
Medical Product Line Architectures
12 years of experience

B.J. Pronk
Philips Medical Systems
P.O. Box 10,000, 5600 DA Best, The Netherlands
bpronk@best.ms.philips.com

Key words: Example architectures, product line architectures, styles and patterns

Abstract: The product line architectures for diagnostic imaging equipment like CT. MRI
and conventional X-Ray have to cope with large variations (in hardware and
application functions) combined with a high level of integration between their
embedded applications. Therefore a primary goal of these architectures is to
avoid monolithic applications while retaining the required integrated
behaviour. Furthermore, an easy and independent variation of the constituting
components is essential. The product line architecture described in this paper
gives one recent example solution to this problem. This example presents a
layered, event-driven, resource-restricted system based on the model-view­
controller pattern. Its technical implementation relies heavily on state of the art
desktop (Windows NTTM) and component techniques (DCOM). For this
architecture, orthogonality and (binary) variation have been the key design
goals. Three views of this architecture-the conceptual, technical, and process
models-are discussed. In all three views the rationale of the chosen concepts
and their relation to the problems indicated above is shown.

1. MEDICAL ARCHITECTURES

Philips Medical Systems is one of the world's leading suppliers of
diagnostic imaging equipment. Its product range includes conventional X­
ray, computed tomography (CT), magnetic resonance imaging (MRI), and
ultrasound (US) equipment. These product families, usually called
modalities, come in many variants of which only small quantities (100-1000)
are being produced, enforcing reuse of development effort and product
family architectures for all of them. In this paper the main issues

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35563-4_35

358 B. J. Pronk

encountered in the architecture development of these product families will
be discussed. For illustration a recent example architecture will be presented.

1.1 Characteristics of medical software environment

The main characteristics of the Philips Medical embedded software
development environment are:
- distributed, multi-processor

real-time embedded and standard desktop environments
large amount of code(> 106 lines of code) per system
large software engineering groups(> 100 FTE's)
software is by far the fastest growing component of all products
long product support, maintenance and extensions (10-15 year)
Long-running projects (2-3 years)
distributed development
small product series (< 1 000/year)
strict quality, legal, and safety requirements

1.2 Architecture overview

From a physical viewpoint most of the products mentioned above are
constructed along the same principles. They are centred around a host
processor, running a desktop operating system, that controls a set of
modality-specific peripheral devices that are needed to generate, process,
and view images. These peripherals are normally large, expensive, and
controlled locally by embedded real-time processors or digital signal
processors. Examples are high-tension amplifiers, patient support mechanics,
RF-coils, etc. The set of peripherals is unique to a single product family,
although many variations of individual peripherals are usually supported
within one product family .

On the host of all modalities, similar software applications linked with
the user workflow can be identified:
- database and patient administration, for entering patient data in the

system
- acquisition, which programs all devices for image generation,
- a viewing application that allows the user to review and process the

acquired images,
- image handling applications that support all further handling of the

information obtained during the examination, such as printing, archiving,
and network communication.
The architecture is outlined in Figure 1.

Medical Product Line Architectures 359

Host processor

Mechanics
Image Image

Generation Processing

Modality peripherals

Figure 1. Medical architecture overview

2. MAIN ARCHITECTURAL ISSUES

The main issues to be addressed by the software architecture of medical
product families can be summarised as:
- Reuse: The need to support many different product family members,

serving a variety of application areas and operating in many different
(hardware) configurations, with one shared code base.

- Independence: Allow parallel, independent, and incremental development
for specific family members.

- Time to market: Allow efficient addition of new functionality for the
various family members in reaction to changing market needs.
In the remainder of this section the main aspects of these problem areas

are explored somewhat further.

Reuse:
Medical products come in many configurations (types of hardware,

software options) serving various market segments and application areas.
Yet within one product family (X-Ray, MRI etc.) a lot of functionality can
be identified that is common to all family members. Because of the long
lifetime, small production numbers, and enormous code base (investments)
of most product families these variations must be handled by the
configuration of a single basic platform.

360 B. J. Prank

Independence:
Often the variations indicated above influence significant properties of

the system (e.g., maximum frame speed), that propagate throughout the
entire architecture. As a consequence of this, current implementations show
cross-dependencies throughout the entire software system. Other symptoms
of these phenomena are multiple definitions and extensive and complex
branches.

Furthermore the current practice of source code reuse introduces heavy
compile-time dependencies between all components. Independent
development and delivery are virtually impossible in this situation.
Furthermore this strong coupling requires extensive testing at every change,
yielding ever-longer test cycles.

