
6 SECURITY POLICIES IN
REPLICATED AND AUTONOMOUS

DATABASES
Ehud Gudes and Martin S. Olivier

Abstract: Autonomous object databases are becoming important in the In­
ternet world of today and involve integrat ion of severa! local databases. Such
databases.support local access for transactions and queries and loca! control
over authorization of classes and objects. At the same time, these database ob­
jects are of ten replicated in various sites and are available for access by global
queries and transactions. Such global access, which may involve a global query
optimizer, is required to handle conflicts between the local authorizations of
replicated objects, but give consistent results regardless of site dependent opti­
mizations.

The paper uses previous models for object-based authorization, and extends
them with policies to handle conflicts between local and global authorizations.
It also discusses object migration and security administration. The problem of
providing autonomy in a consistent way is discussed extensively.

6.1 INTRODUCTION

Autonomy is an important concept in today's fragmented but connected world.
Organizations that support databases on the Web, of ten require autonomy in
local access of their local data and in controlling access to it; at the same
time they want to provide access to their data objects (or to copies of their
objects) to a community of external users who may access them through a
global system or a distributed query interface. In this environment conflicts
may occur when different sites or security administrators place different access

S. Jajodia (ed.), Database Security XII
© Springer Science+Business Media New York 1999

94 DATABASE SECURITY XII

restrictions on such replicated data objects. The policies and algorithms to
handle such conflicts in a consistent way, is the topic of this paper.

In principle, most of the ideas presented in this paper, hold in both relational
and object-oriented database environments. However, since object databases
seem to be more dynamic in nature and more local in character, we feeI that
the object database model is a more appropriate context to investigate this
question. In this paper we will rely on some of our previous work on authoriza­
tion in object-oriented (00) databases such as [1]. In that paper the question
of query modification in 00 databases in the presence of authorization rules
was investigated, and, in particular, the relationship between inheritance and
authorization was discussed. An access evaluation algorithm was presented,
and an administration model and policies were discussed. In particular, the
inheritance policies of Negative vs. Positive, and Implicit vs. Explicit were
handled. These ideas were generalized for Methods in [2]. The main idea we
need from [1] is the policy to evaluate the access rights on an object, giving
several authorization rules on objects (classes) above or below its inheritance
hierarchy. In most of the paper we discuss hierarchies along one dimension -
the inheritance sub-class/super-class hierarchy. Other hierarchies are discussed
briefly at the end of the paper.

When an object database is distributed, it is often the case that its schema
is also distributed and therefore its authorization information is distributed
as well. Furthermore, it is common that different sites may have their own
security rules and their local security administrator (SA) to define them. We
know of three models that address the issue of security policies in autonomous
databases. Argos [4] assumes a global policy which must be consistent with the
local DBMS policies and is enforced as such. (The Argos policy is as follows:
if global denies then deny, else if global permits then select one local DBMSj
if permitted by the LDBMS fine, else try to grant itj if grant successful fine,
else deny.) DOK [11] accepts the local policies and tries to integrate them
into a global one. DOK, however, does not consider alI the different cases as
they are described in this paper. SPO [8] assumes that the owning site has the
final say in how its data is accessed - the local policy is therefore paramount,
with a relatively small federal policy adhered to by all sites. The current work
differs from the others because it assumes a shared global (ar federal) schema
(even though the schema may only exist in partial forms at the various sites
and be integrated by a query optimizer as and when required) and, because of
local autonomy, conflict ing access rules may be specified (or implied) for the
same class at different sites. Note specifically that we assume that there may be
multiple administrators where each is issuing her own authorization rules on the
local copy of the database. As an example, consider a number of libraries with
on-line reference material in their databases. These libraries have established
a federated database to increase the available information to their members.
Each library maintains an autonomous site. When a document is to be retrieved
from this federated database, the optimizer may, in general, use criteria such
as proximity, link availability and link speed to select the optimal sources from

SECURITY POLICIES IN REPLICATED AND AUTONOMOUS DATABASES 95

which to retrieve requested information. Access restrictions may, however,
influence the selection of sources. The licence agreement that a particular
library has with the supplier of a particular document, may restrict use of
that document to members of the specific library. If a global user can get
access to the document at another library the access should be permitted to the
document at that library - access is only restricted at this library. Similarly,
a library may find that the requirements of a particular user is excessively high
and prohibit that user from accessing the informat ion at its site; again accesses
at other sites are, in principle, stiU permitted.

