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Abstract: The main purpose of this work is the static detection of orphan messages in 
actor based languages. An orphan is a message which may not be handled by its target 
in some execution paths. Two kinds of orphan messages may be encountered, i.e., safety 
and liveness ones. Safety orphans occur when all target behaviors on a given execution 
path do not know how to handle the message. Liveness orphans occur when one of the 
target behaviors in each execution path knows how to handle the message but the target 
is deadlocked and will never assume the corresponding behavior. This paper presents 
a safe static analysis which detects all safety orphan messages in actor-based programs. 
This result extends previous work derived from sequential object-oriented languages type 
systems to non-uniform behaviors. 
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ability, Safety orphans, Static analysis, '!Ype inference, Subtyping 

Introduction 

Most of the type systems designed for concurrent objects rely on the uniform behavior 
assumption: an object is a) always able to handle requests for the same set of methods, 
and b) always accessible (each method can be handled any number of times). This 
hypothesis allows the use of type systems designed for sequential object-oriented 
languages (either kind-based ones as proposed by Vasconcelos and Tokoro [24] and 
by Kobayashi and Yonezawa [15], or subtype-based ones as advocated by the authors 
in [6]). In the case of objects with non-uniform behavior (Le., short lifetime objects 
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or behavior changing actors), an object may be able to handle a request to one of its 
method at a given time and not be able to handle it at some other time. If the request 
cannot be handled, the associated message is called a "safety orphan". The previous 
type systems could only detect rather trivial safety orphan messages. The system 
described in this paper extends our subtype-based previous work in order to catch all 
potential safety orphans in actor-based programs. 

In this purpose, a new safe type-based abstraction of all possible behaviors for 
a given actor is proposed. We extend a Primitive Actor Calculus introduced in the 
first section and defined in a previous paper [4, 6] in order to give a simple semantic 
characterization of safety orphan messages. 

A sound type system based on the type abstraction is then presented. It rejects 
all the programs which may produce safety orphan messages. In conclusion, related 
works and possible extensions are discussed. 

1 CAP: A PRIMITIVE ACTOR CALCULUS 

Type systems for concurrent calculus have been the subject of many recent studies 
[22, 14, 12, 10]. Most of these investigations address the problem of typing variants 
of the 1r-calculus. Various encodings of concurrent objects in the 1r-calculus or similar 
formalisms have been proposed [20, 9, 25, 21]. Message labels and actors mail 
addresses are usually both expressed using names. Therefore, the typing of encoded 
programs generally lead to type information which do not reflect the structure of the 
original program. In a previous work on ~yping objects and actors, Vasconcelos et 
al. advocated the use of an extension of the asynchronous 1r-calculus with record-like 
objects (see [24]). Their calculus relies on replication in order to express the recursive 
structure of objects. As actors can change their behavior when they handle a message, 
their behaviors are defined as mutually recursive object structures. The replication 
based encoding of mutually recursive structures produces type information which do 
not reflect this recursive structure. Therefore, an extension of Vasconcelos and Tokoro 
calculus of concurrent objects allowing mutually recursive behaviors was required. A 
dedicated process calculus CAP which expresses syntactically the key features of the 
Actor model was then defined. 

As in the 1r-calculus [16] and in the v-calculus [11] the basis of the calculus is the 
name representing the actors mail addresses. Following Abadi and Cardelli's calcu­
lus of Primitive Objects [1], actor's different behaviors are represented by mutually 
recursive records of methods only accessible by communication. 

CAP does not follow all the principles of Agha's actors, but provides behaviors and 
addresses as primitives that allow to express very easily actor programs. Syntactically, 
the sharing of the same address by several different actors is not forbidden. Following 
Kobayashi et al. in [14], linearity could be enforced for the subset of CAP used in this 
paper by restricting the use of weakening and contraction on the typing environment. 
However, typing full CAP calculus, which provides a restricted form of reflexivity 
by allowing actors to change the behavior of other actors, requires the use of a more 
sophisticated analysis described in [5]. In order to reduce the already complex presen­
tation of our analysis, the linearity analysis will not be recalled in this paper. So, we 
will assume that CAP programs respect the linearity hypothesis. 
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The remaining part of this section is devoted to a quick introduction of CAP (a more 
precise presentation of the calculus and its semantic are available in [4,6]. 

