
Modeling Software Architecture Using Domain­
Specific Patterns

J. P. Riegel, C. Kaesling, and M. Schiitze
Dep. of Computer Science, University of Kaiserslautem, Germany,
{riegel, kaesling, schuetze}@informatik.uni-kl.de

Keywords: architectural design patterns, domain-specific modeling support, code
generation

Abstract: In this paper we present a domain-specific modeling approach for application
components. We use class diagrams and design patterns as major modeling
notations and utilize code generation techniques to create an application.
Certain architectural aspects of these applications can explicitly be modeled
using concrete versions of architectural patterns. As an example, an
adaptation of the Pipes and Filters pattern (see Buschmann et al ., 1996) is
presented, which can be used as an architectural modeling entity and which is
supported by a code generator for automatic implementation of different data
flow mechanisms.

1. INTRODUCTION

Software components are an important factor in software development.
To successfully use a component, its architecture should match to the
overall application architecture. This implies that the component
architecture must be adaptable with respect to the needs of a specific
application. The need for flexibility leads to the questions: "How can the
architecture of a component be represented and influenced? Which parts of
the software architecture are fixed, which can individually be modeled or
varied? Is code generation for architectural aspects possible?"

We try to give an answer to these questions by capturing architectural
elements with variants of design patterns and by providing modeling and
code generation techniques that allow the user to influence and adapt a
components architecture to specific needs. The work presented in this paper

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35563-4_35

274 J. P. Riegel, C. Kaesling, and M. Schutze

is integrated into an experimental, domain-specific development method
called PSiGene {pattern-based simulator generator). The goal of PSiGene is
to provide a powerful modeling environment to support the creation and
integration of customized components. Our initial application domain is
building simulation, but support for other domains is possible as well.

In our case, simulators are used in the domain of building automation to
test control algorithms. Building simulators must exist in many variants to
cope with various physical effects, combinations of effects, required
accuracies, and different time advancement schemes (e.g., real-time, time­
warp). One complex simulator can not fulfill all possible requirements at the
same time, therefore tailored simulation components are required. PSiGene
provides a pattern based modeling and code generation environment to
support the development of customized building simulators. Section 2 gives
a short introduction to PSiGene. For further readings see Schtitze et al.
(1997) and Heister et al. (1997).

In this paper we present an extension to our initial approach. In order to
become more domain independent and to be able to handle more complex
models, we emphasized the separation of different component aspects; i.e.,
we distinguished between component architecture and component behavior.
The following figure (Figure 1) illustrates the engineering process of
PSi Gene.

domain engineering

architecture __..,. . tyle. --+

domain analysis ______,. domain- pecific
patterns

pattern
reference architecture (see fig. 3) "=' catalog

libraries
Tools

\
application engineering

domain specific

application
specific

simulator model
code

Figure 1. Domain- and application-specific tasks

Some parts of PSiGene, in particular the pattern catalog, the reference
architecture, and the libraries are results of a domain engineering step. We
tried to capture architectural styles for some component aspects in patterns.

Modeling Software Architecture Using Domain-Specific Patterns 275

They are designed to work together with domain-specific (behavioral)
patterns. All patterns from the catalog form a system of patterns
(Buschmann et al. 1996). In addition to the catalog, a reference architecture
(see Figure 3) was set up, and supporting libraries have been implemented.
To design a simulation component (application engineering), appropriate
patterns have to be selected from the catalog, instantiated, and bound to
class diagrams. Executable code is automatically generated for this
application model and can be extended with manually written code if
needed.

The following section gives a brief introduction to PSiGene. An analysis
of this approach considering software architecture is found in chapter 3.
After that, chapter 4 describes two of our architectural patterns (Pipe and
Filter) and gives a short example of their use. A discussion of the approach
and an outlook on future work conclude this paper.

2. PSIGENE

PSiGene is a component-based, domain-specific software development
approach (for details see Schiitze et al. 1997). It's purpose is the creation of
tailored, application specific components: in contrast to many component
based development methods, where components are provided "as is",
PSiGene represents a flexible meta component. The user of PSiGene
specifies the concrete component with a model, a generator implements the
component automatically from this specification. This results in the creation
of components that exactly match the applications needs without introducing
any overhead in runtime or memory consumption caused by generic code or
interpretation of runtime parameters.

