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Abstract: In this paper we present a domain-specific modeling approach for application 
components. We use class diagrams and design patterns as major modeling 
notations and utilize code generation techniques to create an application. 
Certain architectural aspects of these applications can explicitly be modeled 
using concrete versions of architectural patterns. As an example, an 
adaptation of the Pipes and Filters pattern (see Buschmann et al ., 1996) is 
presented, which can be used as an architectural modeling entity and which is 
supported by a code generator for automatic implementation of different data 
flow mechanisms. 

1. INTRODUCTION 

Software components are an important factor in software development. 
To successfully use a component, its architecture should match to the 
overall application architecture. This implies that the component 
architecture must be adaptable with respect to the needs of a specific 
application. The need for flexibility leads to the questions: "How can the 
architecture of a component be represented and influenced? Which parts of 
the software architecture are fixed, which can individually be modeled or 
varied? Is code generation for architectural aspects possible?" 

We try to give an answer to these questions by capturing architectural 
elements with variants of design patterns and by providing modeling and 
code generation techniques that allow the user to influence and adapt a 
components architecture to specific needs. The work presented in this paper 
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is integrated into an experimental, domain-specific development method 
called PSiGene {pattern-based simulator generator). The goal of PSiGene is 
to provide a powerful modeling environment to support the creation and 
integration of customized components. Our initial application domain is 
building simulation, but support for other domains is possible as well. 

In our case, simulators are used in the domain of building automation to 
test control algorithms. Building simulators must exist in many variants to 
cope with various physical effects, combinations of effects, required 
accuracies, and different time advancement schemes (e.g., real-time, time­
warp). One complex simulator can not fulfill all possible requirements at the 
same time, therefore tailored simulation components are required. PSiGene 
provides a pattern based modeling and code generation environment to 
support the development of customized building simulators. Section 2 gives 
a short introduction to PSiGene. For further readings see Schtitze et al. 
(1997) and Heister et al. (1997). 

In this paper we present an extension to our initial approach. In order to 
become more domain independent and to be able to handle more complex 
models, we emphasized the separation of different component aspects; i.e., 
we distinguished between component architecture and component behavior. 
The following figure (Figure 1) illustrates the engineering process of 
PSi Gene. 

domain engineering 

architecture __..,. . tyle. --+ 

domain analysis ______,. domain- pecific 
patterns 

pattern 
reference architecture (see fig. 3) "=' catalog 

libraries 
Tools 

\ 
application engineering 

domain specific 

application 
specific 

simulator model 
code 

Figure 1. Domain- and application-specific tasks 

Some parts of PSiGene, in particular the pattern catalog, the reference 
architecture, and the libraries are results of a domain engineering step. We 
tried to capture architectural styles for some component aspects in patterns. 
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They are designed to work together with domain-specific (behavioral) 
patterns. All patterns from the catalog form a system of patterns 
(Buschmann et al. 1996). In addition to the catalog, a reference architecture 
(see Figure 3) was set up, and supporting libraries have been implemented. 
To design a simulation component (application engineering), appropriate 
patterns have to be selected from the catalog, instantiated, and bound to 
class diagrams. Executable code is automatically generated for this 
application model and can be extended with manually written code if 
needed. 

The following section gives a brief introduction to PSiGene. An analysis 
of this approach considering software architecture is found in chapter 3. 
After that, chapter 4 describes two of our architectural patterns (Pipe and 
Filter) and gives a short example of their use. A discussion of the approach 
and an outlook on future work conclude this paper. 

2. PSIGENE 

PSiGene is a component-based, domain-specific software development 
approach (for details see Schiitze et al. 1997). It's purpose is the creation of 
tailored, application specific components: in contrast to many component 
based development methods, where components are provided "as is", 
PSiGene represents a flexible meta component. The user of PSiGene 
specifies the concrete component with a model, a generator implements the 
component automatically from this specification. This results in the creation 
of components that exactly match the applications needs without introducing 
any overhead in runtime or memory consumption caused by generic code or 
interpretation of runtime parameters. 

