]). Deri presented the pertinent com­
ponent middleware Yasmin [4J. It supports the dynamic extension of core-applications
by so-called Droplet-components. Using Yasmin, the network management applica­
tion Liaison showed the flexibility and scalability of Droplet-extended management
systems. It provided a comfortable Web-based management interface and proved
that even multidomain management integrating CMIP, SNMP, as well as CORBA
interactions can be accomplished by light and efficient applications.

Now, more recent approaches like Sun's Java Beans [15J and Microsoft's COM!
DCOM [1OJ extended the scope of component systems. They provide rich lifecycle and
middleware support enabling applications which can completely be built from a dynam­
ically changig set of components. Assuming that appropriate components are available,
the application development can concentrate on the design of the composition, on the
set of components, their coupling and coordination. This task can substantially be
supported by visual application-builder tools ([16J, e.g. Bean Box [17]).

Recently, the Java Dynamic Management Kit (JDMK, cf. [14]) combines the
component-structuring of management systems with the Java Bean component model.
It defines an architectural framework for flexible multiagent management systems
where management components can be pushed to dynamic autonomous agents. It pro­
vides management beans implementing core management services and supports their
interconnection by infrastructure beans. Moreover, generator tools are offered. Since
JDMK is very new, components dealing with special application-oriented management
functions are not yet available.

Our work, like JDMK, also proposes a Java-based framework for flexible, extensible,
and component-structured distributed management systems. In the absence of JDMK,
we based our work directly on the Java Bean platform. We plan, however, to redirect
the future developments in order to meet the JDMK architecture. Presently, there is
a similarity of the architecure induced by our framework to that of JDMK supporting
the mutual integration of components and subsystems.

While the present JDMK supplies only infrastructure and management components
of general interest, our framework has already been applied to a specific management
domain. We developed corresponding specific management components, constructed
appropriate management applications, and gathered experiences from their operation.
As first specific domain, we chose the field of configuration management of telecom­
munication networks where we could dispose of rich experiences and examples of
traditional management system development. Moreover, our framework has a very
important feature. The dynamic and automated configuration at runtime supports
the timely and cost-effectively development. Current component models mostly only
support the configuration at design time, where the elements to be managed are not
accessible and therefore can't determine the detailed structure of the management
application (cf. [2]).

NETWORK CONFIGURATION MANAGEMENT FRAMEWORK 137

So far, we made very convincing experiences. We were able to develop special
purpose management applications very timely and cost-effectively. The applications
operate very efficiently in comparison to traditional applications which were based
on large standard network management consoles. Therefore, we will extend the
framework to the other domains of network management and presently are developing
components for the fault management.

The paper proceeds with short introductions into component-structured software
and into the domain of network configuration management. After the discussion of
the principles of the framework we describe the development, operation, and experi­
ences of relevant example applications. Concluding remarks address the directions of
corresponding future work.

2 COMPONENT-STRUCTURED SOFTWARE

The approach of component-structured software envisages that future applications
shall be composed from cost-effectice components which are supplied by different
developers and are offered to a growing community of customers on an open market
(cf. [18]). By selection, configuration, and customization of components powerful
applications can be built which are tailored to the special needs of single customers.
Their architecture can very flexibly reflect the user requirements and their environ­
ment. The applications are easily extensible and modifiable by dynamic changes of
components and their coupling. Moreover, since applications are built by defining
the communication and coordination of components, the same means can be used to
integrate different applications to cooperating super-applications.

In fact, component structuring has well-known roots. In particular, components
encapsulate internal details and support reuse like classical modules. Components,
however, shall be selected from a multi-vendor market and their interfaces shall com­
fortably support dynamic application configurations. Therefore components mostly
will be of a size which justifies the additional efforts of commercialization and of
dynamic integration mechanisms. With respect to this, [19] uses the notion megamod­
ule and consequently calls the definition of the composition megaprogramming. In
more detail, [18] characterizes components as units of composition which provide for
contractually specified interfaces and have explicit context dependencies only. They
have to be independently deployable and composable by third parties.

Meanwhile a series of platforms supports components. Most prominent are Java
Beans [15]. The COMIDCOM approach is well-established in PC-based environ­
ments [10]. Moreover, the CORBA initiative is extending its approach to the compre­
hensive support of component structures (cf. [12]). The platforms typically provide
notions for the description of component types, parameter types, and interfaces. They
supply rich runtime support for the coupling of components and, in particular, enable
introspection, the exploration of components, their interfaces, and their properties at
runtime. Additional interest is given to the comfortable construction of applications
by scripting languages or visual application builder tools.