PSiGene combines object-oriented modeling of the static aspects of a
component (class diagrams) with pattern-based modeling of the dynamic
aspects like component behavior or functionality (pattern instance models),
and with code generation techniques for the implementation. The initial
application domain of PSi Gene is real-time simulation of large buildings.

PSiGene does not work stand-alone, but is integrated into a larger
software development environment called MOOSE (model-based, object­
oriented software generation environment). Within MOOSE, every
application consists of a set of components each implementing one aspect of
the overall application features . An application is defined by an application
model, which in turn consists of several component models. A set of
domain-specific generators is used to transform the models into software
components. A certain type of generator, the so-called cross-component
generator, is capable of interpreting more than one component model at a

276 J. P. Riegel, C. Kaesling, and M. Schutze

time and of generating glue logic and application interface code from the
interrelations (which we call the "glue") between different component
models. PSiGene's generator is implemented as a cross-component
generator within MOOSE. More details about MOOSE can be found in
Altmeyer et al. (1997).

2.1 System Overview

Figure 2 gives an overview of the implementation of PsiGene. An
application, in this case a building simulator, is defined with an application
model. Among the different component models we find a structure model
(expressed as a class diagram by using editors from MOOSE) that defines
the simulation objects. Other class models define structures for other aspects
of the simulation or represent run time libraries.

component
model (structure):
simulation objects

I I
I I

comP<>nent
model (behavior):
simulat ion behavior

I I .
________ Simulator

Figure 2. PSi Gene overview

PEdit

pattern
catalog

The behavior of the simulator is defined with a pattern instance model.
Patterns, which are taken from a catalog (see below), are used to define the
behavior of the simulation objects, to define the overall functionality of the
component, or to define the interface between the simulation component and
other components expressed by other models. These pattern instances not

Modeling Software Architecture Using Domain-Specific Patterns 277

only specify local component properties, but also the glue to other
components. This means that component integration is also performed on
the modeling level. The pattern instances are created using a graphical
editor, PEdit, that displays class models and lets the user select and
instantiate patterns from a catalog. These instances are then bound to the
class model, which means that each instance is connected to elements
(classes, relations, attributes, methods) of the class model.

Once the application model is set up, it is fed into PSiGene's generator.
The generator reads the structure model, the pattern instances, and it knows
the patterns of the catalog. From this information, it creates optimized,
tailored component code. For variants of the application, we will simply
generate a variant of the component code. Details of pattern-based code
generation can be found in Heister et al. (1997).

2.2 Pattern Formalization and Pattern Catalog

As explained before, patterns used for modeling are taken from a
domain-specific pattern catalog. The intention of the catalog is pretty much
the same as with other pattern-based design methods: to capture successful,
"good" design and to provide this knowledge to the catalog user by
presenting solutions for smaller design problems in a certain design context.
One of the first and most famous catalogs has been presented by the "gang
of four"; see Gamma et al. (1995). In contrast to this and most other catalogs
found in the literature, which address general design problems, we focus on
concrete design problems for building simulation such as the calculation of
heat flows in buildings or the scheduling of real-time processes.

Table 1 shows the structure of our catalog. It is partitioned into several
categories dealing with different (orthogonal) aspects. As an example, some
patterns from each category are shown.

Because we set up the catalog for a very narrow application domain, we
are able to state the problems as well as the solution very precisely, enabling
tool support for modeling as well as code generation. At the same time, we
had to formalize the pattern approach with respect to the pattern interface
and the code templates provided as problem solution: In contrast to other
approaches, we have to specify the binding between the class model
(structure model) of the application and the pattern instances formally and
unambiguously. And we need code templates that are suitable for code
generation.

Within PSiGene's catalog, the pattern interface, defining the structure as
well as the participating elements of a pattern, is expressed with name:type
pairs as formal parameters. The name denotes the name of the participating
element, the type shows which parts of other component models are eligible

278 J. P. Riegel, C. Kaesling, and M. Schiitze

for binding, e.g., classes, relations, methods, and so on. Based on the formal
parameters, the (syntactical) correctness and completeness of pattern
bindings can be checked by tools. With that, the formalization builds the
syntactical framework for a pattern language, as the cooperation of patterns
can be expressed with formal bindings. Furthermore, the code generator gets
sufficient information to create component code.