PSiGene combines object-oriented modeling of the static aspects of a 
component (class diagrams) with pattern-based modeling of the dynamic 
aspects like component behavior or functionality (pattern instance models), 
and with code generation techniques for the implementation. The initial 
application domain of PSi Gene is real-time simulation of large buildings. 

PSiGene does not work stand-alone, but is integrated into a larger 
software development environment called MOOSE (model-based, object­
oriented software generation environment). Within MOOSE, every 
application consists of a set of components each implementing one aspect of 
the overall application features . An application is defined by an application 
model, which in turn consists of several component models. A set of 
domain-specific generators is used to transform the models into software 
components. A certain type of generator, the so-called cross-component 
generator, is capable of interpreting more than one component model at a 
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time and of generating glue logic and application interface code from the 
interrelations (which we call the "glue") between different component 
models. PSiGene's generator is implemented as a cross-component 
generator within MOOSE. More details about MOOSE can be found in 
Altmeyer et al. (1997). 

2.1 System Overview 

Figure 2 gives an overview of the implementation of PsiGene. An 
application, in this case a building simulator, is defined with an application 
model. Among the different component models we find a structure model 
(expressed as a class diagram by using editors from MOOSE) that defines 
the simulation objects. Other class models define structures for other aspects 
of the simulation or represent run time libraries. 

component 
model (structure): 
simulation objects 

I I 
I I 

comP<>nent 
model (behavior): 
simulat ion behavior 

I I . 
________ Simulator 

Figure 2. PSi Gene overview 

PEdit 

pattern 
catalog 

The behavior of the simulator is defined with a pattern instance model. 
Patterns, which are taken from a catalog (see below), are used to define the 
behavior of the simulation objects, to define the overall functionality of the 
component, or to define the interface between the simulation component and 
other components expressed by other models. These pattern instances not 
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only specify local component properties, but also the glue to other 
components. This means that component integration is also performed on 
the modeling level. The pattern instances are created using a graphical 
editor, PEdit, that displays class models and lets the user select and 
instantiate patterns from a catalog. These instances are then bound to the 
class model, which means that each instance is connected to elements 
(classes, relations, attributes, methods) of the class model. 

Once the application model is set up, it is fed into PSiGene's generator. 
The generator reads the structure model, the pattern instances, and it knows 
the patterns of the catalog. From this information, it creates optimized, 
tailored component code. For variants of the application, we will simply 
generate a variant of the component code. Details of pattern-based code 
generation can be found in Heister et al. (1997). 

2.2 Pattern Formalization and Pattern Catalog 

As explained before, patterns used for modeling are taken from a 
domain-specific pattern catalog. The intention of the catalog is pretty much 
the same as with other pattern-based design methods: to capture successful, 
"good" design and to provide this knowledge to the catalog user by 
presenting solutions for smaller design problems in a certain design context. 
One of the first and most famous catalogs has been presented by the "gang 
of four"; see Gamma et al. (1995). In contrast to this and most other catalogs 
found in the literature, which address general design problems, we focus on 
concrete design problems for building simulation such as the calculation of 
heat flows in buildings or the scheduling of real-time processes. 

Table 1 shows the structure of our catalog. It is partitioned into several 
categories dealing with different (orthogonal) aspects. As an example, some 
patterns from each category are shown. 

Because we set up the catalog for a very narrow application domain, we 
are able to state the problems as well as the solution very precisely, enabling 
tool support for modeling as well as code generation. At the same time, we 
had to formalize the pattern approach with respect to the pattern interface 
and the code templates provided as problem solution: In contrast to other 
approaches, we have to specify the binding between the class model 
(structure model) of the application and the pattern instances formally and 
unambiguously. And we need code templates that are suitable for code 
generation. 

Within PSiGene's catalog, the pattern interface, defining the structure as 
well as the participating elements of a pattern, is expressed with name:type 
pairs as formal parameters. The name denotes the name of the participating 
element, the type shows which parts of other component models are eligible 
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for binding, e.g., classes, relations, methods, and so on. Based on the formal 
parameters, the (syntactical) correctness and completeness of pattern 
bindings can be checked by tools. With that, the formalization builds the 
syntactical framework for a pattern language, as the cooperation of patterns 
can be expressed with formal bindings. Furthermore, the code generator gets 
sufficient information to create component code. 