Component notion and platform support alone are not sufficient to guarantee the
benefits of the component approach. Additionally, component frameworks are im-

138 FRAMEWORKS AND TOOLS

portant. They comprise a set of rules governing the architecture of applications by
defining the component types, interface mechanisms, and collaboration models to be
used [8]. Frameworks moreover can supply infrastructure components and tools which
actively support the construction of rule-conformant applications. Additionally, they
provide appropriate collections of domain-specific components.

In connection with frameworks, component-structuring is a very effective means
for the productive develoment of flexible applications. Additionally, present research
aims to the systematic achievement of a whole spectrum of system-wide properties like
reliability, availability, maintainability, manageability, scalability etc. (the so-called
ilities). While some of them can directly be established by means of infrastructure
components (e.g. connector components), for others, the systematic support is still an
open problem [1].

The component framework presented in the sequel concentrates on the following
four Wties which are of major interest for configuration management systems. Scal­
ability and extensibility shall support management systems providing nearly exactly
that functionality a specific user needs. So a secretary uses a small application in
order to configure the voice mail system of a PBX, while a service technician needs
a more complex application when configuring switching units. The reliability of the
communication infrastructure is essential for the customers and depends strongly on
the reliability of the management system. Finally, small footprints of management
applications are of importance. Not only with respect to small mobile computing
equipment (e.g., used by a service technician in the field) but also with respect to the
general load comfortable management systems enjoin to the managed system, low
resource consumptions and reduced runtime requirements are of interest.

3 CONFIGURATION MANAGEMENT

"Network management is the act of initializing, monitoring and modifying the op­
eration of the primary (Le. user supporting) network functions" [13]. 1S0/0SI [6]
identifies five management functional areas (MFAs) of network management in their
"FCAPS"-model: Fault Management, Configuration Management, Accounting, Per­
formance Management, and Security Management. As you cannot accurately manage
something without having to know about it and having to be able to modify its con­
figuration, configuration management is the important foundation of all management
activities.

The main functions of configuration management are

• to identify and document functional and physical characteristics of the managed
system,

• to identify, perform and document any changes to these characteristics,

• to record and report about changes and configurations.

Thus, the configuration management not only resembles a passive asset management,
but also includes active elements like dynamic update of configurations.

NETWORK CONFIGURATION MANAGEMENT FRAMEWORK 139

The gross architectures of management systems are distributed and at least contain
agents and managers. Agents are located on or colocated to the managed system, mon­
itor it, perform management operations on it, as well as send messages on predefined
situations to the manager. The manager (or nowadays a cascading manager hierarchy)
receives these trap messages, queries agents, and initiates management operations on
the agents [9].

For configuration management systems, several architectural design aspects are of
utmost importance (besides of security and performance requirements):

• as they depend on a close interaction with management, technical and service
personnel, effective user interfaces are mandatory.

• as these interaction often are made with mobile personnel, the user interfaces
should be separated from other parts of the system.

• as they often include essential administrative data, a robust and safe database
integration is needed.

• as they have to cope with evolving managed infrastructure, the system have to
be open, extensible and flexible to support the easy and smooth handling of new
management use cases (Le. processes) and their support by appropriate system
elements.

• as they manage an evolving infrastructure, they should be scalable. This includes
introduction of management hierarchies and domains, which have to reflect itself
in architecture and different faces of the system to different users. This also
includes a scalability in underlying database performance.

• affordability should be supported by a low footprint of the system, e.g. system
elements should be loaded only on need.

The configuration management of telecommunication system networks is a typical
example. Digital private branch exchanges (PBX) can be used to build up corporate
networks and facilitate optional services like voice mail or fax server. The configuration
deals with physical and logical structures: the physical structure reflects a hierarchical
contains-relationship with systems, cabinets, frames and boards. The logical structure
reflects two blocks: the switching unit and the additional servers. The switching unit
resembles the control and line trunk groups, which itself are build from line trunk units.
The servers comprises administration and data, voice mail, call charge, text, and fax
servers. PBX also can be connected to larger networks. As usual for nowadays PBX,
the proprietary management is extended by an SNMP-interface which facilitates the
query of system characteristics as well as the definition of SNMP alerts.

