
Event-Based Execution Architectures for Dynamic 
Software Systems 

James Vera, Louis Perrochon, David C. Luckham 
Computer Systems Laboratory 
Stanford University 
Stanford, CA 94305, USA 
{vera,perrochon,dclj@pavg.stanford.edu 

Key words: Evolutionary software architectures, software artifacts, component 
engineering. 

Abstract: Distributed systems' runtime behavior can be difficult to understand. 
Concurrent, distributed activity make notions of global state difficult to grasp. 
We focus on the runtime structure of a system, its execution architecture, and 
propose representing its evolution as a partially ordered set of predefined 
architectural event types. This representation allows a system's topology to be 
visualized, analyzed and constrained. The use of a predefined event types 
allows the execution architectures of different systems to be readily compared. 

1. INTRODUCTION 

Distributed software systems consist of computational components 
interacting over a communications infrastructure. The executions of these 
systems can be highly dynamic with components being created and 
destroyed and the communications infrastructure undergoing continual 
reconfiguration. We propose to represent the evolution of the structure of 
such a running system, termed the execution architecture of the system, as a 
set of events, partially ordered by time and causality. This partial order of 
architectural events enables the precise analysis of the topological evolution 
of a system, just as a partial order of behavioral events enables a precise 
analysis of the functional activity of a system (Peled, Pratt et al. 1996). 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999 

http://dx.doi.org/10.1007/978-0-387-35563-4_35


304 James Vera, Louis Perrochon, and David C. Luckham 

The need for understanding execution architectures is driven by the main 
trends of software. Component-oriented software engineering has resulted 
in systems composed of components connected through middleware. 
Distribution, especially large scale, leads to asynchronous systems. The 
effect on execution architecture is dramatic: there may be no single 
depiction of the execution architecture of an asynchronous distributed 
system at a particular "point" in time. Instead, different observers can have a 
different views of what the architecture is. 

We define a model for execution architectures and event types used to 
indicate changes in such a model. We show how systems such as distributed 
Java programs or systems communicating over commercial middleware can 
have their topological evolution projected onto our model. Using a 
predefined set of event types allows us to compare the execution 
architectures of systems implemented in different languages and which 
utilized different communications middleware. 

Finally, we show how our representation of an execution architecture 
allows a system's topological evolution to be visualized, analyzed, and 
constrained. 

2. PREVIOUS WORK 

Our work is builds on two previously separate lines of research: software 
architecture and causal modeling. 

2.1 Software Architecture 

The term architecture has been widely discussed in the literature (e.g., 
(Garlan and Shaw 1993) (Moriconi and Qian 1994) (Perry and Wolf 1992) 
(Thompson 1998)). Soni et al. (Soni, Nord et al. 1995) discuss four 
categories of architecture: Conceptual, Module, Execution and Code. 
Conceptual architecture describes a system in terms of high level, abstract 
elements. Module architecture is the a more detailed functional 
decomposition. Execution architecture is the structure of the running sys­
tem. Code architecture is the organizational structure of the source code of 
the system. Execution architecture is unique among the four in being a 
dynamic structure. We focus on execution architecture and argue that its 
appropriate representation is a partially ordered set of events. 

Current research in software architectures has often focused on 
conceptual or module architectures (we will term architectures in either of 
these categories as component architectures). Architectures are described as 
entities possibly within other entities and interconnected somehow. Such 



Event-Based Execution Architectures for Dynamic Software Systems 305 

descriptions are sometimes referred to as "boxes and arrows" 
representations. While being useful for many purposes, they have their 
shortcomings in describing a dynamic system. The representation of an 
execution architecture needs to be able to deal with change. In simple cases, 
execution architectures may be thought of as a series of static architectures, 
snapshots at different points in time. However, in many cases this is not 
enough. 