Table 1 Excerpt from the pattern catalog 
Category Sub-Category Patterns Description 
Framework Primitive Variable Value Access an attribute 
Structural 
Adaptation 

BufferedV alue Attribute buffer that is mainly 
used in conjunction with a 
Pijl_e 

Indirection FollowRelation Delegation along a relation 
Traversal Collect connected objects 

without specifying a path 
Redirection MethodBranch Branch if condition is met 
Pipes and Pipe Specify data flow 
Filters 

Filter Activity when using a Pipe 
Distribution AttributeProxy Used for distributed access 

Simulation Control Actuator Set attributes with events 
Control 

ContinuousComput Periodic method invocation 
ation 

State StateMachine Simple finite state machine 
Machines 

StateMachineActi ve State machine using 
conditions 

User Interface Display Display Attribute Display an object's attribute 
DisplaySlider Display attribute as a slider 

Domain Simulation ThermalMass Calculate temperatures 
ThermalJunction Compute heat flows 

The code templates are split into smaller fragments . Each fragment 
consists of code in a given programming language, enriched with macros 
that denote the variable parts of the code. Currently, we support Smalltalk as 
the target language, however, provisions have been made to generate code 
for other object-oriented languages as well. During code generation, the 
generator collects the fragments, "personalizes" them by replacing the 
macros, and assembles the resulting code to methods. Macro replacement 
can be as simple as string exchange or it can mean to replace a macro with 
other, complex code fragments recursively. The definition of replacement 
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strategies and code fragments is supported by inheritance and by pattern 
aggregation. 

2.2.1 Extensions to PSiGene 

Components generated by PSiGene do not work in isolation, but are 
embedded into a surrounding application with an underlying software 
architecture determined by the application domain and other forces . For 
earlier versions of PSiGene, this application architecture was fixed, and 
consequently, the component architecture was fixed, too. There were 
architectural aspects that have been addressed by PSiGene, e.g., the degree 
of multithreading in a simulator or the possibility to create distributed 
simulators. However, the decision about architectural elements has been 
made implicitly, while choosing patterns that determined other simulation 
aspects. For example, by using the Sensor and Actuator pattern to simulate 
hardware interfaces, the user implicitly enabled distributed simulation and 
influenced the component's and application's interface. As we started to 
apply PSiGene to other application domains, we realized that our approach 
would become more general and the modeling would be significantly easier 
if we were able to specify the architecture of applications explicitly. The 
following section will illustrate how we adapted the latest version of 
PSiGene (in particular the pattern catalog) to capture and model 
architectural styles, and how we generate code that implements these styles 
automatically from the models. 

3. SOFTWARE ARCHITECTURE WITHIN 
PSI GENE 

The architecture of a software system can be modeled following 
architectural styles (see Buschmann et al., 1996, and Bass et al., 1998). 
Styles give concrete hints on how to construct and organize a system. For 
example, following the Client-Server style leads to a system where several 
clients communicate with one or more servers. The exact behavior of a 
specific client or server is independent of the architectural style and must be 
specified separately. Tracing which style leads to which component 
structure makes the software more maintainable and understandable. 

Usually several styles can be identified in a component's architecture. 
Each style can be seen as a set of constraints on an architecture. These 
constraints define a family of architectures that satisfy them (Bass et al., 
1998, p. 25). Some of these constraints can also be expressed with design 
patterns (compare Monroe et al., 1997). Such a pattern includes the context 
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in which a style can be applied, the forces it resolves, the consequences, and 
the structure of the style. In addition to this, patterns contain a guide on how 
to apply them. 

Finding concrete patterns that reflect an architectural style is not easy: 
styles are an abstract description of facets of a software architecture, 
whereas (PSi Gene-) patterns are usually applied to smaller parts of a 
component and reflect concrete design decisions rather than organizational 
structures. 