1.1 CAP syntax 

As a first example of a CAP expression, we construct a term corresponding to the 
"one-slot buffer" beginning with an empty state which is sent a put message. 

va, b( a I> [put( v) = ((e, se)(e I> [get(e) = ((e', s,)(e <l rep(v) II e' I> Se)])] 
IIa<lput(b)) 

First, we "create" the two actors names a and b using the v operator. An actor 
is built (via 1» by the association of an address (a) and a behavior. In the previous 
example, the behavior of a has two states defined recursively (via (). The first state 
empty only understands one put message and then switches to the second state full 
where it can treat only one get message. Before switching back to empty, it sends (via 
<I) the value coming from the corresponding put request to the argument of the get 
message. 

When an actor accepts a message, ((e, s) binds the actor's address to e (called ego) 
and its current behavior to s (called self). This operator is inspired by the '" defined 
by Abadi and CardeUi [1] to formalize self-substitution in objects. In our context, the 
capture of self and ego is used to formalize behavior changes without introducing a 
fixpoint operator. 

To define CAP syntax the following sets are used: N an infinite set of name symbols 
(a, b, ei EN), Van infinite set of variable symbols (s, Si E V) and L a finite set of 
feature labels (mi E L). Sequences of symbols are represented by a tilde O. 

A configuration is a concurrent combination of actors and messages sent to actors. 
Their set C is built by the following grammar : 

C .. - r/J - empty configuration 
va C - address creation 
C " C - concurrent combination 
a I> s - a behavior installation 
a I> [mi(ci) = ((ei, Si)CiiElj - a behavior installation 
a <I m(b) - a message sending 
( C ) - associativity and priority 

1.2 CAP semantics 

CAP semantics is defined in Milner's fashion (see [16]) using a term congruence to 
simplify the reduction rules. 

The syntax of CAP contains three binders: v which binds a name, ((e, s) which 
binds the name e and the variable s and lastly mi(ci) which bind the names Ci. The 
notions of free names FNO, free variables.rvO and substitution (]" = {C/x} are 
naturally defined. Note that substitution is only defined if C and x are "coherent" 
(whether C and x are names or C is a behavior and x a variable). 

We then build "=:" which is the smallest congruence relation on CAP expressions 
defined by the following principles: 
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1. if C1 and C2 are a-convertible then C1 == C2 

2. C, II, ¢J is commutative monoid 

3. the order of method definition in behavior formation is not significant 

4. if a fj. :FN(D) then va(C) II D == va(C II D) 

The reduction of CAP expressions can then be defined as the smallest relation"--+" 
generated by the following set of inference rules: 

D=C C--+C' C'=D' 
STRUcr :----=----=---­

D --+D' 
C --+ C' 

PAR: C II D --+ c' II D 
C --+ C' 

RES : -Ya-,C;::;----+-Y-a-::C::::c' 

k E I Zen(b) = len(ck) 
COMM:---~------~~-~~------

a <l mk(b) II at> [mi(ci) = (ei' SdCiiElj 
--+ Cdajed{[mi(ci) = (ei' Si)CiiEljjsk}{bjcd 

A specific configuration called Error is introduced in order to model the dynamic 
occurrence of an error. Two kinds of dynamic errors may occur during the reduction 
of a CAP term. 

The former corresponds to an arity mismatch between a message and the corre­
sponding definition in the behavior of the target actor: 

This kind of error has been thoroughly studied in the literature, including work 
based on kinded types by [24,15] and based on subtyping [6]. 

The main contribution of this paper is the detection of the latter kind of error, i.e., 
safety orphans (which will not be handled by any of their target future behaviors). 

1.3 Safety orphan messages 

A decorated (or instrumented) version of CAP is used to present a formal characteriza­
tion of safety orphan messages. Each actor (Le. the binding of behaviors to addresses) 
will be decorated with 0", the set of messages that it will be able to handle in its future. 

0-

The only change in CAP syntax is that we replace (t» by (t». The annotation (0") can 
be seen as a type which will be computed by our inference algorithm. 

Safety orphan messages can then be characterized by the semantic value Error and 
its introduction rule: 

ORPH·ERR: if m rt. 0" then a <l m(v) II a g, [mi(xi)···j --+ Error 

As in any explicitly typed calculus, we need to ensure that an expression is well­
decorated. 

Definition 1.1 (Well decorated CAP expression) A closed decorated CAP expres­
sion C is well decorated: 
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1. if there exists a derivation 0 f- C : Win the following deduction system, 

2. and if the decorations are the least jixpoints of the system of equations generated 
by the rule (Wd-Behavior). 

E f- C : W means that the configuration C is well-decorated in the environment 
E (which contains associations both between names and decorations and between 
variables and decorations). E f- B : (T means that the behavior B (either a variable 
or a behavior) can only be used in an actor decorated with (T in the environment E. 