The ACME system developed by Garlan et al. is designed as a language 
for exchanging architectural designs (Garlan, Monroe et al. 1995). The 
ACME system is inherently static though there is a proposed extension to 
allow the specification of potential dynamism. Darwin (Magee, Dulay et al. 
1995) focuses on design specification and is not intended to be used in 
systems where new component types and the pathways between them are 
defined and added at runtime. 

2.2 Causal Modeling 

The use of partial orders of events to depict the behavior of distributed 
systems is well established (Lamport 1978; Pratt 1986). The relation of the 
partial order, typically called causality, enables true concurrency to be 
represented, information which is lost in a trace-based model. 

Fidge and Mattern (Fidge 1988; Mattern 1988) separately developed the 
notion of vector time which is an algorithmic way of representing and 
analyzing the causal relation. Subsequent work has been done in improving 
the performance of such algorithms in special cases (e.g., (MeJdal, Sankar et 
a!. 1991). See (Schwarz and Mattern 1994) for an excellent survey). Other 
work has been done on applying causal modeling notions to existing 
programming languages (Santoro, Mann et al. 1998). 

Our framework for execution architectures is an extension of our 
previous work in event-based systems (Luckham, Augustin et al. 1995; 
Luckham and Vera 1996). There we created a programming language, 
RAPIDE, in which a causal record of a program's behavior was 
automatically deduced and recorded during the program's execution. 

3. A THEORY OF EXECUTION ARCHITECTURE 

3.1 Execution Architectures 

Execution architecture is a runtime notion. It is the architecture of an 
executing system. Its building blocks are executable constructs (e.g., 
objects, processes, tasks) which we call modules and the mechanisms they 



306 James Vera, Louis Perrochon, and David C. Lucklulm 

use to communicate which we call pathways. Both of these building blocks 
may be created and deleted during the system's execution making execution 
architecture an inherently dynamic notion. It can best be thought of as the 
record of the evolution of the structure of a running system. 

3.2 Modules and Pathways 

Our framework for execution architectures is built on two basic 
constructs: 
I. Modules which are groupings of computational capabilities, and 
2. Pathways which are the means modules use to communicate amongst 

themselves. 

Module: A module is a grouping of computational capabilities. Modules 
have an associated type. The type consists of a set of provided and required 
features of each module, called declarations. These declarations are used to 
communicate with other modules. In an event-based system, these 
declarations would denote what events a module can send and receive. In a 
system based on synchronous (remote) procedure calls, the declarations 
would describe the procedures provided and called by each module. The 
type of a module describes what the module requires from other modules as 
well as what the module provides to other modules. Some architecture 
description language type systems only describe what modules provide. 

In addition, we define a parent-child containment relationship over 
modules. Each module has maximum one parent. The parent relationship 
forms a directed graph. Being dynamic, the parent of a module may change. 
While parent-child is the only module relation we predefine, additional 
relationship may be defined, such as a relation between the software 
modules and the hardware modules they currently run on, etc. 

Pathway: A pathway represents potential communication among 
modules. A pathway has a name, a set of inputs and a set of outputs. The 
inputs may be thought of as those things which invoke or use the pathway 
and the outputs as those things which result from the invocation or observe 
the use of the pathway. The inputs and outputs of a pathway may change. 
Typically, one input or output identifies a pair (module, declaration). 

More generally, we allow the use of patterns to concisely specify sets of 
inputs or outputs. For example, a pattern could express "any module of type 
Airplane performing a RadioOut event." A pathway also has a scope over 
which it operates. The scope may be a particular module or the entire 
system. A pathway can represent a mechanism or simply a state or 
condition. Possible examples of pathways are a UNIX pipe, a Java socket, a 



Event-Based Execution Architectures for Dynamic Software Systems 307 

serial cable between two computers, or a dynamic scoping rule of a 
particular programming language. 