We formalized some architectural patterns so that they can be used 
within PSiGene. Their binding enforces a certain architecture and code can 
automatically be generated. The main drawback of this "formal" description 
of architectural styles is that PSiGene patterns cannot capture the whole 
bandwidth of possibilities how a style can be implemented: only a limited 
number of domain-specific implementation strategies can be included in a 
single pattern because otherwise code generation would be impossible and 
the binding would become far to complex. This restriction, however, doesn't 
count as much, because our patterns don't aim to be universally applicable 
but are only used in one domain. When focusing on one domain, 
architectural styles occur only in few variants. 

As explained before, the previous version of PSiGene used architectural 
styles mostly implicitly: the patterns concentrated on solving a certain 
(simulation) problem and therefore they contained behavioral aspects as 
well as structure and other architectural components. For small models this 
was convenient, but when modeling complex simulators or when adapting 
PSiGene to other domains it is desirable to be able to model the architecture 
more explicitly. To do so, we reengineered some of our patterns and added 
new ones to reflect certain properties of architectural styles. 

3.1 Architecture in PSiGene 

All simulation components that are modeled with PSiGene share a 
common basic architecture. Some parts of this architecture are fixed while 
other parts can vary from simulator to simulator. Figure 3 gives an 
overview. 

A set of fixed components builds the framework that houses customized 
simulation components. The framework is used by inheriting from or 
delegating requests to framework objects or classes. Three major 
components are used: a GUI library to display simulated objects and to 
stimulate the simulator, an 110 library to communicate with other 
applications and to log simulator runs, and the kernel library which is 
responsible for scheduling and event-handling. The structure and behavior 
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of the simulation components, however, varies for different simulators in 
order to match the needs of the applications. Variable aspects are: 
- component structure (i.e., class models) 
- component functionality and behavior 

non-functional requirements (e.g., timeliness, accuracy) 
- component integration: glue code to connect to the framework 

r----

GUI-Iibrary 

YO­
library 

---, 

Figure 3. Architecture of a building simulator 

3.1.1 Architectural styles in PSiGene 

hbrary 

sunulauon 

arChne'cture) 

( ) 

relations 

c ] 
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Several architectural styles are used to model a building simulator. The 
following table (Table 2) gives an overview of the styles that occur in 
PSi Gene. 

Two styles, Repository and Pipes and Filters describe data aspects of the 
model. Our components are modeled using class diagrams. Different 
components can share parts of these diagrams to have access to the same 
data. Methods to access such a data repository are automatically generated. 
Data exchange within one component is modeled with the Pipe and Filter 
patterns. The communication channels are seen as pipes, and activities to 
trigger the data flow are modeled as filters (see next chapter). 

The application framework implements the framework style. Framework 
components are represented by class diagrams and can be incorporated into 
the models using object-orientated mechanisms and patterns. 
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Since our kernel library is event-driven, all active simulation objects 
must be able to receive and evaluate events. Event handling is also modeled 
with patterns (such as Actuator or ContinuousComputation). 

In this section we have shown how the architecture of a simulation 
component looks like and which architectural styles occur implicitly by 
using PSiGene. Some styles can also be expressed explicitly with patterns, 
as we will illustrate with the example in the next section. 

Table 2. Architectural styles in PSiGene 

Architectural 
Style 

Repository 
Pipes and Filters 

Framework 

Layers 

Model-View­
Controller 
Distribution I 
Event Systems 

Microkernel 

Occurrence 

Data exchange between components 
Specify data flow between simulation 
objects and identify active objects 
Application framework 

Accessing libraries (via delegation) 

Used in the GUI library. The 'Model' is 
part of the simulation component 
Network communication with other 
applications (110 library) or distributed 
simulation/scheduling (kernel library) 
Useful to encapsulate communication 
aspects esp. in the kernel library 

4. EXAMPLE 

Modeling Notation I 
Support 

Class diagrams 
Pipes and Filters patterns 

Class diagrams, schemas, 
patterns 
Indirection, control, and 
display patterns 
GUI patterns 

Patterns and library 
parameters 

Patterns plus hierarchical 
class diagrams (not yet 
supported by 
PSiGene!MOOSE) 

Up to now, the software architecture of our building simulator models 
was defined by the framework: the libraries, the structure of our patterns, 
and by the way the class diagrams are constructed. Many of the patterns 
addressed behavioral aspects as well as other software architectural aspects. 