Table 1 Excerpt from the pattern catalog
Category Sub-Category Patterns Description
Framework Primitive Variable Value Access an attribute
Structural
Adaptation

BufferedV alue Attribute buffer that is mainly
used in conjunction with a
Pijl_e

Indirection FollowRelation Delegation along a relation
Traversal Collect connected objects

without specifying a path
Redirection MethodBranch Branch if condition is met
Pipes and Pipe Specify data flow
Filters

Filter Activity when using a Pipe
Distribution AttributeProxy Used for distributed access

Simulation Control Actuator Set attributes with events
Control

ContinuousComput Periodic method invocation
ation

State StateMachine Simple finite state machine
Machines

StateMachineActi ve State machine using
conditions

User Interface Display Display Attribute Display an object's attribute
DisplaySlider Display attribute as a slider

Domain Simulation ThermalMass Calculate temperatures
ThermalJunction Compute heat flows

The code templates are split into smaller fragments . Each fragment
consists of code in a given programming language, enriched with macros
that denote the variable parts of the code. Currently, we support Smalltalk as
the target language, however, provisions have been made to generate code
for other object-oriented languages as well. During code generation, the
generator collects the fragments, "personalizes" them by replacing the
macros, and assembles the resulting code to methods. Macro replacement
can be as simple as string exchange or it can mean to replace a macro with
other, complex code fragments recursively. The definition of replacement

Modeling Software Architecture Using Domain-Specific Patterns 279

strategies and code fragments is supported by inheritance and by pattern
aggregation.

2.2.1 Extensions to PSiGene

Components generated by PSiGene do not work in isolation, but are
embedded into a surrounding application with an underlying software
architecture determined by the application domain and other forces . For
earlier versions of PSiGene, this application architecture was fixed, and
consequently, the component architecture was fixed, too. There were
architectural aspects that have been addressed by PSiGene, e.g., the degree
of multithreading in a simulator or the possibility to create distributed
simulators. However, the decision about architectural elements has been
made implicitly, while choosing patterns that determined other simulation
aspects. For example, by using the Sensor and Actuator pattern to simulate
hardware interfaces, the user implicitly enabled distributed simulation and
influenced the component's and application's interface. As we started to
apply PSiGene to other application domains, we realized that our approach
would become more general and the modeling would be significantly easier
if we were able to specify the architecture of applications explicitly. The
following section will illustrate how we adapted the latest version of
PSiGene (in particular the pattern catalog) to capture and model
architectural styles, and how we generate code that implements these styles
automatically from the models.

3. SOFTWARE ARCHITECTURE WITHIN
PSI GENE

The architecture of a software system can be modeled following
architectural styles (see Buschmann et al., 1996, and Bass et al., 1998).
Styles give concrete hints on how to construct and organize a system. For
example, following the Client-Server style leads to a system where several
clients communicate with one or more servers. The exact behavior of a
specific client or server is independent of the architectural style and must be
specified separately. Tracing which style leads to which component
structure makes the software more maintainable and understandable.

Usually several styles can be identified in a component's architecture.
Each style can be seen as a set of constraints on an architecture. These
constraints define a family of architectures that satisfy them (Bass et al.,
1998, p. 25). Some of these constraints can also be expressed with design
patterns (compare Monroe et al., 1997). Such a pattern includes the context

280 J. P. Riegel, C. Kaesling, and M. Schutze

in which a style can be applied, the forces it resolves, the consequences, and
the structure of the style. In addition to this, patterns contain a guide on how
to apply them.

Finding concrete patterns that reflect an architectural style is not easy:
styles are an abstract description of facets of a software architecture,
whereas (PSi Gene-) patterns are usually applied to smaller parts of a
component and reflect concrete design decisions rather than organizational
structures.

We formalized some architectural patterns so that they can be used
within PSiGene. Their binding enforces a certain architecture and code can
automatically be generated. The main drawback of this "formal" description
of architectural styles is that PSiGene patterns cannot capture the whole
bandwidth of possibilities how a style can be implemented: only a limited
number of domain-specific implementation strategies can be included in a
single pattern because otherwise code generation would be impossible and
the binding would become far to complex. This restriction, however, doesn't
count as much, because our patterns don't aim to be universally applicable
but are only used in one domain. When focusing on one domain,
architectural styles occur only in few variants.

As explained before, the previous version of PSiGene used architectural
styles mostly implicitly: the patterns concentrated on solving a certain
(simulation) problem and therefore they contained behavioral aspects as
well as structure and other architectural components. For small models this
was convenient, but when modeling complex simulators or when adapting
PSiGene to other domains it is desirable to be able to model the architecture
more explicitly. To do so, we reengineered some of our patterns and added
new ones to reflect certain properties of architectural styles.