The software applications of a medical device present very integrated
behaviour to their users. This is reflected in software dependencies at all
levels (user interface, application and technical level). Examples of these are
the sharing of the current patient and image between applications, the use of
shared (hardware) resources, and the compensation of imperfections of one
device in another one.

Time to market:
Many new features, acquisition techniques, and hardware devices are

added to medical products over the lifetime of the software architecture.
These extensions are often accompanied by extensive growth of coupling in
the system, since the necessary interfaces do not exist in the architecture.
Continuous engineering by an ever-varying population of developers,
forgetting or even unaware of the original architecture, further aggravates
this situation.

Medical devices contain a lot of persistent data: patient and image related
data, system settings, and configuration of the system and its components
and calibration data. Each of these settings depends on the software level of
the components, the actual available hardware, and the configuration and
options available on a system. This strongly coupled set of data imposes a
significant barrier to change. The same goes for exchange of data between
different releases, systems, and off-line tools that introduce many
compatibility problems.

Dedicated solutions and proprietary techniques have been widespread
throughout the professional industry. In view of the advance of modem
desktop operating systems with their myriad applications, productivity tools,
and high innovation rate, this legacy has become one of the sources of a low
rate of innovation in the industry.

Medical Product Line Architectures 361

3. AN EXAMPLE SOLUTION

In this section a recent example of medical product family architecture is
described. In its quest for a solution to the three main architectural issues
introduced in the previous section, the architecture applies the following
principles.
1. avoiding a monolithic design by de-coupling and localisation. Every

component can be replaced in isolation.
2. binary reuse of components, reducing compile time dependencies.
3. use of standard technology and tools for productivity enhancement
4. division of the product family development into a generic (platform) part

and member-specific parts. Addition of specific parts should be possible
in independent parallel activities.
None of the principles stated above is very revolutionary, and of them

only binary reuse of components can be considered to be relatively new,
since enabling technology has recently become widely available (COM,
CORBA). Yet we think that the strict adherence to these principles and the
actual implementation followed has led to a system coping with the main
architecture issues better than any of our previous implementations.

This new product family architecture has been modelled in several views,
which will be described in detail in the remainder of this paper:
- the conceptual architecture view: Describing the solutions and rules as

applied to tackling the main architectural issues of decomposition vs. co­
operation. The actual design of the system employs these solutions. This
view will receive most attention in the discussion in this paper.

- the technical architecture view: This view describes all additional
constructs necessary on top of the conceptual view (e.g., UO classes,
caching mechanisms) to realise the system. It also describes the hardware
(processors, buses etc.) and software (operating system, protocols etc.)
infrastructure and technology choices.

We will also describe the process architecture. However this is not
viewed on the same level as the previous two; in fact within both the
technical and conceptual architecture a process architecture view can be
identified. Within the conceptual architecture this describes the general
approach for handling the required (application) concurrency. Within the
technical architecture it describes the deployment of the elements of the
decomposition into threads, processors, and processes. This latter point will
not be addressed in this paper.

The architecture is thus described by
- a set of rules and concepts,
- a series of technology and infrastructure choices,

362 B. J. Prank

- the decomposition of the solution domain into so-called Units,
- their deployment to the infrastructure, and
- the set of interfaces between them.

As much as possible the rules and concepts are expressed in formal
terms, to allow automatic verification of adherence to them in both the
platform and specific developments.

The presented three models (conceptual, technical, process) closely
resemble three of the views described by Kruchten (Kruchten, 1995). On a
lower level the same views are used in the design of the individual Units that
fit into this architecture. This set of views has been selected since they have
proven to be sufficient input for the designers of these Units to complete
their requirements and designs in relative independence.

3.1 Conceptual architecture

The conceptual architecture of the product family describes the concepts,
rules, and tactics that implement the principles described above. Note that
the conceptual architecture mainly addresses principle 1 (localisation and de­
coupling). Note also that the conceptual architecture is almost independent
of the underlying technology, which is added only at a later stage.

3.1.1 Layering

The product family architecture decomposes the system into a number of
(independent) abstraction layers, from the bottom up, as shown below in
Figure 2.

I User Interface I

I Application I Infra
struc

Hardware abstraction ture
Technical

Layers
Hardware control

I Hardware I
Figure 2. Layered set-up of product family architecture

Medical Product Line Architectures 363

The layers are
- Technical layer, consisting of the following sub layers:

- Hardware: basic digital and analogue hardware and their controllers.