It is also possible to envisage another scenario, where library members pay a
subscription fee to access specific information. In this case, when a member has
not subscribed to some document, access to that document should be prevented
at alI sites. The paper wiU address these alternative cases systematicalIy.

AIso note that it is, in principle, possible to replicate information from one
library at other libraries. Similarly, information may be moved from one site
to another site. This may be done for efficiency or various other reasons.

Suppose now that a global query enters the system and the optimizer must
decide where to get the data from. We want the retrieved results to be consis­
tent regardless of the optimizer decisions! This means that we have to integrate
the various authorization states of the various local databases before the op­
timization. This integration is not trivial and raises several policy issues such
as: 1) Conflicts between implicit vs. explicit, and negative vs. positive rules
in the different sites; and 2) how the decisions will be influenced by whether
we have equal authority administrators vs. a 'master administrator' and 'local
administrators' One possible solution is to provide several types of authoriza­
tion rules, such as authorization rules only allowing or denying access to local
copies of an object compared to authorization rules allowing or denying access
to an copies of an object.

The existence of various authorization rules require consistent policies to
handle conflicts between them. These policies are the main subject of this
paper, and they are discussed in general in the next section, and in detail in a
later section. Once the policy decisions are made, the algorithms to integrate
two (or more) sets of authorization rules are straightforward, and they are
discussed briefly in the section on algorithms. The problem of copying and
migrating objects in this environment is subsequently discussed. Finally we
briefly discuss a few other issues, including other hierarchies (granularities),
security administration and information flow.

6.2 POLlCY ISSUES

6.2.1 The model

First we present the model and its assumptions. The model we use is depicted
in figure 6.1. We have an object-oriented database distributed over several
sites. Each site has its own schema of classes, attributes and authorization
rules. Each site has its own security administrator (SA). Sites maintain local

96 DATABASE SECURITY XII

I Global Query II-------l .. -I Optimizer f--------Jo .. ~1 Global DBMS
Run-time

Figure 6.1 The Model for Global Queries and Autonomous Authorization Schemas

autonomy in that they expect aU local queries and transactions to obey the lo­
cal authorization rules. Schema parts and objects may be replicated in several
sites. Global queries or transactions first enter a global optimizer which accu­
mulates aU authorization information and physical information and decides on
the actual sites from where data will be fetched. Evaluation of authorization
in a single site is done by the algorithm presented in [1] and its result is the
authorization tree (AT) - the set of attributes and classes to which access is
aUowed.

Next we state our assumptions on the database and the authorization rules.
We assume an inheritance-based object-oriented database, with the policies
specified in [1]. In that paper we mainly discussed the class-generalization hier­
archy, and assumed mostly that aU rules are defined on classes and sub-classes.
Similar rules may be used for the granularity hierarchy (i.e. class/attribute
or class/object). To simplify matters they will be discussed separately later.
The same will hold for rules which define predicates, i.e granules defined by
predicates (see [6]). Also, in most of the paper we as sume that authorization
rules are defined on classes and attributes and not on individual objects (they
are discussed later), but we often will use the concepts of classes and objects
interchangeably.