What constitutes a module is a subjective determination. For example, in 
a producer-consumer example, the producer and consumer are likely to be 
modules while the data communicated between them is probably not. Thus 
what is defined as objects in the source language does not necessarily 
correspond to modules. Not all objects need be modules, not all modules 
need be objects. In a system of workstations and network links one modeler 
may choose to have the workstations be represented as modules and the 
network links to be pathways. However, for a modeler more concerned with 
the network protocols, the network links might be the modules and the 
workstations the pathways. The key point is that modules represent the 
building blocks of the architecture. The definition of the actual cor­
respondence is determined by the system implementor though 
language/system defaults may be used. 

3.3 Execution Architecture Events 

An execution architecture changes over time. Modules are created and 
destroyed, pathways come into and go out of existence. Such occurrences 
may be serialized or may happen independently. We model such changes as 
events. For example, the creation of a module or the additional of an output 
to a pathway would each be denoted by events. In our framework, we have 
templates for nine architectural events to describe creation and deletion of 
modules and pathways, addition and deletion of inputs and outputs from 
pathways, and changing of the parent of a module. 

Events have parameters contammg additional information. A 
CreateModule, for example, has parameters denoting the type of the 
module that was created, the parent of that module, and the name of the 
module. We give the simplified description of the templates below: 

CreateModule(type : ModuleType, parent : Event, 

name : String); 

DeleteModule(module : Event); 

CreatePathway(inputs : Pattern, outputs Pattern, 

name: String); 

DeletePathway(pathway : Event); 

ChangeParent(module : Event, parent : Event); 

AddPathwayinputs(pathway : Event, inputs : Pattern); 

AddPathwayOutputs(pathway: Event, outputs : Pattern); 

DeletePathwayinputs(pathway : Event, inputs : Pattern); 

DeletePathwayOutputs(pathway : Event , outputs : Pattern); 



308 James Vera, Louis Perrochon, and David C. Luckham 

Some explanations may be necessary: first, our events do not directly 
refer to modules or pathways, as modules and pathways are transient objects 
in an execution architecture. In many cases, such as debugging post mortem, 
these objects no longer exist. Instead, we refer to the event that denotes the 
creation of the module or pathway. This can be seen in the parent parameter 
of CreateModule Instead of referring to the parent module, we refer to 
the CreateModule-event of the parent. 

Second, we would like to be able to define the inputs and outputs of a 
pathway in a descriptive way, rather than as an enumeration of all possible 
inputs. RAP IDE allows us to easily describe the sets of input and output of 
a pathway using a pattern. For our purpose, the pattern in 
CreatePathway just specifies a set of declarations of certain modules. If 
a pattern language is not available, sets of pairs of a module (denoted by an 
event) and a declaration would work also. 

Events are ordered temporally and causally. In the context of an event 
processing system such as RAPIDE, our architectural events can be treated 
like normal events. This allows us to use existing browsing tools and, more 
interestingly, pattern matching and constraint tools on architectural events. 
Using event constraint tools, we can write topological architecture 
constraints. Examples of such are presented in section 4.1 . 

3.4 Causal and Time Orders 

When events are created they are (partially) ordered by cause and time. 
Two events are temporarily ordered if their temporal relation can be 
determined by any single clock in the system. The temporal order of two 
events in a distributed system without a common clock is not a priory 
known, but may be derived later. Two events are causally ordered if one 
causes the other (transitively). The exact meaning of cause is configurable 
and is captured by the system architect in a causal model. A common 
definition is that the events produced by a thread are totally ordered, the 
receipt of an event causally follows its sending. 

The partial ordered set (poset) of architectural events forms a record of 
the evolution of the architecture. Recording relations between events in 
distributed systems as partial orders (instead of just time-stamping them) 
reveals that "the execution architecture at a certain point in time" is not a 
well defined concept. (Vera 1998) introduces the notion of consistent cuts 
as architectural observation points. A consistent cut partitions a partially 
ordered set into a before and after part. If an event is in the after part, then 
all events that follow it temporarily or causally are in the after part, and vice 
versa. Informally, an observer could have seen only and exactly the before 



Event-Based Execution Architectures for Dynamic Software Systems 309 

part of the poset. When we speak of a "point" in the execution we mean "at 
a consistent cut". 