For example, the Therma/Junction Pattern is used to simulate the 
junction of two adjoining thermal masses. A thermal mass is a simulation 
object that has a relevant heat capacity. Examples are rooms, radiators, or 
the environment. A thermal junction is typically a wall or a window. When 
two thermal masses are adjacent, they exchange energy through heat flows. 
The Therma/Junction pattern can be used to calculate the heat flow between 
any two of those masses. The heat flow depends on the difference of 
temperatures of the adjoining thermal masses and on the thermal resistance 
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of the separating (i.e. , insulating) material. The first version of the 
ThermalJunction pattern assumes that it can somehow access the required 
temperatures and the thermal resistance by calling a method. Other patterns 
like FollowRelation or Traversal must provide this access methods (usually 
by delegation to appropriate objects). 

Figure 4 shows a part of the model for the simulation of heat flows 
through a simple wall. The class diagram describes how rooms are 
connected via surfaces and walls. The lower part of Figure 4 shows the 
pattern instances. ThermalJunction is bound to the class Suiface and 
implements the calculation method. To collect the data for this calculation, 
several FollowRelation patterns are required. The temperature of both 
neighboring rooms has to be collected and the cumulative thermal resistance 
of the wall and both surfaces must be computed. 

} diagram 

temperature getTemp calculate getThennRes thermalRes } pattern bindings 

} pattern instances 

Figure 4. Simulating heat flow 

ThermalJunction implements an action (calculation of the heat flow) that 
is closely related to a data flow (collecting temperatures and thermal 
resistances). ThermalJunction concentrates on the action part and also 
assumes the required data are present in a certain way. For small object 
models this is adequate as data flow is relatively simple. As models grow 
more complex, software architecture becomes more and more important. For 
the "thermal junction" problem this means, that the data flow aspect 
becomes more important (and more difficult to model) and the coupling 
between the data flow and the activity view has to be well considered. 

Data exchange between simulation objects usually consists of two parts: 
a communication channel (object relations or possibly a network 
connection) and an activity that triggers the exchange. Such pipelines occur 
in many variants: push-driven, pull-driven, synchronized push/pull, 
distributed, buffered, and so on. To be able to model such a variety of 
different data flow possibilities, it is useful to decouple the data flow aspect 
from the functional aspects and model it separately. 
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Figure 5. Data flow between two rooms 

._____ 
pull 

push 

The new version of Thermallunction focuses on the functional view 
only. The data to calculate a heat flow must still be present but the pattern 
doesn't prescribe how to access this data. Two new patterns, Pipe and 
Filter, can be used to model data flow. In our example (Figure 5 and Figure 
6), we have a data flow (i.e., a pipe) from the class Room to Wall, and an 
activity (i.e., a filter) to calculate the heat flow. 

Whether the data flow is pull- or push-driven and/or distributed over 
more processes or computers is characterized by configuring parameters of 
the Pipe pattern. Thermallunction can be seen as a Filter (from the data 
flow view) and bound to our Filter pattern (see Figure 6). 

calculate 

functionality 

Figure 6. Different views for functionality and data flow 

4.1.1 A Pipes and Filters pattern 

This section describes our Pipe and Filter patterns in more detail. It is 
intended as an example of how software architecture can be expressed with 
PSiGene-like patterns. We took the pattern Pipes and Filters from 
Buschmann et al. (1996), which describes most properties of data flows as 
they occur in our domain (transfer, buffering, synchronization) and adapted 
it to our needs. The general static structure of a pipeline is shown in the 
class diagram of Figure 7. A pipe is used to connect a provider with one or 
more consumers. Push or pull methods are used to access data elements in 
the pipeline. Additional processing is done using filters . 
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Capturing the idea of the Pipes and Filters style in generative patterns is 
possible because the underlying structure is not too complex. However, 
dealing with the many variants in which pipelines occur is not trivial. We 
have realized the Pipes and Filters style as two individual patterns "Pipe" 
and "Filter." They both implement a part of the Pipes and Filters structure 
(see Figure 7). 