Assigning access rights to a class has multiple possible interpretations [7].
In this paper we assume that a class is merely labeUed to control access to
instances of the class. In particular do we assume that access rights may be
added or revoked at any level of the class hierarchy and are inherited from a level

SECURITY POLICIES IN REPLICATEO ANO AUTONOMOUS OATABASES 97

where they are defined down to - but not including - the level where they
are modified. (Note that this interpretation presents another valid alternative
to those discussed in [7] because axiom 4 of [7] does not apply here.)

We assume that in each site (or set of sites) there is a hierarchy of object­
classes with its own security administrator who can specify authorization rules.
The schemas in two different sites may not be the same, although we assume for
simplicity that one schema extends the other (up or down), but if two classes
appear in both schemas, then the path between them also appears in both
schemas.

As stated above, we assume complete autonomy on behalf of the administra­
tors of the autonomous objects (actually, autonomous object hierarchy), The
securityadministrators (SAs) act independently and specify various authoriza­
tion rules on the objects. The problem is the combination of these rules, since
we assume sharing of some (large) parts of the schema.

6.2.2 The policies

Now we state several of the principles we want this autonomous system to obey:

PI) When a local security administrator makes a decision about her local data,
such as denying local access to person P, she should not be concerned that
person P can get that access from some other site. On the other-hand, the
run-time should be consistent: if the optimizer decides to access the data
from her site, it should not get that access! Therefore, we should always
guide the optimizer where to get the data from (i.e pass the positive access
site information).l

P2) When a security administrator has the right to define authorization rules
which may apply to more than one site, we expect the system to follow
through and apply them correctly.

P3) One never gets more access by accessing only a local site than by issuing
a global query! This means that by issuing a global query we can only
get more data permitted - not less than accessing the local site only
(e.g by a local query or application). This will considerably influence the
policy decisions below. We call this last policy the principle of maximum
access.2

The application of the policies above depends on the type of organization
one has. We distinguish between two different types of organizations:

1 As a corollary of Pl, if a global access rule restricts local access, it may be inconvenient
for the local system to consult other sites for local access. Therefore, for performance and
reliability reasons such a restrictive rule should be propagated to ali local sites. See also the
section on Administmtion iSBues.
20ne positive result of this principle is that when a site fails, one never gets more access than
without that failure.

98 DATABASE SECURITY XII

1. EQUAL (EQ) - all sites are equal, each SA has the same power.
2. Master-Slave (MS) - The master's SA has more power than the slaves'

SAs. We do not precisely define the exact 'division' of poweri some pos­
sibilities are discussed below.

All access rules may be

1. lntended globallYi or
2. A distinction may be made between global and local rules:

(a) Local - rules (positive or negative) which apply to the local site
only, called below P L or N L (positive or negative locan.

(b) Global- Rules which apply in all relevant sites, called below PG
or NG (positive or negative globan.

Usually, all four combinations of organizations and rules types are possible,
although some restrictions may apply in some cases. Next we detail how the
access evaluation is done in each of the above cases, while enforcing the general
policies outlined above.

6.3 ACCESS RULES - DETAILED POLICIES

Suppose that some subject s wants to access some object of class X. Let A(X)
be the set of access values that have been specified for s in the concerned mode
m (such as reading, writing, etc). Denote each such access rule by af, where i
indicates the site where the rule has been specified and d indicates the distance
in the lattice (or class hierarchy) from X to the (higher) class where the rule
has been specified. If the rule has been explicitly specified for X, then d = 0,
etc.

Each a is P or N, indicating a positive rule (allowing access) or a negative
rule (denying access), respectively. If local policies are supported, a may be
PG or P L - for a global or local positive access specification to X - or NG
or N L - for a negative global or local access specification to X, respectively.