3.1 Architecture in PSiGene

All simulation components that are modeled with PSiGene share a
common basic architecture. Some parts of this architecture are fixed while
other parts can vary from simulator to simulator. Figure 3 gives an
overview.

A set of fixed components builds the framework that houses customized
simulation components. The framework is used by inheriting from or
delegating requests to framework objects or classes. Three major
components are used: a GUI library to display simulated objects and to
stimulate the simulator, an 110 library to communicate with other
applications and to log simulator runs, and the kernel library which is
responsible for scheduling and event-handling. The structure and behavior

Modeling Software Architecture Using Domain-Specific Patterns 281

of the simulation components, however, varies for different simulators in
order to match the needs of the applications. Variable aspects are:
- component structure (i.e., class models)
- component functionality and behavior

non-functional requirements (e.g., timeliness, accuracy)
- component integration: glue code to connect to the framework

r----

GUI-Iibrary

YO­
library

---,

Figure 3. Architecture of a building simulator

3.1.1 Architectural styles in PSiGene

hbrary

sunulauon

arChne'cture)

()

relations

c]
schema

Several architectural styles are used to model a building simulator. The
following table (Table 2) gives an overview of the styles that occur in
PSi Gene.

Two styles, Repository and Pipes and Filters describe data aspects of the
model. Our components are modeled using class diagrams. Different
components can share parts of these diagrams to have access to the same
data. Methods to access such a data repository are automatically generated.
Data exchange within one component is modeled with the Pipe and Filter
patterns. The communication channels are seen as pipes, and activities to
trigger the data flow are modeled as filters (see next chapter).

The application framework implements the framework style. Framework
components are represented by class diagrams and can be incorporated into
the models using object-orientated mechanisms and patterns.

282 J. P. Riegel, C. Kaesling, and M. Schutze

Since our kernel library is event-driven, all active simulation objects
must be able to receive and evaluate events. Event handling is also modeled
with patterns (such as Actuator or ContinuousComputation).

In this section we have shown how the architecture of a simulation
component looks like and which architectural styles occur implicitly by
using PSiGene. Some styles can also be expressed explicitly with patterns,
as we will illustrate with the example in the next section.

Table 2. Architectural styles in PSiGene

Architectural
Style

Repository
Pipes and Filters

Framework

Layers

Model-View­
Controller
Distribution I
Event Systems

Microkernel

Occurrence

Data exchange between components
Specify data flow between simulation
objects and identify active objects
Application framework

Accessing libraries (via delegation)

Used in the GUI library. The 'Model' is
part of the simulation component
Network communication with other
applications (110 library) or distributed
simulation/scheduling (kernel library)
Useful to encapsulate communication
aspects esp. in the kernel library

4. EXAMPLE

Modeling Notation I
Support

Class diagrams
Pipes and Filters patterns

Class diagrams, schemas,
patterns
Indirection, control, and
display patterns
GUI patterns

Patterns and library
parameters

Patterns plus hierarchical
class diagrams (not yet
supported by
PSiGene!MOOSE)

Up to now, the software architecture of our building simulator models
was defined by the framework: the libraries, the structure of our patterns,
and by the way the class diagrams are constructed. Many of the patterns
addressed behavioral aspects as well as other software architectural aspects.

For example, the Therma/Junction Pattern is used to simulate the
junction of two adjoining thermal masses. A thermal mass is a simulation
object that has a relevant heat capacity. Examples are rooms, radiators, or
the environment. A thermal junction is typically a wall or a window. When
two thermal masses are adjacent, they exchange energy through heat flows.
The Therma/Junction pattern can be used to calculate the heat flow between
any two of those masses. The heat flow depends on the difference of
temperatures of the adjoining thermal masses and on the thermal resistance

Modeling Software Architecture Using Domain-Specific Patterns 283

of the separating (i.e. , insulating) material. The first version of the
ThermalJunction pattern assumes that it can somehow access the required
temperatures and the thermal resistance by calling a method. Other patterns
like FollowRelation or Traversal must provide this access methods (usually
by delegation to appropriate objects).

Figure 4 shows a part of the model for the simulation of heat flows
through a simple wall. The class diagram describes how rooms are
connected via surfaces and walls. The lower part of Figure 4 shows the
pattern instances. ThermalJunction is bound to the class Suiface and
implements the calculation method. To collect the data for this calculation,
several FollowRelation patterns are required. The temperature of both
neighboring rooms has to be collected and the cumulative thermal resistance
of the wall and both surfaces must be computed.