- Hardware control: drivers and real-time control of hardware that
shield the low-level details of the hardware implementation such as
registers, addresses, interrupts, etc.

- Hardware abstraction: an abstraction layer offering a domain-specific
abstraction of the underlying type of hardware (e.g., the X-Ray
generation part in aCT-family).

- Application layer: The actual user functions realised with this equipment.

- User interface layer: The presentation layer, taking care of display and
user interaction.

Next to these three layers there is an infrastructure layer that is used by
all. The three layers and their sub-layers supply a true abstraction, i.e. they
are not transparent to the layers above them. Each of these layers can
therefore be replaced independently of the surrounding layers. This is one of
the major features supporting variation within the product family. Examples
of this are:
- different user interfaces for the members of the family
- various implementations of the geometry part of an X-Ray system
- implementing functions from several application areas on top of the

common (domain) abstraction layer (e.g., a cardiological and a
neurological MRI application)

3.1.2 Conceptual building blocks

Within each layer several independent Units are distinguished, which
should not interact with each other. Therefore each of these Units is as self­
contained as possible. The conceptual building blocks used within the three
layers are:
- Services: The service concept is a main structuring element of the

architecture. A service is a software entity that autonomously executes a
number of tasks for another part of the software, guarding a set of
resources. A service is a completely isolated part of the architecture that
also keeps its own configuration, etc. The technical layer consists of a set
of these services, one for each device. In an X-ray system, for example,
the services are for the generator and detector, and in an MRI system the
services are for the gradient amplifier and the RF coils.
Applications: There are a number of applications such as reviewing,
acquisition, patient, and beam positioning, etc. These applications are
also services offering an interface to the user interface layer. Applications

364 B.J.Pronk

offer a very uniform interface consisting of commands (in fact the use
cases as defined in the functional specifications) and a so-called UI
model that represents all information (data and state) necessary for the
user interface.

- User interfaces: The user interface is completely decoupled from the
applications and interacts with them through the application service
interfaces described above. Throughout the system a model-view­
controller pattern is applied, with the user interface being the "view." The
application in fact contains the model (the UI model) and the controller
(the commands). The grouping and appearance of the user interface is not
known by the applications. There might be one integrated UI for multiple
applications or a single user interface per application.

3.1.3 Independence

The previous steps represent a major step forward in decoupling the various
Units of the system. However interaction between Units cannot be avoided
completely because of the integrated behaviour aspects describedabove. Yet
we maintain the rule that applications and services of the system will not
interact directly with each other. This will be supported by the following
mechanisms.
- Event driven: Another main concept of the architecture that supports

decoupling is notification. Objects in this architecture may issue events
(notifications) that can be received (if requested) by so called observers.
This mechanism works both within processes and across process
boundaries. The source of the events in this mechanism is not aware of its
observers. All upward communication between Units is based upon this
mechanism.

- Integration: All system-wide known data (e.g., patient data, but also
currencies) is stored in a separate service called the integration and data
model. Applications never directly exchange data such as a change in the
current patient. Instead the current patient object in the integration
service is updated by the patient administration application. All interested
applications may be notified of this change through the notification
mechanism just described. The integration service is closely linked to the
database since a lot of this information is also stored persistently.

- Automation: Many sequences of operations in the system are pre­
programmed. After an acquisition, the system switches to reviewing
mode: data are forwarded to an archive etc. After closing an examination,
data are forwarded to printers, the Radiology Information System, etc.
Such functionality is located in a separate automation service that

Medical Product Line Architectures

receives completion notifications from the applications and starts the
relevant actions. Again, the applications do not interact directly.

365

- All system characteristics are derived from the available resources an
application can obtain from the services it uses. There is no hard coding
in the applications of restrictions of the underlying services. This implies
that resources may be added to increase the capabilities of the system
without additional coding.

3.2 Process architecture

This section describes the concepts used for decomposing the system into
separate concurrent processes, starting with the application requirements for
concurrency. From a user point of view the system should deliver the
following levels of concurrency.
- Multiple users operating separate applications concurrently. This will be

handled by defining all applications to be separate processes.
- All long-running, non-interactive user functions (e.g., printing, export,

archiving) have to be performed as background parallel processes since
the user wants to be free to do other actions while these functions are
executed.