4 THE COMPONENT FRAMEWORK
According to the definition in [18], a component framework is a set of rules and
interfaces that build up an infrastructure to hold software components and support their
interaction. Those software components are working together to build an application

140 FRAMEWORKS AND TOOLS

Figure 1. Component sets.

that fulfills the user requirements. The requirements of our target domain, i.e. of
network management systems have been elaborated on in section 3. Moreover, the
component framework should be designed specially to address scalability, extensibility,
reliability, and small footprints as explained in Sect. 2.

First of all, to build a management application, tailored to meet the individual
customer requirements, the framework must support the modification, removal or
adding of components on all functional areas of the management system. By doing so,
it is possible to influence all parts of it, rather than only a few (the GUI, for example).
We classified two sets of components for a management system: base components and
application specific components (see Fig. 1).

The base components implement commonly used functions for a management
system like displaying network topologies or collecting events. Components that
provide communication services for different management protocols belong also to
this set.

Application specific components implement the logic for managing real resources
like TCP/IP nodes or PBX systems. Typically, they do not build up an application on
their own, but are embedded into (or reside on top of) some base components using
their general services.

Managed Objects Every resource to be managed by the system is represented by
a managed object. Similar to the definition in ISO/OSI [6], a managed object is
an abstraction of an existing physical or logical element like a telephone, a network
device or an user account. Each managed object of the system is represented by a
managed object frame (MOFrame), which is a software component to encapsulate the
implementation details of the management functionality for a resource. A managed
object frame is a container for so called plug in components. Those Pluglns implement
the required functionality for the management of the different types of resources to be
managed by the system. A MOFrame with I-n PlugIns builds a managed object.

NETWORK CONFIGURATION MANAGEMENT FRAMEWORK 141

The developer who wants to extend the system has to develop new Pluglns and can
focus his/her work on the tasks to implement resource-specific functions, rather than
to deal with the component framework. The framework is hidden by the MOFrame.
On the other side, from the view of the framework, the MOFrame encapsulates the
Pluglns, so the framework only has to know how to handle MOFrames without a
knowledge about the resource to be managed.

Fig. 2 shows the internal structure of a MOFrame. It consists of two major parts:
Plugln administration and action administration. The Plugln administration deals with
connecting plug in components and providing general services for the Pluglns, like
accessing an SNMP component, for example. The action administration allows the
Plugln developer to define actions (or operations) to be executed on the Plugln. Actions
are specialized method calls, handled by the action administration. Each time a Plugln
is plugged into a MOFrame, it is analyzed by the action administration (by means
of the Java Core Reflection API based on a list of agreed method signature naming
patterns). If there are some actions defined on it, they will be made accessible using
the MOFrame's action interface.

Plugln interface

connect() MOFrame

action administralion

ObjectActionlnvoker

moActionA

: .. . ~~1.~
.. ~

:.: moActionB

p

I

t

1

core
reflection

Plugln administration

u g I

--" moActionC

moActiOnD -

moActionE

n S

action interface
dOAction()
getMOActions ()

Figure 2. MOFrame's internal structure.

Services In a management system, there are many general services like performing
SNMP operations or recording events. According to the requirements mentioned
earlier, such services should be implemented as components. To reduce the needs of
system resources, instances of those components should be shared. This means, for
example, that all components of an application that need SNMP services at the same
site share a single local instance of a component providing the services.

142 FRAMEWORKS AND TOOLS

service­
addServiceProvider () Manager

"A" : "B" "CO

'.

getServiceByName ("B") service
Data
Listener

service­
'------I Provider

"A"

Service­
'-- Provider

"B", "CO

: "A" : : "B" : . .
ServiceModul

D instantiated object - method call

- -... event communication

not-instantiated object
.•..• ~ object reference

Figure 3. The Services Infrastructure.

The component framework supports instance sharing by an infrastructure for dy­
namic registration, de-registration and request of service-providing components. Our
solution is oriented at the CORBA notion of service trading [11], but provides a re­
stricted, resource saving, and efficient component-based implementation (cf. also [2]).

This is achieved by four different types of components:

• ServiceManager: The service manager's task is the administration of all services
in a system/application. It provides mechanisms to register, de-register and
request services. It also maintains a directory of services that can be queried
by other components. Only one instance of the ServiceManager can exist per
application (singleton).

• ServiceProvider: Components of this type offer I-n services to the system.
They register their services at the ServiceManager. Each time a specific ser­
vice is requested, the ServiceManager delegates the request to the responsible
ServiceProvider.