It is assumed that every access rule is propagated from the class where it
is specified, to all classes lower in the lattice (with d incremented for every
level that the rule is propagated down). At any given class a variety of rules
therefore exist that need to be combined to determine the effective rule to be
used. The following two principles are usually used when combining such rules
(same as in [1]):

1. The shorter the distance that a rule has been propagated, the more spe­
cific it is considered to bei rules propagated over a shorter distance there­
fore take precedence over rules that have been propagated over a longer
distance; and

2. If rules propagated over an equal distance conflict, access is denied.

Let laf,ajJ be the access value (af ar aj) propagated the shorter distance:

laf,ajJ = ifd<ethenaf

SECURITY POLICIES IN REPLICATED AND AUTONOMOUS DATABASES 99

if d> e then aj
if d = e then

if i ~ j then at
else aj

When d = e either of the two values may in fact be used - they have been
propagated an equal distance. For formal manipulation, we find it useful to
select a unique value in this case - hence the last three lines of the definition.
Note that, where d = e one authorization may in principle be negative while
another may be positive; however this situation will not occur where we use
this operation below.

To express these two principles formally, the function min is defined to
determine the effective access rule when considering two explicit or propagated
access rules:

. (d e)
m~n ai ,aj if d =1- e then lat, ajJ

if d = e then
if at = N then Nl
else if ai = N then NJ
else pl

The conditional expres sion il a~ = N (without superscripts or subscripts
folIowing N) means if a~ is equal to any N (negative) value. Whenever super­
scripts or subscripts are omitted in such a conditional expression, it should be
interpreted in this way.

If local policies are supported, the shortest distance principle does not nec­
essarily apply: If a site denies subject s local access to some subtree for which
global access has been granted higher in the lattice, the local denial should not
override the global positive authorization - as long as there is some site that
contains the subtree where a negative rule has not been specified. The same
occurs when two local rules are combined, if none is more specific than the
other, then the positive rule wins, unless both rules are in the same site. To
determine the effective access rule, where the two constituent rules are both
local rules:

local(at, ai) if (i = j) V (at = N L 1\ aj = N L)
V (at = PL 1\ aj = PL) then lat,ajJ

else if at = P L then at
else aj

The combination of a local and a global policy is problematic in one sense:
The global policy will override the local policy, but if alI local policies deny
access, global access has effectively been denied. Consider the folIowing, where
we assume that the first argument is global and the second one local:

globloc(at, ai) if at = NG then at

100 DATABASE SECURITY XII

else if i = j /\ aj = NL then PG'/x,
else a1

The logic behind this definition is that a global rule always takes precedence
over local rules. The only 'exception' occurs if the site that granted a positive
global authorization denies local access to the data: the positive global autho­
rization stiH exists, but no site where it may be accessed by user s may remain.
For that reason, in such a case the combination results in a positive rule where
the site is specified as 00, meaning that no positive site is known (at this stage).

Let +n(a1, ai) combine two access rules a1 and ai· The definit ion of +n is
considered below for the various cases. Consider access rule combination for
read access in the following four cases.

1. EQUAL, no local policies If the two rules are not of the same level,
the more specific rule takes precedence, otherwise the negative rule takes prece­
dence. Therefore, let +1(a1,ai) = min(a1,aj). The logic behind this choice
to combine rules has been discussed when min was defined. That is, when alI
rules are global, the simple 'min' policy which is commonly used in a centralized
database is used.

2. EQUAL, with local policies Ifboth rules are global or at the same site
then this case should be treated similar to the previous case. Otherwise, if there
is a global negative rule, it takes precedence. If no such negative rule exists and
a positive rule does exist, it takes precedence. These are the consequences of
precedence of global rules over local rules and the principle of maximum access.

= if i = j V (ar = global/\ aj = global) then min(ar, aj)
else if at = local/\ aj = local then local (at, aj)
else if at = global then globloc(at, aj)
else globloc(aj, ar)

3. Master-slave, without local policies This case should essentially be
handled similar to the case for equals without local policies.

The above case means that there is a distinction between a master and a slave,
but alI rules are in a sense global. A common 'division' of power wiH be that
only Master SAs can define authorization rules. This should not be seen as self
contradicting, since even if we restrict the security administrators to be on the
Master site only, there is stiH the case of two Master sites which is handled by
the above rule.