} diagram

temperature getTemp calculate getThennRes thermalRes } pattern bindings

} pattern instances

Figure 4. Simulating heat flow

ThermalJunction implements an action (calculation of the heat flow) that
is closely related to a data flow (collecting temperatures and thermal
resistances). ThermalJunction concentrates on the action part and also
assumes the required data are present in a certain way. For small object
models this is adequate as data flow is relatively simple. As models grow
more complex, software architecture becomes more and more important. For
the "thermal junction" problem this means, that the data flow aspect
becomes more important (and more difficult to model) and the coupling
between the data flow and the activity view has to be well considered.

Data exchange between simulation objects usually consists of two parts:
a communication channel (object relations or possibly a network
connection) and an activity that triggers the exchange. Such pipelines occur
in many variants: push-driven, pull-driven, synchronized push/pull,
distributed, buffered, and so on. To be able to model such a variety of
different data flow possibilities, it is useful to decouple the data flow aspect
from the functional aspects and model it separately.

284 J. P. Riegel, C. Kaesling, and M. Schiitze

Figure 5. Data flow between two rooms

._____
pull

push

The new version of Thermallunction focuses on the functional view
only. The data to calculate a heat flow must still be present but the pattern
doesn't prescribe how to access this data. Two new patterns, Pipe and
Filter, can be used to model data flow. In our example (Figure 5 and Figure
6), we have a data flow (i.e., a pipe) from the class Room to Wall, and an
activity (i.e., a filter) to calculate the heat flow.

Whether the data flow is pull- or push-driven and/or distributed over
more processes or computers is characterized by configuring parameters of
the Pipe pattern. Thermallunction can be seen as a Filter (from the data
flow view) and bound to our Filter pattern (see Figure 6).

calculate

functionality

Figure 6. Different views for functionality and data flow

4.1.1 A Pipes and Filters pattern

This section describes our Pipe and Filter patterns in more detail. It is
intended as an example of how software architecture can be expressed with
PSiGene-like patterns. We took the pattern Pipes and Filters from
Buschmann et al. (1996), which describes most properties of data flows as
they occur in our domain (transfer, buffering, synchronization) and adapted
it to our needs. The general static structure of a pipeline is shown in the
class diagram of Figure 7. A pipe is used to connect a provider with one or
more consumers. Push or pull methods are used to access data elements in
the pipeline. Additional processing is done using filters .

Modeling Software Architecture Using Domain-Specific Patterns 285

Capturing the idea of the Pipes and Filters style in generative patterns is
possible because the underlying structure is not too complex. However,
dealing with the many variants in which pipelines occur is not trivial. We
have realized the Pipes and Filters style as two individual patterns "Pipe"
and "Filter." They both implement a part of the Pipes and Filters structure
(see Figure 7).

To identify pipelines in a class diagram, the patterns structure must be
mapped to elements from that diagram. This structure mapping is done by
assigning values to formal parameters of the Pipe and Filter patterns (see
section 2.2).

Pipe

buffer Pipe
pull
push(data)

read Data

readData

pu hData push(dara)

Figure 7. Object structure of the Pipes and Filters style (and pattern)

The following list shows the formal parameters of the Pipe pattern:
objects:

source
the data source object
(read as formal parameter source:object)

destination
the data destination object (sink)

- attributes:
sourceData (use at source)

the attribute that serves as the source for the data transfer

286 J. P. Riegel, C. Kaesling, and M. Schiitze

destinationData (implement at destination)
the new proxy attribute that is the sink of the transfer

- relations: entry and exit relations for the pipeline
- methods:

read (optional, implement at destination)
reads data from the source and writes it to the sink.

push (optional, implement at source)
triggers a data transfer. The initiator is the source object.

pull (optional, implement at source)
triggers a data transfer. The initiator is the destination object.

notify (optional, use at destination)
this method will be invoked at the destination object, if the data at
the source has changed.

request (optional, use at source)
this method will be called at the data source if the destination
object requires an actual value of the attribute. The source object
has to transfer the current value (if it has changed since the last
time).

- properties:
bufferSize (optional, preset)

if this property is set, a buffer is realized with the specified size.
useProxy (optional, preset)

this property instructs the generators to allow distribution of the
participating objects over host-boundaries. A proxy mechanism is
implemented.