To identify pipelines in a class diagram, the patterns structure must be 
mapped to elements from that diagram. This structure mapping is done by 
assigning values to formal parameters of the Pipe and Filter patterns (see 
section 2.2). 

Pipe 

buffer Pipe 
pull 
push( data) 

read Data 

readData 

pu hData push(dara) 

Figure 7. Object structure of the Pipes and Filters style (and pattern) 

The following list shows the formal parameters of the Pipe pattern: 
objects: 

source 
the data source object 
(read as formal parameter source:object) 

destination 
the data destination object (sink) 

- attributes: 
sourceData (use at source) 

the attribute that serves as the source for the data transfer 
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destinationData (implement at destination) 
the new proxy attribute that is the sink of the transfer 

- relations: entry and exit relations for the pipeline 
- methods: 

read (optional, implement at destination) 
reads data from the source and writes it to the sink. 

push (optional, implement at source) 
triggers a data transfer. The initiator is the source object. 

pull (optional, implement at source) 
triggers a data transfer. The initiator is the destination object. 

notify (optional, use at destination) 
this method will be invoked at the destination object, if the data at 
the source has changed. 

request (optional, use at source) 
this method will be called at the data source if the destination 
object requires an actual value of the attribute. The source object 
has to transfer the current value (if it has changed since the last 
time). 

- properties: 
bufferSize (optional, preset) 

if this property is set, a buffer is realized with the specified size. 
useProxy (optional, preset) 

this property instructs the generators to allow distribution of the 
participating objects over host-boundaries. A proxy mechanism is 
implemented. 

As one can see, some parameters are optional and don't have to be 
bound. For example, a push-driven pipe does not need to bind the "pull" 
parameter. The Filter pattern is described by similar means. It is bound to 
calculation methods with a formal parameter calculate:method(use). 

Data flow aspects are modeled independently of other aspects. 
Interaction occurs only at well defined points. Functional patterns like 
ThermaUunction or ThermalMass are bound at the filter component using 
the formal parameter "calculate." Activity patterns like 
ContinuousComputation can be bound using the parameters "pull" or 
"push" from the pattern Pipe, or using the optional filter parameter 
"compute." 

A small example demonstrates the pattern bindings for the model in 
Figure 6. After binding values to the formal parameters for all pattern 
instances, a binding description file is created. It looks as follows : 

"ThermalJunction 1 - calculates the heat flow through a thermal junction element" 
Therma!Junction 

bind: 'target' to: 'Surface'; 
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bind: 'calculate' to: 'calculateHeatAowForRoom'; 
bind: 'thermalResistance' to: 'thermalResistance'; 
bind: 'area' to: 'area'. 

"Filter l - calculates the heat flow through a thermal junction element integrating the pattern 
instances ThermalJunctionl and Pi pel to PipeS" 

Filter 
bind: 'target' to: 'Surface'; 
bind: 'calculate' to: 'calculateHeatAowForRoom'; 
bind: 'request' to: 'requestHeatAowForRoom'; 
bind: 'arguments' to: #('temperatureOfRoom' 'temperatureOfSurface' 'resistanceOfRoom' 
'resistanceOfSurface' ); 
bind: 'getArguments' to: 'argumentsHeatAowForRoom'; 
bind: 'notify' to: 'notifyAttributeChangedForHeatAowForRoom'; 
bind: 'result' to: 'heatAowForRoom'; 
bind: 'initValue' to: '0.0'. 

"Pipe I - provides the thermal resistance of a room at a connected surface" 
Pipe 

bind: 'source' to: 'Room'; 
bind: 'destination' to: 'Surface'; 
bind: 'sourceData' to: 'thermalResistance'; 
bind: 'read' to: 'readResistanceOfRoom'; 
bind: 'exit' to: 'radiatorSurfacesOfRoom'; 
bind: 'entry' to: 'roomOfradiatorSurface'; 
bind: 'destinationData' to: 'resistanceOfRoom'; 
bind: 'push' to: 'pushThermalResistanceToSurfaces'; 
bind: 'notify' to: 'notifyAttributeChangedForHeatAowForRoom'. 