• ServiceModule: The ServiceModule implements a specific service. Service­
Modules are managed by ServiceProviders. If a service is requested, the request­
ing component will be automatically connected to a matching ServiceModule
by its corresponding ServiceProvider.

NETWORK CONFIGURATION MANAGEMENT FRAMEWORK 143

• ServiceDataListener: Every component that wants to use a service has to im­
plement this interface. It defines the required functionality for connecting to a
ServiceModule.

Figure 3 shows the interaction of the participating components.
An important feature of the framework is the mechanism to connect ServiceModules

and ServiceDataListeners automatically at run- or designtime. Automatic connections
at design time are useful in visual application builder tools. The application designer
just "drops" a component into the design, and it automatically "snaps" into the right
position, that means, connects itself with the required ServiceModules. Automatic
connections at runtime are useful in situations where a connection is required only for
a limited period of time when a component is only temporarily used.

GUI component>

app. I app. 2 app. 3

structure c mponems

I

i I servICe 'co' .. neniS ! !
I

i
I

manually connected

automatically connected

Plugln component

misc. application specific
component

Figure 4. Component Layers.

All ServiceModules are designed to be used standalone (without ServiceManager
and ServiceProvider) in small applications, or as part of the services infrastructure in
larger applications. This improves the flexibility of the application design. Figure 4
shows three examples of applications with different complexity. The figure shows
also the four functional layers of the system.The simplest application (left side) only
uses components of two layers: A aUI component and a ServiceModule. The two
components are connected manually by the user. The next application (in the mid-

144 FRAMEWORKS AND TOOLS

dIe) is more complex. It uses an application specific component which is, in this
case, a "SnapIn-component". It automatically connects to the ServiceModule "SNMP
Service" by using the ServiceManager, which is not shown in the picture. The last
application (right side) is the most complex. It contains a managed object, build up
by a MOFrame and two PlugIns. The GUI component, the MOFrame and the PlugIns
are connected manually by the user, but the PlugIns connect to the SNMP Service
automatically.

The three examples show the advantage of optionally automatic connections. The
user (application builder) can use each component standalone and establish all the
connections manually. Then he has full control over the design process. On the other

.......................
: MOFrame

: GrapherAdapter

.......................
: EventViewer

: ListViewer

: TopologyViewer

: PbxSystemlnfo

: PbxBasePlugln

: PbxHardwarelnfo

: PbxHardwarePlugln

PbxTopologylnfo

PbxTopologyPlugln

PbxNetworkDiscovery:

: Del>ugSUpport

: EventService

: Ob;JeatRepos.:itory

: SnmpTrapService

: Serv1aeJIaDager

: SnmpGuard

: SnmpSampler

: /JzJJIIpServJ.ce . .
~ Smqp2'ra,pD.:lspatcb:er ~

:.~z:r!1P:::~1?~~~~:t;y~::.e: ...

11
tn

.::
'" ~

Q

s

s

s

s

Q

Q

Q

.-• w
&

w w
tn '" c '" '" .-
-" 8 ~ W .- u
~

"E 0.
0
~ w

'" til

Q

s

Q

Q

Q

Q Q

s

s

s
s

s

Figure 5.

w . c
0 ...
0. .1J .
w

~ '" '" B "~ ..,
W .-
u u

"E
w

§ w
til U

s

s
s

s Q

s Q

s Q

s

Q

Q

Q

Q

Q

~
8 .-
"~ ..,

s
s

Q

Q

Q

Q

structure components

GUJ components

application specific
components

service components

Q event source

S event target

Name dynamic component

Name static component

Event Sources and Targets.

hand, if he/she uses components which require some specific services to work, they
connect automatically without further user interaction.

NETWORK CONFIGURATION MANAGEMENT FRAMEWORK 145

All component interaction is performed by sending and receiving events, according
to the JavaBeans specification. The framework defines a few event types and sourc~
and targets for events. Fig. 5 shows all components of the system, and all system
specific events a component sends or receives. There are some components in the
table printed boldface. These components are static and they are accessed by an API.
They do not communicate by events, because they are only used internally. The user
does not connect them with any component. In the described form, the framework
was developed with an effort of one person year. Based on the existing framework,
applications like the following example could be developed within two days.