3.5 Static Snapshots 

At any consistent cut in the poset, a static representation or snapshot of 
the execution architecture similar to a component architecture may be 
derived from all of the events preceding the consistent cut. Such a snapshot 
is amenable to the types of analysis typically done on component 
architectures. 

A compatible sequence of consistent cuts is graphically defined as a 
sequence of cuts which do not cross. Such a sequence may be viewed as an 
animated movie of the architecture's evolution. Since a poset may contain a 
set of such sequences, an execution architecture may contain a set of such 
animations. Each animation corresponds to a particular observers view of 
the architecture over time. The example below gives examples for such 
compatible and incompatible sequences of consistent cuts. 

4. APPLICATIONS OF EXECUTION 
ARCHITECTURES 

4.1 An Air Traffic Control System 

Consider an air traffic control system as depicted in figure 1. Its 
architecture consists of AirTrafficSector which contains a ControlTower 
and a Runway-Control module . 

. l'frafficSector 

ontrolTower RunwayControl 

)+------{ ro 

Figure 1. Initial air traffic architecture 

This initial architecture was created by the execution represented by the 
poset in figure 2. The arrows denote the causal relation. Note that the 



310 James Vera, Louis Perrochon, and David C. Luckham 

consistent cut C 1 in figure 2 marks the "point" in the execution at which the 
architecture depicted in figure 1 holds. 

Figure 2. An initial execution of the air traffic system 

Next imagine that two Flights (one called UA17, the other AA23) are 
created and that their creations are independent. A pathway from each Flight 
to the ControlTower is also created. This execution is represented by the 
poset in figure 3. At the point in that poset indicated by consistent cut C3 
the architecture depicted in figure 4 holds. 

In between consistent cut C 1 and consistent cut C3 there are seven 
consistent cuts• two of which are shown in figure 3. Cuts C2a and C2b are 
inconsistent (graphically the cuts cross) so they would not both appear in the 
same architecture animation. One architecture animation A1 could consist of 
sequence of consistent cuts C1, C2a, C3 and another architecture animation 
A2 could consist of the sequence C 1, C2b, C3. 

In architecture animation Al, the initial snapshot shown in figure 1 
would appear, then Flight UA17 and its connection to the ControlTower 
would appear and finally Flight AA23 and its connection to the 
ControlTower would appear. In architecture animation A2, the same initial 
architecture as in Al would appear, followed by the appearance of Flight 

1The consistent cut for which the maxima is (1) Event E6, (2) Event E7, (3) Event E8 (this cut 
is labeled C2a in figure 3, (4) Event E9 (this cut is labeled C2b in figure 3, (5) Events E6 
and E7, (6) Events E6 and E9 and (7) Events E7 and E8 



Event-Based Execution Architectures for Dynamic Software Systems 311 

AA23 and its connection to the Control Tower followed by Flight UA 17 and 
its connection to the ControlTower. 

Event E6 

Event E8 

CreateModule(RunwayControlType, 
El, "RunwayControl") 

CreatePathway("UA 17.fo", 
"ControlTower.cai") 

Event El 

C2a 

Event E9 

Figure 3. Continuation of execution of the air traffic system 

In a system which is merely time-stamping its architectural changes, or 
which observes them by breakpointing the system, only animation Al or 
animation A2 would be seen (or potentially a third animation A3 in which at 
one "frame" neither flight is visible and in the next both are. This animation 
would result from an overly coarse time-stamping or breakpointing interval.) 
This is a specific instance of a more general case. Whenever there are 
concurrent changes to an architecture, a single trace of those changes (such 
as would result from time-stamping or breakpointing) will only capture one 



312 James Vera, Louis Perrochon, and David C. Luckham 

animation. They cannot capture the information contained in incompatible 
consistent cuts. 