As one can see, some parameters are optional and don't have to be
bound. For example, a push-driven pipe does not need to bind the "pull"
parameter. The Filter pattern is described by similar means. It is bound to
calculation methods with a formal parameter calculate:method(use).

Data flow aspects are modeled independently of other aspects.
Interaction occurs only at well defined points. Functional patterns like
ThermaUunction or ThermalMass are bound at the filter component using
the formal parameter "calculate." Activity patterns like
ContinuousComputation can be bound using the parameters "pull" or
"push" from the pattern Pipe, or using the optional filter parameter
"compute."

A small example demonstrates the pattern bindings for the model in
Figure 6. After binding values to the formal parameters for all pattern
instances, a binding description file is created. It looks as follows :

"ThermalJunction 1 - calculates the heat flow through a thermal junction element"
Therma!Junction

bind: 'target' to: 'Surface';

Modeling Software Architecture Using Domain-Specific Patterns 287

bind: 'calculate' to: 'calculateHeatAowForRoom';
bind: 'thermalResistance' to: 'thermalResistance';
bind: 'area' to: 'area'.

"Filter l - calculates the heat flow through a thermal junction element integrating the pattern
instances ThermalJunctionl and Pi pel to PipeS"

Filter
bind: 'target' to: 'Surface';
bind: 'calculate' to: 'calculateHeatAowForRoom';
bind: 'request' to: 'requestHeatAowForRoom';
bind: 'arguments' to: #('temperatureOfRoom' 'temperatureOfSurface' 'resistanceOfRoom'
'resistanceOfSurface');
bind: 'getArguments' to: 'argumentsHeatAowForRoom';
bind: 'notify' to: 'notifyAttributeChangedForHeatAowForRoom';
bind: 'result' to: 'heatAowForRoom';
bind: 'initValue' to: '0.0'.

"Pipe I - provides the thermal resistance of a room at a connected surface"
Pipe

bind: 'source' to: 'Room';
bind: 'destination' to: 'Surface';
bind: 'sourceData' to: 'thermalResistance';
bind: 'read' to: 'readResistanceOfRoom';
bind: 'exit' to: 'radiatorSurfacesOfRoom';
bind: 'entry' to: 'roomOfradiatorSurface';
bind: 'destinationData' to: 'resistanceOfRoom';
bind: 'push' to: 'pushThermalResistanceToSurfaces';
bind: 'notify' to: 'notifyAttributeChangedForHeatAowForRoom'.

"Pipe 5 - provides the calculated heat flow from Surface to Room"
Pipe

bind: 'destination' to: 'Room';
bind: 'source' to: 'Surface' ;
bind: 'exit' to: 'roomOfSurface';
bind: 'entry' to: 'surfacesOfRoom';
bind: 'read' to: 'readHeatAowFromSurface' ;
bind: 'destinationData' to: 'heatFlowFromSurface' ;
bind: 'sourceData' to: 'heatAowForRoom'.
bind: 'pull ' to: 'pul!HeatAowFromSurface';
bind: 'request' to: 'requestHeatAowForRoom'.

There are 3 objects classes in this example: a Room is connected with a
Surface to a Wall . The instances of Room have to recalculate their
temperatures in fixed time intervals. The rooms request the calculation of
the heat flows from the adjoining objects indirectly by reading the local
attribute "heatFlowFromSurface" (the calculating filter for the temperature
at Room calls pullHeatFlowForRoom first, before accessing the attribute).

288 J. P. Riegel, C. Kaesling, and M. Schutze

Since the generators know that rooms and surfaces are connected by a
one-to-many relation, this attribute (implemented by "Pipe 5") holds a
collection of heat flow values. Each of these values is calculated by an
instance of the ThermaUunction pattern, the calculation is controlled by
"Filter 1 ". This filter collects all required arguments, triggers the calculation
while providing those arguments, and, if necessary, delivers the result via
"Pipe 5". The following code fragment was generated from the above
bindings:

argumentsHeatFlowForRoom
"Collects all arguments for the calculation of heatFlowForRoom"
I args I
args :=Array new: 4.
args at: 1 put: self temperatureFromRoom.
args at: 2 put: self temperatureFrom Wall.
args at: 3 put: self thermalResistanceFromRoom.
args at: 4 put: self thermalResistanceFrom Wall.
"args

computeHeatFlowForRoom
"Does the calculation and stores the result in heatFlowForRoom"
"self heatFlowForRoom: (self calculateHeatFlowForRoom: self
argumentsHeatFlowForRoom)

In our example the access to "heatFlowFromSurface" is triggered by a
separate pull method (Pipe 5 is pull-driven). The other pipes are push­
driven, which means that the data transfer is initiated by the sources of the
pipe.