SECURITY POLICIES IN REPLICATED AND AUTONOMOUS DATABASES 101

4. Master-slave, with local policies Again the Master-slave has an impact
on the administration of security. For example, we may want to restrict that
global rules can only be issued by master administrators, while slave SAs can
only issue local rules. (See also the discussion of administration in below).
However, we may want to restrict that only one site can issue global rules.

This case is therefore handled similar to the case for equals with local policies,
but Master-slave rules are treated similar to Global/local rules:

= if i f. j /\ af = global/\ aj = global then error
else af +2 aj

Note that if both a master and a slave issue local rules, the Master has no
advantage over the slave when combining these rules.

Theorem 1 +n is commutative and associative for each n.

Proof A detailed proof is outside the scope of this paper. Intuitively, one
can argue that in each of the above operators a single selection is done from
a pair (X,Y), where the selection is dependent only on the values of X and Y
and not on their order. Thus commutativity is trivial. Associativity is assured
by the transitivity of the 'selection' process. If X was selected over Y, and Y
was selected over Z, then X will be selected over Z, whether it is first combined
with Y, or whether Y is first combined with Z. O

Since +n is commutative and associative, it is possible to define operators
to combine an arbitrary number of rules. Let Ln do this combination for each
of the four cases. Where n is not significant, it will be omitted.

Because of the operator commutativity and associativity, the order in which
the various access rules will be combined within the access evaluation algorithm,
is immaterial. Likewise, if rules are at different levels of the hierarchy, the order
of their combination is also immaterial. This is specified formally in the next
theorem.

Denote the effective access rule that applies at a class X for subject s by
e(X), then

e(X) = L af
afEA(X)

Denote the fact that Y is immediately above X in the lattice by Y >- X. Let
D(X) be the set of alI the access rules that have been directly specified for X.
The significance of the next theorem is that the effective access rights to some
class X may be computed from its immediate ancestors and its direct access
specifications.

Theorem 2

e(X) = L e(Y) + L af
Y>-X afED(X)

102 DATABASE SECURITY XII

Proof Let >-* be the transitive closure of >-. (The transitive closure includes
the case where the operands are equal; Le. VX,X >-* X.) Then, from the
definition of A(X):

A(X) = a~ •
afED(Y),Y~· x

If X is the root node in the lattice, the theorem foUows trivially.
To use induction, consider some node X which is not the root in the lattice.

Assume that the theorem holds for aU nodes above X in the lattice. Then

L e(Y) + L at = L at + L at = L at
Y~X afED(X) afED(Z),Z~·Y,Y~X afED(X) afED(Y),Y~· x

which proves the theorem. O
The correctness of the algorithms given below, depends on these theorems.

6.4 ALGORITHMS

The algorithm to merge two authorization trees according to the above policies
is quite straightforwardj therefore, only a general outline is given here.

First, we assume that in both trees the rules were propagated to aU nodes
of the trees. Theorem 2 aUows us to do this without considering alI rules
for every node, but only the nodes immediately superior to the node under
consideration. It is therefore possible to propagate rules from the top of the
lattice to the bottom efficiently.

Once this propagation is done separately for each AT, then the merge algo­
rithm scans the two trees in parallel. There may be two cases:

1. The trees have exactly the same structure - for each node combine the
rules according to the policies (see theorem 1).

2. One tree has parts which are not in the other. According to our assump­
tions these can be of three types: Disconnected parts, higher parts, lower
parts.

(a) For disconnected parts just union the authorization rules.
(b) For higher parts union the rules and propagate their results down.
(c) For lower parts, propagate from the shorter tree to the lower parts.