AirTrafficSector 

Contro!Tower 

,-----{fo 
UAI7 

co i-------+1 

l+---------4 ro 

fo }------, 
AA23 

Figure 4. Air traffic architecture at consistent cut C3 

4.1.1 Use of Partially Ordered Architectural Events 

The representation of execution architecture as partially ordered sets 
(posets) of events allows poset oriented tools and methods to be applied to 
execution architectures. In particular, the pattern and constraint languages 
developed in the RAPIDE project may be applied to specify topological (as 
opposed to purely functional) constraints on executing systems. The 
RAPIDE languages can be used to set up simple filters, constraints or 
maps. Some illustrative examples follow. 

4.1.2 Filters 

Filters are operators which take as input a poset and output a subset of 
the input selected by a pattern. Filters allow a reduction of the space being 
examined. Suppose we are only interested in the module containment 
structure. The following filter could be used: 

observe select CreateModule() or DeleteModule() 

or ChangeParent(); 



Event-Based Execution Architectures for Dynamic Software Systems 313 

4.1.3 Constraints 

The representation of an execution architecture as a poset allows us to 
write constraints about its evolution as well as static snapshots. For 
example, we could constrain that a Radar module must be created before a 
Depot module. Or that a particular communication topology (full connected, 
strongly connected) exists among a class of modules before some condition. 

Given a poset constraint language such as that available in RAPIDE, the 
existence of architecture events allows these specifications of topological 
constraints. In an event generating system (where the behavior is also 
represented as events), mixed-mode functional/topological constraints can 
be expressed. 

Suppose we want to require that the creation of Flight modules be seri­
alized. We might make this requirement because the creation of a new Flight 
module involves the manipulation of some global state (e.g., the number of 
Flights currently in the sector). We can express this constraint as requiring 
the events signifying the creation of Flight modules be totally ordered: 

observe select CreateModule(type is FlightType) 

match [* rel -> ] CreateModule; 

4.1.4 Maps 

Maps are operators that transform a poset into a new poset. The new 
poset is generally at a higher level of abstraction. That allows the behavior 
of a system to be understood in more abstract terms than those in which it 
was implemented. 

As a simple example, suppose we wish to abstract ControlTower module 
and RunwayControl module pairs into a single AirportControl module. To 
do this we would create a map that does this abstraction and adjusts the 
communication structure accordingly. If the input poset also contained the 
functional behavior of the system then behavior of a ControlTower or 
RunwayControl module would also need to be mapped into behavior by an 
AirportControl module. A subset of such a map is given below: 

map AirportAbstract is trans : array [Event] of Event; 

(?c,?r , ?p, ?a : Event; ?sl,?s2 : String) 

?c@CreateModule(ControlTowerType, ?p, ?sl) and 

?r@CreateModule(RunwayControlType, ?p, ?s2) 

=> ?a@CreateModule(AirportControlType, ?p, ?sl+?s2); 

trans[?c) := ?a ; trans[?r] := ?a; end map; 

The above rule looks for pairs of CreateModule events, one denoting the 
creation of a ControlTower module, the other a RunwayControl module. If 



314 James Vera, Louis Perrochon, and David C. Luckham 

they both have the same parent then a CreateModule event is created in the 
new poset which denotes the creation of an AirportControl module. The 
association of the lower level events to the higher level event is stored in an 
associative array for subsequent use by other rules. 

4.1.5 Conformance to Reference Architectures 

By combining maps and constraints, the conformance of systems to 
reference architectures may be checked (Luckham, Augustin et al. 1995). 
Architecture events allow topological conformance to be expressed. This 
can be useful for checking requirements such as duplicate communication 
channels. 

4.1.6 Reverse Engineering 

Reverse engineering of architectures is necessary when the original 
architecture has been lost (or never existed). Research has focused on 
extracting component architectures from source code (Harris, Reubenstein 
et al. 1995). By extracting architecture events from a running system via 
instrumentation (such as monitoring rniddleware) we can extract the 
execution architecture even when the original source code is unavailable. 
Perhaps more comparative work is the extraction of call trees by debugging 
software. These tools can be thought of as providing a maximal depiction of 
the use of the execution architecture. An execution architecture poset, in 
contrast, captures its evolution. 