As one can see, our patterns "Pipe" and "Filter" realize a flexible data
flow mechanism with synchronization capabilities. They separate this aspect
from the functionality, which in this case is handled by Thermallunction .
Thermallunction in tum does not care about data flow issues.

Depending on the binding, different transport and synchronization
mechanisms can be implemented by Pipe and Filter. Some synchronization
combinations are shown in Table 3.

Table 3. Some possible combinations of pipes and filters
Argument Filter Result Pipe Comment
Pi es
push-driven inactive

pull-driven active

pull-driven inactive

push-driven

push-driven

pull-driven

Each time a new argument is delivered,
the result is calculated and propagated.
The calculation of the filter is triggered
by an external activity. The arguments
are requested and the result is
propagated.
If someone requests the result, it is

Modeling Software Architecture Using Domain-Specific Patterns 289

Argument
Pi es

push-driven

Filter

active

Result Pipe

pull-driven

Comment

calculated after requesting all required
arguments.
This is the synchronized combination of
the first three examples

The required synchronization mechanism depends on the frequency of
data changes and on how the transport is triggered. The pattern interface
allows to abstract from the concrete transport mechanism. Distributing the
pattern or buffering values can be achieved by binding additional patterns
like AttributeProxy or BufferedVariable.

4.1.2 Code generation

Each pattern instance in PSiGene comes with a partial code generator. It
is responsible for generating adequate code from the patterns code templates
and the pattern bindings. Every pattern instance is analyzed in its binding
context before the generation is started. Therefore, tailored and optimized
code can be created.

To generate code for a pattern, not only its own bindings have to be
considered, but also other patterns bound to the same target objects. For
example, a propagating filter needs information about the pipe to which data
changes should be reported. Internal properties (additional bindings) are
used to allow the combination of patterns and are used to generate optimized
code. Application code is generated by assembling tailored code templates
that are part of each pattern. A very simple code fragment may look as
follows:

'{compute}
"Does the calculation and stores the result in {result}."
"self {result}: (self {calculate}: self {getArguments})'

Keywords in brackets ({ }) are used as macros. Usually code generation
can be done by choosing code templates and replacing all macros with other
templates or bound values. More complex patterns (like Traversal) also use
code synthesis techniques. For further reading see Heister et al. (1997).

5. DISCUSSION

This work combines different software engineering techniques. Structure
models are used together with a pattern based design strategy. Application
generators are used to implement a simulation component. The approach can

290 J. P. Riegel, C. Kaesling, and M. Schiitze

be seen as a domain specific software architecture (DSSA, see Mettala and
Graham (eds.), 1992). Domain engineering in the field of building
simulation resulted in the overall architecture of a simulation component
(Figure 3) and in the implementation of the libraries. Also our pattern
catalog is domain-specific and part of the domain model. Reference
requirements are included in the informal parts of our patterns, prescribing
which patterns could be used together or giving hints how certain simulation
problems can be solved. To design a simulation component, only the
application engineering has to be performed. This includes especially setting
up or refining a class diagram for the building structure and instantiating and
binding patterns from the catalog. Tool support is given for these tasks. A
detailed process of this modeling procedure is not yet defined and will be a
topic for future works.

The revised pattern catalog contains behavioral patterns together with
patterns describing architectural styles. It is partitioned into categories that
deal with different aspects of simulation (the partitioning supports aspect
oriented programming (AOP), see Kiczales, 1997). Each category can be
seen as a view and be modeled separately. We are currently extending the
pattern editor to support views.

The main advantage of the new catalog is that we have found a way to
express parts of the component's architecture in (design) models. Patterns
can be used to implement or refine an architectural style. The configuration
is done by binding a pattern instance to the simulator model. These patterns
have a fixed formal interface and code templates (see Heister et al., 1997)
and therefore cannot express the whole variety of a style. But as our domain
is limited, it is sufficient to use only a few domain-specific implementations
of an abstract style.