5 EXAMPLE

This chapter briefly describes an example application, build entirely out of software
components of this study. The builder tool used to create the application in this example
is the BeanBox of the Beans Development Kit (BDK), version 1.0 from March 1998.

The application should have the following features:

• Automatically discover a telecommunication network consisting of PBX's of
the same type (in this example, a family of PBX's from a major german vendor)

• Display the discovered network graphically

• Allow the user to access textual information about the actual hardware- and
network-configuration of each PBX

We developed application specific software components for the management of
the PBX system in this example. As mentioned in the last section, each resource
to be managed by the system has to be represented by a managed object, which is
implemented by a MOFrame and one or more plug in components. So the resource­
specific management functions for a PBX of this type are implemented by three
PlugIns:

• PbxSystemPlugIn: This PlugIn deals with the general identification and config­
uration data for a PBX. Every MOFrame must contain exactly one PbxSystem­
PlugIn to assign it to a real PBX.

• PbxHardwarePlugIn: This PlugIn acquires information about the hardware con­
figuration of a PBX.

• PbxTopologyPlugIn: This PlugIn handles the network configuration of a PBX
(gathers information about configured Trunks and TrunkGroups, for example).

For the family ofPBXs in this example, an SNMP proxy agent exists which delivers
information about all connected systems, so all information can be acquired using
SNMP. Because all PlugIns of all managed objects need access to SNMP, we use the
components ServiceManager and SnmpService to let the PlugIns connect themselves
automatically to the required SNMP ServiceModules.

146 FRAMEWORKS AND TOOLS

The discovery of the telecommunication network is done by the componentPbxNet­
workDiscovery, which is an example for an application specific component other than
a PlugIn. PbxNetworkDiscovery queries an SNMP proxy agent and generates a
MOFrame with the desired PlugIns automatically for each PBX found. This compo­
nent also accesses the SNMP services via the ServiceManager. All generated managed
objects are stored at another software component, the ObjectRepository.

Last, we need some GUI components to create the interface. The component
TopologyViewer can be used to show the network elements discovered by PbxNet­
workDiscovery. We also connect a button to this component to trigger the discovery
process. Fig. 6 shows all components of the design and how they have to be connected
by the user (application designer). Each arrow represents a connection between an
event source and an event target. The name of the event and the target's method to be
invoked are shown next to each arrow.

I AddPlugln

I. TopologyViewer -'

propertyChange ()

PropertyChange

I PbxNetworkDiscovery l.....a.tartDiscOVery ()

addMOFrame I)

AddPlugln Action

I PbxTopologyPlugln I 'pbxHardwarePlugln I I Button I
Label: Discover

+ serviceResponse (): .. serviceResponse (): + serviceResponse ()

I -----------r-r-L----------r---
I ServiceDataRequest I SeIIViceDataRequest Serv!ceDataRequest
I I I
,_ - - - - - - - - - - - ___ 1- _1 _____________ I

serviceRequest () I ServiceDataResponse

'I O-bJ-' e-c-tR-e-po-s-i t-o-ry--' 'I -se-r-V1-' c-eM-a-na-g-er---'

Figure 6. Components and Connections of the Example Application.

There are many components and connections that are created at runtime that are
not displayed in the figure. During the discovery process, for each PBX and each
trunk group (connection between two PBX systems) a MOFrame and some PlugIns
are generated and connected to the TopologyViewer. Additionally, each time the user
invokes some actions on a managed object to get some information about a PBX, a mini­
application is created "on the fly" to acquire and display the data on the screen. This
also results in dynamically created and connected software components. In detail, the
following components are created at runtime: MOFrame (N), PbxSystemPlugIn (N),
PbxHardwarePlugIn (N), PbxTopologyPlugIn (N), ListViewer (X), PbxSystemInfo
(X), PbxHardwareInfo (X), PbxTopologyInfo (X), where N stands for the number
of the discovered network elements, and X depends on the user's behavior, because

NETWORK CONFIGURATION MANAGEMENT FRAMEWORK 147

the components ListViewer and PBX*Info are created and connected to display some
information on demand.

. - . -

T, ... t:erWIh .',
" ') .•..

• '"' . .. flNff .co. ...
) '"

, .. \L.II4::,,~

• ... , Ie l ."~ • • ,
" ... Nft.r.::t ,,-, - ~ lIor

> > ,
" "h'1I . 1 .-) 1N-4r , , ,
" .. ~.r.":..Q .. , , I W.AQ 10..,.., , , ,
" ~." . ., .~ · . ,
"a,..l""" _ , , , ~.r:I~ , ... , u .-..ti."' . .a..-. , · , I a ~,

Figure 7. The TopologyViewer.