(Wd-Empty) E I- cP : W 
E, a : O'a I- C : W 

(Wd-Rest) E I- va C : W 
EI-C:W EI-D:W 

(Wd-Parallel) E I- C II D : W 

. Vie] E,ei:O'i,Si:O'I-Ci:W( u( {}») 
(Wd-BehavlOr) E I- [m.(x.) = r(e' s.)C.iElj. 0' 0' = 0'. U mi 

...... ':I t, t t· iEI 

El-a:O' EI-B:O' 
(Wd-Actor)-----::-----

El-agB:W 
(Wd-Message) (b) EI-a<]m :W 

We do not give here the usual introduction and extraction rules for the environment. 

The following actor described in CAP instrumented syntax is well decorated, the 
proof tree is given below. 

{m,p} {p} {p} 
a I> [mO = ((e,s)(e I> [PO = ((e',s')(e' I> s')] 

E I- e' : 0'0 E I- s' : 0'0 

E I- e' 'G: s' : W 
{a:O'a,e:O'e,S:O'a}l-e:O'e { } (P() j a: O'a,e: O'e,s: O'a I- = ... : O'e 

{ }I- {a:O'a,e:O'e,s:O'a}l-e'G:~O="'l:W 
a: O'a a: O'a {a: O'a} I- [mO = ... : O'a 

0'" 
{a: O'a} I- a I> [mO = ... j : W 

AvecE = {a: (Ta,e: (Te,s: (Ta,e': (Te,s': (Te}. 
This proof tree generates the following system: (T a = (T e U { m } and (T e = {p} U (T e 

which least solution is: (Te = {p} and (Ta = {m,p}. 

2 TYPE SYNTAX AND SEMANTICS 

To begin with, a crude and informal but intuitive description of the type abstraction is 
proposed. 

Interfaces represent both inputs (i.e., the set of messages which can be handled 
by an object) and outputs (i.e., the set of requests (or methods) which will be sent 
to the object). The main difference between objects and actors is that actors can 
change dynamically their behavior. Therefore, if an interface is associated to each 
behavior, then a given program execution for an actor can be described by a sequence 
of interfaces. In order to take into account every possible execution, an actor can be 
described by a graph whose nodes are the interfaces of the actor's possible behaviors 
and whose edges correspond to behavior changes. This graph is a regular tree whose 
root is the initial behavior of the actor. An execution path is then a branch or'this tree. 
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A safe abstraction of all the branches is required in order to be sure that messages 
sent to the actor will not become safety orphans. A simple way to obtain such an 
abstraction is to compute the intersection of all the target possible behavior interfaces 
and then only allow to send messages which are present in this intersection. This 
solution is yet too restrictive because it forbids the use of message labels which are 
not present in all behaviors. For example, in the case of the one-place buffer behavior 
previously defined, no message can be sent to it. Following the work of Kobayashi and 
Yonezawa [15], union was used instead of intersection in a preliminary work leading 
to a type system which could only detects crude safety orphans (see [6]). 

The analysis proposed in this paper combines the two previous approaches: the 
multi-union of all the behavior interfaces along a given branch of the tree and the multi­
intersection of all the multi-unions. Multi-operators take into account the number of 
times (w representing unknown or infinite) a message may be sent or handled. Indeed, 
the same message can be handled by several behaviors in the same path and each 
occurrence must be taken into account. In order to deal safely with the message 
parameter types, a multi-flattening operator which is a natural multi~set extension of 
the flattening operator described in our previous paper [6] must be defined. This 
operator combines the possible behaviors of a given actor in a safe way. 

In this new system, interfaces are still used as types but a mUltiplicity (finite or w) is 
associated to each method label in the interface (producing label multi-sets instead of 
sets). When interfaces are used to describe inputs, multiplicity represents the number 
of messages (with this label) that can be handled by the behavior. When interfaces are 
used for outputs, it collects the quantity of messages that may be sent to a given target. 

In the case of outputs, the type represents an upper-bound of what may happen during 
the execution. To give a better insight on input types, let us consider behaviors as finite 
state deterministic automata in which transitions are accepted messages without their 
parameters (a kind of trace semantic). Our aim is to abstract this input by the multi-set 
of transitions that are common to all paths in the automaton, including infinite ones. 

Let us use the two following automata: 

Automaton 1 Automatonl 

• the former accepts m then p and is abstracted by {m, p} or {p, m}. As message 
sending is asynchronous, the abstraction does not take into account the order 
of transitions (in fact, this information is only required for liveness orphan 
detection) 

• the latter accepts some q, an m, some other m, an r and some p (as described by 
the regular expression "q*mm*rp*") and is abstracted by {m,rfd, r} because all 
the recognized sequences contain at least one m, one r and an arbitrary number 
of p (qW and mW are omitted because none of these messages can be handled 
after handling an m and an r whereas p can always be handled). 
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The second example shows that if there exists a transition that does not appear in 
all the branches, then, the considered type will not contain this transition. 