"Pipe 5 - provides the calculated heat flow from Surface to Room" 
Pipe 

bind: 'destination' to: 'Room'; 
bind: 'source' to: 'Surface' ; 
bind: 'exit' to: 'roomOfSurface'; 
bind: 'entry' to: 'surfacesOfRoom'; 
bind: 'read' to: 'readHeatAowFromSurface' ; 
bind: 'destinationData' to: 'heatFlowFromSurface' ; 
bind: 'sourceData' to: 'heatAowForRoom'. 
bind: 'pull ' to: 'pul!HeatAowFromSurface'; 
bind: 'request' to: 'requestHeatAowForRoom'. 

There are 3 objects classes in this example: a Room is connected with a 
Surface to a Wall . The instances of Room have to recalculate their 
temperatures in fixed time intervals. The rooms request the calculation of 
the heat flows from the adjoining objects indirectly by reading the local 
attribute "heatFlowFromSurface" (the calculating filter for the temperature 
at Room calls pullHeatFlowForRoom first, before accessing the attribute). 
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Since the generators know that rooms and surfaces are connected by a 
one-to-many relation, this attribute (implemented by "Pipe 5") holds a 
collection of heat flow values. Each of these values is calculated by an 
instance of the ThermaUunction pattern, the calculation is controlled by 
"Filter 1 ". This filter collects all required arguments, triggers the calculation 
while providing those arguments, and, if necessary, delivers the result via 
"Pipe 5". The following code fragment was generated from the above 
bindings: 

argumentsHeatFlowForRoom 
"Collects all arguments for the calculation of heatFlowForRoom" 
I args I 
args :=Array new: 4. 
args at: 1 put: self temperatureFromRoom. 
args at: 2 put: self temperatureFrom Wall. 
args at: 3 put: self thermalResistanceFromRoom. 
args at: 4 put: self thermalResistanceFrom Wall. 
"args 

computeHeatFlowForRoom 
"Does the calculation and stores the result in heatFlowForRoom" 
"self heatFlowForRoom: (self calculateHeatFlowForRoom: self 
argumentsHeatFlowForRoom) 

In our example the access to "heatFlowFromSurface" is triggered by a 
separate pull method (Pipe 5 is pull-driven). The other pipes are push­
driven, which means that the data transfer is initiated by the sources of the 
pipe. 

As one can see, our patterns "Pipe" and "Filter" realize a flexible data 
flow mechanism with synchronization capabilities. They separate this aspect 
from the functionality, which in this case is handled by Thermallunction . 
Thermallunction in tum does not care about data flow issues. 

Depending on the binding, different transport and synchronization 
mechanisms can be implemented by Pipe and Filter. Some synchronization 
combinations are shown in Table 3. 

Table 3. Some possible combinations of pipes and filters 
Argument Filter Result Pipe Comment 
Pi es 
push-driven inactive 

pull-driven active 

pull-driven inactive 

push-driven 

push-driven 

pull-driven 

Each time a new argument is delivered, 
the result is calculated and propagated. 
The calculation of the filter is triggered 
by an external activity. The arguments 
are requested and the result is 
propagated. 
If someone requests the result, it is 
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Argument 
Pi es 

push-driven 

Filter 

active 

Result Pipe 

pull-driven 

Comment 

calculated after requesting all required 
arguments. 
This is the synchronized combination of 
the first three examples 

The required synchronization mechanism depends on the frequency of 
data changes and on how the transport is triggered. The pattern interface 
allows to abstract from the concrete transport mechanism. Distributing the 
pattern or buffering values can be achieved by binding additional patterns 
like AttributeProxy or BufferedVariable. 

4.1.2 Code generation 

Each pattern instance in PSiGene comes with a partial code generator. It 
is responsible for generating adequate code from the patterns code templates 
and the pattern bindings. Every pattern instance is analyzed in its binding 
context before the generation is started. Therefore, tailored and optimized 
code can be created. 