Figure 7 shows the TopologyViewer after the discovery of a network consisting of
six PBX systems and a window showing some information about trunk groups. This
window consists of the software components ListViewer and PbxTopologyInfo and
was generated "on the fly" by the managed object of the corresponding PBX.

6 CONCLUDING REMARKS

We developed a component framework for the configuration management of networks
and applied it in order to design, construct, and operate a series of special-purpose
management applications. We experienced, that component-orientation is generally
well-suited for the development of scalable, easily extensible and resource saving
management applications. The flexibility, however, depends on the availability of
rich component collections which not yet exist. Therefore, up to now, traditional
management platforms support a broader spectrum of management functions. The
framework itself is also extensible. Presently, fault management components were
integrated while no extensions of the existing component interaction mechanisms and
infrastructure components were necessary. Thus, we plan the integration of further
component collections in order to enhance range and flexibility of the approach.

References

[1] AGHA, G ., Compositional Development from Reusable Components Requires Connec­
tors for Managing Both Protocols and Resources. Workshop on Compositional Software
Architectures. Monterey, California, January 1998

[2] BEN-SHAUL, I., GISH, J.W., ROBINSON, W ., An Integrated Network Component
Architecture. IEEE Software, Sep/Oct 1998.

148 FRAMEWORKS AND TOOLS

[3] CASE, J.D., FEDOR, M., SCHOFFSTALL, M.L., DAVIN, C., Simple Network Man­
agement Protocol (SNMP). May 1990. (Status as of this writing: Standard)

[4] DERI, L., A Component-based Architecture for Open, Independently Extensible Dis­
tributed Systems. PhD Thesis. University of Berne, Switzerland, Jun 1997.

[5] EUROPEAN COMMISSION, 1999lSTWorkprogramme, Draft, Brusselles, Sep 1998.
[6] ISO. Information Processing Systems - Open Systems Interconnection - Systems Manage­

ment Overview. ISO 10040. Genf, 1992.
[7] ISO/IEC, ITU. Information Technology - OSI, Common Management Information Pro­

tocol (CMIP) - Part 1: Specification. ISO/IEC 9596-1, ITU Recommendation X.711,
1991.

[8] JOHNSON, R.E., Frameworks = (Components + Patterns). CACM 40(10)39-42. Oct
1997.

[9] KAHANI, M., BEADLE, H.W.P.,DecentralizedApproaches for Network Management.
ACM Computer Communications Review. Ju11997.

[10] MICROSOFT. The Microsoft COM Technologies. http://www.microsoft.com/
com/comPapers.asp, 1998.

[11] OBJECT MANAGEMENT GROUP. CORBA Trader Specification. Document orbos-96-
05-06, May 1997.

[12] OBJECT MANAGEMENT GROUP. CORBA Component Model Request for Proposals.
June 1997 (Status: revised submissions received Nov, 1998).

[13] PRAS, A., Network Management Architectures. Centre for Telematics and Information
Technology, D-thesis series No. 95-02, EnschedelNL, 1995

[14] SUN MICROSYSTEMS. Java Dynamic Management Kit. http://www.sun.com/
software/java-dynamic/, 1998.

[15] SUN MICROSYSTEMS. Java Beans Specification. http://java.sun.com/
beansldocslspec.html, 1998

[16] SUN MICROSYSTEMS. Visual Application-Builder Tools Overview. http://java.sun.com/
beansltools.html, 1998

[17] SUN MICROSYSTEMS. Java Beans Development Kit (BDK). http://java.sun.com/
beanslsoftware/index.html, Ju11998.

[18] SZYPERSKI, C., Component Software. Addison Wesley Longman, 1998.
[19] WIEDERHOLD, C., WEGNER, P., CERI S., Toward Megaprogramrning. CACM

35(11)89-99, 1992

Biographies

Michael Wimmers is software and systems engineer in the network- and systems management
department, as well as in the Authorized Java Center of Dr. Materna GmbH, an European
500-person IT-consulting, integration and software development company.

Arnulf Mester is research associate and teaching assistent with the department of computer
science of Dortmund University and scientific consultant with Dr. Materna GmbH.

Heiko Krumm is full professor for distributed systems and computer networks in the department
of computer science of Dortmund University.