An important result that the algorithm must record and return to the opti­
mizer, is the identification of the site of the 'remaining' rule. This means for
example, that if one site denies local access to an object and another site al­
lows local access, then according to our policy, access will be aUowed. Now one
can argue that the optimizer should be trusted to select the site using physical
optimization decisions unrelated to security. On the other hand one may be
'paranoid' and argue that, for reasons of autonomy, the denying site does not
like to yield that denied access, and would like to leave the 'responsibility' for a
positive access to the other site. In this case the security related site informa­
tion is important, and should be transferred by the algorithm to the optimizer.
Aiso remember that the local access may have been denied for load or other
reasons as described in the introduction.

SECURITY POLICIES IN REPLICATED AND AUTONOMOUS DATABASES 103

6.5 COPYING AND MOVING OBJECTS

The existence of local autonomy systems as discussed above raises interesting
issues with regards to copying or moving objects. Again, we want to maintain
the autonomy of local users to copy local objects, while keeping the security
of the system consistent. Note, that when we talk about copying objects, we
usually mean copy classes and attributes; the special case of object instances is
discussed below. Note also that copying an object (or attribute) may require
copying of its class (and even superclasses). We are not specifying here the
semantics of copy or move operations, but worry mostly about which access
rights should be copied along with these classes.

6.5.1 Copying objects

Copying objects within the same site is handled by local policies and is of
no interest here. When copying objects from one site to a second site, it is
obviously assumed that the copier has read access to the object and create
access in the other site. The main issue is whether or not the authorization
rules in the first site are copied with the object. Below we discuss this issue for
the four cases we described above.

1. EQUAL, no local policies In the EQUAL one option environment case,
the copier may be one of two classes of users:

1. The SA herself, in which case she can grant any access rights she likes
and the copied rights are of no concern.

2. The user himself. Here, we believe the access rules governing this object
should be copied (plus write and delete rights for the user).

Remember that the principle of maximum access restricts queries to the local
site from accessing more information than a global query would. This means
that global restrictions (Negative rules) should always be copied along when
the object is copied.

Another option is not to copy any rights except for the copier's own rights.
This may not achieve the performance results desired for other users, but will
be simpler to implement.

Note that copying should not always be permitted. We do not address policy
issues in this regard in the current paper.

2. EQUAL, with local policies Global rules should be copied as in the
previous case. Whether local rules should be copied may depend on the cir­
cumstances. If a local negative rule is in force at the source site for performance
reasons, load at the destination site may determine its desirability there. If,
on the other hand, a local rule expresses the local site's opinion on whether
a given subject should be allowed to access the information, the rule is better
copied - otherwise copying information may affect the effective access rules
for the object. While a change in effective access rules may be acceptable in
the former case, it will almost always be unacceptable in the latter case.

104 DATABASE SECURITY XII

Since all SAs have the same power, a local SA may change or delete a global
rule without any problems.

3,4. Master-Slave cases These cases are similar to the respective EQUAL
cases. The only difference is that a Slave SA cannot change or delete global
rules.

6.5.2 Moving objects

Because of the inheritance structure, moving an object may cause many prob­
lems, since it also removes the access rules associated with the object which
will impact lower objects access. There are several options:

1. Before moving the object, propagate the access rules below. However,
since the distance that a rule has been propagated inftuences the effective
access rule, this downward propagation may have to consider the existence
of other rules. Alternatively, explicit rules may be given a 'distance'
attribute so that it is possible to have an explicit rule as if it has been
propagated some distance already. We do not consider this aspect further
in the current paper.

2. Allow only SAs to move an object (actually only the SA from the source
site, provided she has a create right on the target site). Then the SA may
manually specify access rules for any objects below the moved object.

3. Allow copying of "root" objects only, and in that case move the entire
schema and access rights associated with that root class.

The rest may be treated as in copy.
However, again for the Master-Slave situation a possible problem exists.

Moving an object from a Master causes a problem if it is required that a Master
should have copies of all objects that it has been designated master for.