The main principle of the analysis consists in computing for each name an input 
type and an output type and in comparing them in a "multi-set sense". 

2.1 Expressiveness of the type abstraction 

In order to get a decidable type system, the safe approximation of actors behaviors re­
jects some programs which could not lead to safety orphan messages. This abstraction 
introduces the following constraint in the definition of behaviors : at a given execution 
time, a message can be sent to an actor if there exists, in each execution path, a future 
behavior knowing how to treat this message. 

Consequently, a message that does not appear in the intersection of all the branches 
is hidden and should not be sent to the actor. At a given point in the behavior tree, 
an actor can only be sent safely the messages which are common (and in the same 
number) to all the branches (however, at the next point, he may be sent more messages 
if all the branches can handle more messages). For example, if a message m is sent to 
an actor a, one of the behaviors in each of the branches should be able to handle m. 

An ifthenelse actor (which has only one behavior which can handle either one 
message true, or one message false) has an empty type () and cannot be sent safely 
any message according to the type system. 

In order to override this restriction, an ifthenelse actor must accept a true (respec­
tively false) message and then afalse (respectively true) message. 

Practically, this slight burden did not often occur in our actor-based extension of 
ML where conditionals are treated in the functional part of the language. 

However, this restriction is still a significant improvement from the previous object­
based abstraction which required that all possible behaviors of an actor must know 
how to handle every message which may be sent to the actor. 

2.2 Type syntax and semantics 

T .. - alPI p 
a .. - (mil'l (ai)iEI) IT - interface type 
P .. - (a, a o ) - behavior type 
I' E N* U {w} - multiplicity 

A type is built from the grammar given above where p corresponds to a well-typed 
configuration. An actor is approximated by an interface type: the multi-set of the 
messages it can handle. The lattice of interface types has a top which is denoted: T. 
The behavior types are composed of two parts a and a o• The first multi-set represents 
the messages which can be bandIed by this behavior (its input type), whereas the 
second part accumulates the messages sent by a behavior to itself (actors can send 
messages to their ego). 

Multiplicity arithmetic (N* U {w }) only uses" +" and "-1" defined as usually for 
naturals and verifying w + I' = I' + w = w and w - 1 = w. 
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Given a set of message names L, the set of all possible types is the usual Herbrand 
universe 1{ which is the limit of the following equations: 

1{0 {T} 
1{n+l 1{n U {(m/Li (tt ... tt)iEI) / t; E 1{n, fJi E N* U {w}, {miiEI} ~ L} 

2.3 Unlimited types and environments 

The type system will be defined using two environments. The former will hold the 
behavior and actor types associated to the definition of behaviors; it will also hold the 
bindings of names to behaviors. The latter will hold the multi-set of messages which 
can be sent to actors. 

When a message is sent to a free name inside a behavior, this message may be 
sent several times to the same actor, as the behavior may be assumed several times 
without any change to the external binding of this variable. Therefore, the multiplicity 
associated to the sent messages must be set to w as the number of behavior reductions is 
unknown. Following the work of Kobayashi et al. in [14], this constraint is introduced 
in the type system using unlimited types ((miW (ai)iEI)) and unlimited environments 
(in which ;til types are unlimited). 

2.4 Operations on interface types 

The handling of a message in CAP is equivalent to a ,a-reduction in the ,X-calculus. 
Therefore, an interface type must be contravariant on the arguments of each message. 
Figure 1 contains the definition of the complete lattice of types (1{(~, 0, T, b), A)) 
and of some other operations used in the typing rules. Intuitive descriptions of these 
operations are given below. 

The max-union computes the least upper-bound of two interfaces. It is used to 
model nondeterminism in the choice of the message which will be handled bya given 
behavior. Its dual operation, the min-intersection, is involved in the contravariant 
definition. 

The multi-union is used to combine the effects of several CAP expressions evolving 
concurrently by adding the various multiplicities of a given message. Yet, as shown in 
our previous work [6], the multi-union is not adequate to represent the safe merging of 
the current and future behaviors of an actor. Indeed, it cannot produce a type which 
is compatible with the subtyping relation. We must therefore define multi-flattening 
which safely combines the types corresponding to all possible behaviors of an actor. 