4.2 Applications to Other Domains 

The mapping of concepts from event-based systems into our architectural 
constructs is flexible and in each case, different strategies are supported 
with emphasis on different attributes. 

Whatever choice is made, the ability to map one poset into another 
allows such decisions to be changed ex post facto. In the above example, the 
choice of the assignment to modules and pathways could be inverted by a 
mapping. 

In this subsection we present some example translations of distributed 
systems to our execution architecture constructs. 

4.2.1 A System Implemented in Java 

The Java notion of objects is easily mapped to our module concept. More 
interesting is the choice of constructs which map to pathways. The ability of 



Event-Based Execution Architectures for Dynamic Software Systems 315 

one object to name another object (generally known as dynamic scoping) is 
one form of pathway. If an object A can name an object B then we can say 
that a pathway exists from A to B. 

The Java socket construct is amenable to translation into a pathway. A 
Java socket is a bidirectional mechanism over which data may be sent from 
one object to another. It has two ends. Any object which can name an end 
may send or receive data along the socket. Therefore, a Java socket could be 
translated into two of our pathway constructs (pathways are one directional 
while sockets are bidirectional) where the sources of one of the pathways 
are the destinations of the other (and vice versa). 

4.2.2 A System Hosted on Commercial Middleware 

The Information Bus (TIB) (TIBCO 1998) is a communication 
middleware which supports the subject-based publish-subscribe metaphor. 
Objects send out (publish) messages labeled with a particular textual field 
(subject). Other objects can request to receive (subscribe to) messages with 
a particular subject. Higher level protocols are built on top of the 
publish/subscribe mechanism such as point to point communication, 
synchronous communication, and automatic selection of one from several 
destinations. 

In our application of execution architectures to the TIB (Luckham and 
Frasca 1998), we map each TIB client into a module and map the basic 
publish/subscribe mechanism into pathways. In a component architecture 
description, for every subject a connection is needed from the modules 
which may publish that subject to the modules that may subscribe to the 
subject. Not surprisingly, pictures of such architectures show the TIB only 
as a bus. In an execution architecture, pathways are only maintained 
between modules that actually publish and modules that actually listen to a 
certain subject, e.g., only after a module subscribes to a subject it is added 
as a destination of the pathway which corresponds to that subject. This 
results in a point-to-point depiction of the communication network. 

Other TIB protocols can be captured via their implementation on top of 
the publish/subscribe protocol. However, the semantics of the higher level 
protocols are more accurately captured by dealing with them individually. 

5. SUMMARY AND CONCLUSIONS 

We developed a technology to define, track and control execution 
architectures of dynamically changing software systems. Architectural 



316 James Vera, Louis Perrochon, and David C. Luckham 

changes are represented by causally and temporarily (partially) ordered 
events. Our framework has the following features: 
- Architecture events provide a formal language to describe execution 

architectures. 
Filters and maps, together with the visualization tools such as those 
available in RAP IDE allow real time monitoring of execution 
architectures. 
The RAPIDE engine raises exception when the formal specification (i.e., 
constraints) of an execution architecture is violated. Maps allow 
corrective actions in non fatal error conditions. 

- Static snapshots at consistent cuts provide backward compatibility with 
previous approaches. 

- Posets of architecture events capture the execution architecture of an 
asynchronous, distributed system in cases where static architectures are 
not expressive enough. 

- Posets can easily be stored and analyzed at a later time. 
Our technology is applicable to systems that are distributed, 

asynchronous and have a high change rate. We believe understanding 
execution architectures is important because it fills the gap between the 
abstractness of conceptual architectures and what is actually implemented in 
systems. In particular, our partially-ordered event-based execution 
architectures is superior to simple, time-stamped traces of architectural 
changes. 

REFERENCES 

Fidge, C. J. (1988). Partial Orders for Parallel Debugging. Workshop on Parallel and 
Distributed Debugging, Madiscon, Wisconsin, ACM SIGPLAN/SIGOPS. 