6.6 OTHER ISSUES

6.6.1 Other Granularities

So far we have looked at the class hierarchy granularity. The policies for other
granularities seem to be similar. The main exception may be the Classjlnstance
relationship (see also [5]). Generally, it should behave like a typical is-a rela­
tionship; for example, if in a single site there is a rule which denies access to a
class, and another rule which grants access to an instance of a class, the 'shorter'
second rule obviously wins. Even if the rules exist on separate sites the prin­
ciple of maximum access determines the effective access rules. So most of the
policies above apply. One case that may be different is that of a Master-Slave
for instance-based protection. A class-based protection is of ten defined for an
entire schema; this may not be effective when instances may also be protected
individually: Since an instance is a physical object, e.g. a user's bank account,

SECURITY POLICIES IN REPLICATED AND AUTONOMOUS DATABASES 105

there may be a site where that physical object usualIy resides, i.e. a 'home'
site. Now these 'home' sites may be different for different instances! Therefore,
different instances will have different 'masters'. It seems that it makes sense
to define only a single home site per instance, and in that case the policies for
home/no-home can be similar to the Master-Slave policies. The problem, how­
ever, is that generalIy such policies cannot be applied at compile time since, at
compile time, we do not know what specific object will be required (if a query
selects some instance of some identified class).

A similar problem exists for predicate-based access rules, and it was also
pointed out in [6] that such checks are needed. How do we expect to integrate
such checks? Currently, run-time checks are usualIy used by Mandatory systems
or by Information-flow systems [9]. In SQL-based systems, instance-based rules
are usualIy translated into views, and there will be as many views as instance­
based rules. This, seems to be too much overhead in object-based systems,
where instance-based rules may be more common.

What we suggest to do in this case is as folIows: First, a note on the existence
of such a conflict (between class and object) should be known to the optimizer
and the optimi zer should gather alI these types of rules in a packet called the
class-instance packet. The optimizer then can decide on the site from which
to retrieve the instances without regard to this packet, but this packet must
be sent by the run-time query evaluation to the chosen site, and that site
must check the class-instance packet and apply the required policies, before
transferring the results back.

6.6.2 Administration issues

The administrat ion of security in object-oriented databases was discussed in [1].
Several issues were discussed there, including the impact of schema changes on
authorization rules, the delegation and revocation of security contexts, and the
relationship between inheritance and rule maintenance (addition and deletion
ofrules). BasicalIy, alI the policies from [1] can be used also in the autonomous
objects case. One may, though, restrict the operation of some SAs in some
cases. For exampIe, as mentioned in earlier, in a Master-SIave environment
slave SAs should not be allowed to define (or remove) global rules.

A new problem arises when a security administrator (SA) defines a new au­
thorization rule or deletes an authorization rule which affects replicated objects
(classes) in other sites. Our basic assumption that at different sites separate
SAs may add and delete authorization rules still holds, since these rules will be
merged by the access-evaluation algorithm as was discussed earlier. The only
problem is with global negative rules. Whenever a new negative authorization
rule is defined, except for the Local case, it should be propagated to alI sites
with copies of this object. This is essential, since otherwise we could violate
the policy that a local access can never have more rights than a global one!

So the procedure for addition of rules is the folIowing: If it is not a global
negative rule (or a negative Master rule) then add the rule to the local schema,

106 DATABASE SECURITY XII

otherwise propagate the rule to all relevant schemas3 . Similar problems exist
when an authorization rule is removed. A local SA should not be allowed to
remove a global negative negative rule. Such a rule should be removed from all
relevant schemas.

A related issue is which SA can do what? It may be the case that we have
a hierarchy of SAs, where some can only define local rules on local schemas,
others can define or remove global rules. A similar hierarchy can exist between
master and local SAs. We think that such hierarchy can be handled by a simple
role-based model (see [17]).

6.6.3 Information Flow

Information fiow in object-oriented databases was discussed in [9], using a run­
time approach, and in [3] using a compile-time approach. Both approaches can
be extended to include the policies above. Basically, one has to construct the
RACL and WACL lists using the policies above and update them when rules
are added or deleted. Similarly, one has to construct the UAT and CUAT data
structures of [3].