All our patterns must be able to work together: they form a system of
patterns (compare Buschmann et al., 1996). Each individual pattern is used
to model a part of the component, but with the right combination of patterns
a building simulator can be designed. For example, with our Pipe and Filter
patterns, a data flow between two objects can be defined. At both ends of
the pipeline activity may take place. This is usually a calculation of values.
The Filter pattern is used to trigger such an activity; the activity itself must
be modeled elsewhere (i.e., with patterns from another category). A future
topic is to investigate how such dependencies and constraints between
patterns can be formally expressed.

Modeling Software Architecture Using Domain-Specific Patterns 291

6. CONCLUSION

With architectural patterns it is possible to model architectural styles
separately. The pattern binding concept of PSiGene allows to combine
different pattern instances and to apply them to class diagrams. Therefore,
architectural styles can be integrated using a formal interface. The main
advantage of the architectural patterns is a better maintainable system
(model changes take effect only locally), better tailored components, and the
ability to handle more complex models. Also, our pattern catalog became
more domain independent. We still have some special simulation patterns
but they are able to work together with more abstract and more general
architectural patterns. We believe that these architectural patterns can easily
be adapted to other domains. Future work will investigate the applicability
of our approach in other domains.

Our patterns do not provide the whole bandwidth of all of their possible
applications but only a domain-specific subset. This makes code generation
and optimization possible but restricts the universal usage of the patterns a
bit. Finding more variants and new patterns is also a topic for future works.

A small disadvantage of our new pattern catalog is that it takes more
time to model small simulation components as each aspect has to be
designed separately. But for larger models this separation of concerns is
mandatory and leads to more flexible simulators (e.g., nonfunctional
requirements like distribution can be modeled and documented explicitly
and more easily).

The pattern-based approach to software architecture seems to be feasible
and worked well for PSiGene. Variants of components can be created within
short time, and a component can match the architectural demands of an
application by changing abstract architectural properties in the models. We
therefore believe that our approach to architecture modeling helps the
software development in providing and using tailored components.

REFERENCES

Altmeyer, J., Riegel, J.P., Schiirmann, B., Schiitze, M., and Zimmermann, G. (1997)
Application of a Generator-Based Software Development Method Supporting Model
Reuse, 9th Conference on Advanced Information Systems Engineering (CAiSE), Barcelona

Bass, L., Clements, P., Kazman, R. (1998) Software Architecture in Practice, SEI series in
software architecture, Addison-Wesley

Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., Sirkin, M. (1994) The GenVoca
Model of Software-System Generators, IEEE Software, September 94

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stall, M. (1996) Pattern·
oriented Software Architecture - A system of Patterns. John Wiley & Sons Ltd.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Patterns, Addison-Wesley

292 J. P. Riegel, C. Kaesling, and M. Schiitze

Heister, F., Riegel, J.P., Schiitze, M., Schulz, S., and Zimmermann, G. (1997) Pattern-Based
Code Generation for Well-Defined Application Domains, European Pattern Languages of
Programming Conference (EuroPLoP), Siemens Technical Report 120/SWl/FB, 263-273

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. Irwin, J.
(1997) Aspect-Oriented Programming, PARC Technical Report, February 1997, SLP97-
008 P9710042

Kim, J. J., Benner, K. M. (1996) An Experience Using Design Patterns: Lessons Learned and
Tool Support, Theory and Practice of Object Systems, Vol. 2(1), 61-74

Kruchten, P. B. (1995) The 4+ I View Model of Architecture. IEEE Software, 42-50,
November 1995

Lieberherr, K. J. (1996) Adaptive Object-Oriented Software Development: The Demeter
Method with Propagation Patterns, PWS Publishing Company, Boston

Mettala, E., Graham, M. H., eds. (1992) The Domain-Specific Software Architecture
Program, Special Report CMU/SE/-92-SR-9, Carnegie Mellon University, Pittsburgh

Monroe, R. T., Kompanek, A., Meltom, R., Garlan, D. (1997) Architectural Styles, Design
Patterns, and Objets, IEEE Software, January 1997

Schiitze, M., Riegel, J.P., and Zimmermann, G. (1997) A Pattern-Based Application
Generator for Building Simulation, European Software Engineering Conference (ESEC),
Ziirich

	Modeling Software Architecture Using DomainSpecificPatterns
	1. INTRODUCTION
	2. PSIGENE
	2.1 System Overview
	2.2 Pattern Formalization and Pattern Catalog

	3. SOFTWARE ARCHITECTURE WITHINPSI GENE
	3.1 Architecture in PSiGene

	4. EXAMPLE
	5. DISCUSSION
	6. CONCLUSION
	REFERENCES