Garlan, D., R. Monroe, et al. (1995). ACME- Software Architecture Interchange Language. 
Garlan, D. and M. Shaw (1993). An Introduction to Software Architecture, World Scientific 

Publishing Company. 
Harris, D. R., H. B. Reubenstein, et al. (1995). Reverse Engineering to the Architectural 

Level. 17th International Conference on Software Engineering, ACM. 
Lamport, L. (1978). ''Time, Clocks, and the Ordering of Events in a Distributed System." 

CACM 21(7): 558-565. 
Luckham and Vera (1996). "An Event-Based Architecture Definition Language." IEEE 

Transactions on Software Engineering 21 (9): 717-734. 
Luckham, D. C., L. M. Augustin, et a!. (1995). "Specification and Analysis of System 

Architectures using RAPIDE." IEEE Transactions on Software Engineering 21(4). 
Luckham, D. C. and B. Frasca (1998). Complex Event Processing in Distributed Systems. 

Stanford, Stanford University. 
Magee, J., N. Dulay, eta!. (1995). Specifying Distributed Software Architectures. 5th 

European Software Engineering Conference (ESEC 95), Sitges, Spain. 



Event-Based Execution Architectures for Dynamic Software Systems 317 

Mattern, F. (1988). Virtual Time and Global States of Distributed Systems. Parallel and 
Distributed Algorithms, Elsevier Science Publishers. 

MeJdal, S., S. Sanlcar, eta!. (1991). Exploiting Locality in Maintaining Potential Causality. 
I Oth ACM Symposium on the Principles of Distributed Computing, New York, New 
York, ACM Press. 

Moriconi, M. and X. Qian (1994). Correctness and Composition of Software Architectures. 
SIGSOFT'94 Software Engineering Notes, New Orleans, LA, ACM Symposium on 
Foundations of Software Engineering. 

Peled, D. A., V. R. Pratt, eta!. (1996). Partial Order Methods in Verification, American 
Mathematical Society. 

Perry, D. E. and A. L. Wolf (1992). Foundations for the Study of Software Architecture, 
SIGSOFT '92, Software Engineering Notes, ACM Symposium on Foundations of 
Software Engineering. 

Pratt, V. R. (1986). "Modeling concurrency with partial orders." Int. J. of Parallel 
Programming 15(1): 33-71. 

Santoro, A., W. Mann, eta!. (1998). clava- Extending Java with Causality. lOth International 
Conference on Software Engineering and Knowledge Engineering (SEKE'98), Redwood 
City, CA, USA. 

Schwarz, R. and F. Mattern (1994). "Detecting Causal Relationships in Distributed 
Computations: In Search of the Holy Grail." Distributed Computing 7(3): 149-174. 

Soni, D., R. L. Nord, et al. (1995). Software Architecture in Industrial Applications. 17th 
International Conference on Software Engineering, ACM. 

Thompson, C., Ed. (1998). Workshop on Compositional Software Architectures. Monterey, 
California, OMG, DARPA, MCC, OBJS. 

TIBCO (1998). TIBCO Web Site, TIBCO. 
Vera, J. S. (1998). Software Architecture Description Languages: Descriptive Constructs and 

Execution Algorithms. Electrical Engineering. Stanford, Stanford University. 


	Event-Based Execution Architectures for DynamicSoftware Systems
	1. INTRODUCTION
	2. PREVIOUS WORK
	2.1 Software Architecture
	2.2 Causal Modeling

	3. A THEORY OF EXECUTION ARCHITECTURE
	3.1 Execution Architectures
	3.2 Modules and Pathways
	3.3 Execution Architecture Events
	3.4 Causal and Time Orders
	3.5 Static Snapshots

	4. APPLICATIONS OF EXECUTIONARCHITECTURES
	4.1 An Air Traffic Control System
	4.2 Applications to Other Domains

	5. SUMMARY AND CONCLUSIONS
	REFERENCES