One problem that may arise is the foHowing: Since local access is always more
restrictive than global access, it may be that by local analysis a transaction
may not cause informat ion fiow, while by global analysis it will. This creates a
problem in local transactions since it restricts their freedom considerably, and,
in particular, restricts the fiexibility of local users developing local transactions.
In such an environment it may make sense to propagate aH rules to all sites.
Only then is local fiow analysis guaranteed to be correct. Further research is
needed to see if there is a way around this undesirable propagation.

6.7 SUMMARY

In this paper a model for autonomous objects security was presented. The
main problem in such a model is that each site may have its own security
administrator who maintains its own authorization rules. A local site requires
that local transactions behave consistently with local rules. The question that
arises is what happens to global transactions and queries which may access
copies of the local objects in various sites, and how confiicting authorization
rules are handled. The paper provided a set of policies to handle the various
cases, aH are based on a simple principle, the principle of maximum access:
by globaHy accessing the database you always get at least aH the informat ion
you can get from a local access. Other issues such as object migration, rule
administration and information fiow were also discussed.

In conclusion, autonomy is an important concept in today's distributed but
connected database world. The issue of supporting this autonomy in a consis­
tent and least restrictive way has been discussed in length.

3Since propagation may take time, a two-phase commit protocol may be used to ensure
consistency of the security specifications.

SECURITY POLICIES IN REPLlCATED AND AUTONOMOUS DATABASES 107

References

[1] EB Fernandez, E Gudes, H Song, "A Model for Evaluation and Adminis­
tration ofSecurity in Object-Oriented Databases," IEEE Trans. on Knowl­
edge and Data Engineering, 6, 2, April 1994, 275-292

[2] N Gal-Oz, E Gudes and EB Fernandez, "A Model of Methods Access
Authorization in Object-Oriented Databases," Proc. of the 19th VLDB
Conference, Dublin, Ireland, 1993

[3] M Gendler-Fishman and E Gudes, "Compile-time flow analysis of transac­
tions and methods in object-oriented databases," in TY Lin, S Qian and
R Sandhu (eds), Database Security XI, Status and prospects, Chapman &
HalI, 1997,95-109

[4] D Jonscher and KR Dittrich, "Argos - A Configurable Access Control
System for Interoperable Environments," in DL Spooner, SA Demurjian
and JE Dobson (eds), Database Security IX: Status and Prospects, Chap­
man & HalI, 1996,43-60

[5] W Kim, Introduction to Object-Oriented Databases, MIT Press, 1990

[6] M Larrondo-Petrie, E Gudes, H Song, EB Fernandez, "Security Policies
in object-oriented databases," in DL Spooner and CE Landwehr (eds) ,
Database Security IV: Status and Prospectus, Eisevier Science Publishers,
1990, 257-268

[7] MS Olivier and SH von Solms, "A Taxonomy for Secure Object-oriented
Databases", ACM Transactions on Database Systems, 19, 1 (1994) 3-46

[8] MS Olivier, "Self-protecting Objects in a Secure Federated Database", in
DL Spooner, SA Demurjian and JE Dobson (eds), Database Security IX:
Status and Prospects, Chapman & HaU, 1996,27-42

[9] P Samarati, E Bertino, A Ciampichetti and S Jajodia, "Information Flow
Control in Object-Oriented Systems," IEEE Trans. on Knowledge and
Data Engineering, 9, 4, August 1997, 524-538

[10] R Sandhu, E Coyne, H Feinstein and C Youman, "Role-Based Access Con­
trol Models," IEEE Computer, 29, 2, February 1996

[11] Z Tari and G Fernandez, "Security enforcement in the DOK federated
database system," in P Samarati and R Sandhu (eds), Database Security
X, Status and prospects, Chapman & HalI, 1997,3-42