- Long-running interactive user functions (like screen build up) have to be
performed in parallel processes to retain user interface responsiveness .
For these functions the user should be able to cancel or overrule it.
From a technical point of view additional concurrency is introduced in

the system since asynchronous hardware has to be controlled. So all services
handling hardware have to be separate conceptual processes. Yet another
technical point of concurrency follows from the services concept itself.
Lengthy actions are often distributed over a client and multiple services. A
service request may take considerable time to complete since the handling of
hardware UO often is involved. During the time that the service request is
handled, the application can often do other useful things (e.g., starting other
service requests in parallel). It is a matter of choice where to put the
conceptual processes for handling lengthy service requests. We choose to put
them in the services themselves. So, all lengthy service requests have to run
in separate conceptual processes. This also implies that these service
requests will complete asynchronously (and use notification to signal
completion).

From this initial selection even more concurrency requirements can be
derived. Since multiple conceptual processes are active in parallel, shared
resources (e.g., database, context) are introduced. Therefore additional
conceptual processes will be introduced to serialise access to these shared
resources.

366 B. J. Pronk

3.3 Technical architecture

The technical architecture of the system supports, in particular, the following
principles from the introduction to section 3:
- binary reuse of components
- enhanced productivity by application of standard, state-of-the-art

technology
- building a generic platform with product-specific additions

3.3.1 Use of a standard environment

Professional industrial environments have long worked with proprietary
solutions. However the advance of standard desktop environments, market
pressure, and the need for productivity increases drive the industry towards
usage of standard solutions and open standards. Note that this is not only a
matter of money. Even where money is no argument, the time and people
needed to create from scratch something to compete with standard desktop
environments represents a tremendous bottleneck. Finally, the innovation
rate of desktop environments is now so high that proprietary solutions will
probably be outdated before they are introduced. Therefore the following
approach is chosen for the new product family architecture:
- Allocate, as much as possible, software functionality to custom hardware

components. Only build dedicated hardware when
processing/responsiveness cannot (cost effectively) be delivered by such
a platform.

- Allocate, as much as possible, functionality in a standard desktop
environment. Only use a real-time operating system environment when
strictly required (for performance, safety, or graceful degradation).

- Use standard PC-architecture and technology as much as possible (PCI,
Intel x86, Windows NT, Microsoft Foundation Classes, Windows User
interface, Windows NT services etc.).

- Use standard software packages (database, license management,
network)

- Use internet technology (Java/HTML/Browser, Windows NT peer web
server) for (remote) service.

3.3.2 Binary exchange

Classical reuse programs are often based on source code level reuse. This
approach introduces strong compile-time dependencies. Furthermore it does
not support true reuse, since extensive testing is still required in the new
code/compile environment. This situation is even further aggravated when

Medical Product Line Architectures 367

using object-oriented languages and deep inheritance trees. Based on these
experiences it has been decided that the new product family architecture will
be based on binary variation. The following choices have been made in this
area:
- Component-based development (DCOM) based on binary exchange,

allowing flexible allocation of UI, application and services.
- All interfaces in the system will be expressed in IDL, and DCOM will be

used for all communication between Units.
- All notification between Units will be based on the COM connection

point mechanism.
- DCOM, however, is only used as an interface mechanism; all

implementation classes are strictly separated from this interface shell.
- Interfaces are considered immutable even when extending, for example,

ranges of enumerated types or error codes; new interface versions will be
introduced.

- Apply component technology to define frameworks for all extensible
parts of the system. A framework consists of a set of interfaces and some
generic functionality. For example, the acquisition application is a
framework in which (binary) components can be added to support
additional acquisition procedures.

4. CONCLUSIONS

Medical equipment architecture has to focus on orthogonality and
independence to support a viable product family concept. The rigorously
pursued decoupling in the presented product family architecture allows for
the development of completely localised and highly independent
components. The use of DCOM as standard interface technology enables
versioning, strict interface management, and the delivery of components that
are thoroughly tested. In addition, applying standard technology and
components will reduce time to market significantly. This combined
approach has resulted in a generic platform, which through addition of
system-specific components, can be specialised in parallel developments.

REFERENCES

Kruchten, Philippe B. (1995) The 4+ I View Model of Architecture, IEEE Software,
November 1995, pp. 42-50.

	Medical Product Line Architectures
	1. MEDICAL ARCHITECTURES
	1.1 Characteristics of medical software environment
	1.2 Architecture overview

	2. MAIN ARCHITECTURAL ISSUES
	3. AN EXAMPLE SOLUTION
	3.1 Conceptual architecture
	3.2 Process architecture
	3.3 Technical architecture

	4. CONCLUSIONS
	REFERENCES