To generate code for a pattern, not only its own bindings have to be 
considered, but also other patterns bound to the same target objects. For 
example, a propagating filter needs information about the pipe to which data 
changes should be reported. Internal properties (additional bindings) are 
used to allow the combination of patterns and are used to generate optimized 
code. Application code is generated by assembling tailored code templates 
that are part of each pattern. A very simple code fragment may look as 
follows: 

'{compute} 
"Does the calculation and stores the result in {result}." 
"self {result}: (self {calculate}: self {getArguments})' 

Keywords in brackets ( { }) are used as macros. Usually code generation 
can be done by choosing code templates and replacing all macros with other 
templates or bound values. More complex patterns (like Traversal) also use 
code synthesis techniques. For further reading see Heister et al. (1997). 

5. DISCUSSION 

This work combines different software engineering techniques. Structure 
models are used together with a pattern based design strategy. Application 
generators are used to implement a simulation component. The approach can 
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be seen as a domain specific software architecture (DSSA, see Mettala and 
Graham (eds.), 1992). Domain engineering in the field of building 
simulation resulted in the overall architecture of a simulation component 
(Figure 3) and in the implementation of the libraries. Also our pattern 
catalog is domain-specific and part of the domain model. Reference 
requirements are included in the informal parts of our patterns, prescribing 
which patterns could be used together or giving hints how certain simulation 
problems can be solved. To design a simulation component, only the 
application engineering has to be performed. This includes especially setting 
up or refining a class diagram for the building structure and instantiating and 
binding patterns from the catalog. Tool support is given for these tasks. A 
detailed process of this modeling procedure is not yet defined and will be a 
topic for future works. 

The revised pattern catalog contains behavioral patterns together with 
patterns describing architectural styles. It is partitioned into categories that 
deal with different aspects of simulation (the partitioning supports aspect 
oriented programming (AOP), see Kiczales, 1997). Each category can be 
seen as a view and be modeled separately. We are currently extending the 
pattern editor to support views. 

The main advantage of the new catalog is that we have found a way to 
express parts of the component's architecture in (design) models. Patterns 
can be used to implement or refine an architectural style. The configuration 
is done by binding a pattern instance to the simulator model. These patterns 
have a fixed formal interface and code templates (see Heister et al., 1997) 
and therefore cannot express the whole variety of a style. But as our domain 
is limited, it is sufficient to use only a few domain-specific implementations 
of an abstract style. 

All our patterns must be able to work together: they form a system of 
patterns (compare Buschmann et al., 1996). Each individual pattern is used 
to model a part of the component, but with the right combination of patterns 
a building simulator can be designed. For example, with our Pipe and Filter 
patterns, a data flow between two objects can be defined. At both ends of 
the pipeline activity may take place. This is usually a calculation of values. 
The Filter pattern is used to trigger such an activity; the activity itself must 
be modeled elsewhere (i.e., with patterns from another category). A future 
topic is to investigate how such dependencies and constraints between 
patterns can be formally expressed. 
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6. CONCLUSION 

With architectural patterns it is possible to model architectural styles 
separately. The pattern binding concept of PSiGene allows to combine 
different pattern instances and to apply them to class diagrams. Therefore, 
architectural styles can be integrated using a formal interface. The main 
advantage of the architectural patterns is a better maintainable system 
(model changes take effect only locally), better tailored components, and the 
ability to handle more complex models. Also, our pattern catalog became 
more domain independent. We still have some special simulation patterns 
but they are able to work together with more abstract and more general 
architectural patterns. We believe that these architectural patterns can easily 
be adapted to other domains. Future work will investigate the applicability 
of our approach in other domains. 

Our patterns do not provide the whole bandwidth of all of their possible 
applications but only a domain-specific subset. This makes code generation 
and optimization possible but restricts the universal usage of the patterns a 
bit. Finding more variants and new patterns is also a topic for future works. 

A small disadvantage of our new pattern catalog is that it takes more 
time to model small simulation components as each aspect has to be 
designed separately. But for larger models this separation of concerns is 
mandatory and leads to more flexible simulators (e.g., nonfunctional 
requirements like distribution can be modeled and documented explicitly 
and more easily). 

The pattern-based approach to software architecture seems to be feasible 
and worked well for PSiGene. Variants of components can be created within 
short time, and a component can match the architectural demands of an 
application by changing abstract architectural properties in the models. We 
therefore believe that our approach to architecture modeling helps the 
software development in providing and using tailored components. 
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