Finally, the typing rules will need two more technical operators. One is devoted to 
express the handling of a message, by decrementing the multiplicity of a given label: 
minus. The other is necessary to generate the unlimited type which is the least upper 
bound of a given type; i.e. saturation. 

The comments of the typing rules will give more details about the type operators. 

2.5 Relation between term decoration and interface type 

Safety orphan messages are defined in subsection 1.3 using a decorated calculus. The 
decoration defines a complete lattice V(~, 0, L p , U, n) on the set of messages appear-



max-union ~ and min-intersection A : 

T~_ 

(m/"; (a.)iEl} A(mjl"j (aj )iEJ} 
TAo< 

multi-inclusion ~ : 

multi-union l±I : 

multi -1:1 attening 1:1 : 

T 

(mk min(l"k ,1";') (ak~aUkE(InJ)} 

0< 

T 
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(mil"; (cii)iEI} \+mk 

T\+m 

{ (mil"; (ai)iEI\{k} ,m~k-l(ak)} if k E I and I'k > 1; 
(m/"; (ai)iEI\{k}} otherwise. 

T 

saturation: 

Figure 1 The lattice of interface types and other operations on types 
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ing in a given CAP term. An interface type can be abstracted by the corresponding 
decoration, and give the greatest type associated to a decoration: 

Ab :1i~V 
Ab((m/"(ai)iEI)) = {mi liE I} 

Co :V~1i 
Co({mi liE I}) = (miW(())iEI) 

Proposition 2.1 The pair (Ab, Co) is a Galois connection between V and 1i : 

This pair will be used to express the type system on decorated terms and to show 
that our inference algorithm can be applied on a non-decorated CAP expression. 

3 TYPE SYSTEM 

The following type system checks that there is no potential safety orphan message in 
a CAP expression. In fact, this system will be defined for the decorated CAP calculus 
in order to present the relation between the interface used in the dynamic detection of 
safety orphan messages and the abstraction of an actor type. However, the resolution 
algorithm has been devised in order to be applied on pure CAP terms. The decoration 
will be computed and implicitly taken into account by the inference algorithm. 

A typing judgment for a CAP expression is: Ej 0 f- Exp : r. E is a standard typing 
environment for names and behaviors. 0 is a message output typing environment 
which holds the messages sent to the free names in the expression. The operations on 
interfaces are easily extended to environments. 

(Empty) E; 0 f- ¢ : ~ 
Ej Oc f- C : ~ Ej OD f- D : ~ 

(parallel) Ej Oc l±J OD f- C II D : ~ 

Following Kobayashi et al. in [14], in the (Parallel) rule, the composition must 
be typed in the Oc l±J 0 D environment, to take into account the messages in each 
sub-configuration. 

E, a: a; 0, a: a o f- C: p( :±l ) 
(Restriction) E 0 L C a _ a o 

j r va : ~ 

Checking for safety orphan messages is done upon escaping the scope of the name 
"a". 

The (Behavior) rule introduces the constraints on the various variables which are 
substituted during a communication (self, ego, message parameters). As we are 
escaping the scope of ego (ei), we must check (as in the (Restriction) rule) that the 
messages sent to it can be handled (a.; ~ a o.). Furthermore, after handling mi it must 
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also be able to treat all the other messages sent to the actor before the communication 
took place (ao \+mi). These two constraints produce {I}. 

The behavior associated type is the min-intersection of the ftattening of all possible 
sequences of behavior changes starting from one of the mi messages. It is computed 
by the equation (2) to build the multi-set of all the messages which may be handled 
whatever execution path is chosen. To take in account all possible execution paths, the 
environment is the least upper bound of all the messages sent in all the configurations 
C, (~'EI 0,). 

As the self-application introduces recursion in the definition of behaviors, it is not 
possible to determine statically how many times a given behavior will be duplicated. 
Therefore, the message sent to the free variables in a behavior should be taken as unlim­
ited (the messages are labelled with w) via the constraint introduced by "0, Unlimited". 
But when 8i is unused in Ci, the behavior is not recursive and 0, is not required to be 
unlimited. 

E, a : aj 0, a : a o f- Behavior: (a, a~) ( a~ ~ a o ) 
(Actor) tr A ( ) c 

Ej 0 f- a [> Behavior: p b a _ u 

The binding of a behavior to a name requires that both have the same interface and 
that the behavior can handle the messages sent on the name (a~ ~ a o ). We also check 
that all the messages that the actor can handle are declared in the decoration. This 
last constraint will be implicitly ensured by the resolution algorithm used in the type 
inference system. 

(Message) 1 
Ej {x: (m (ao,,})} l±l{Y : ao,,} f- X <J m(y) : p 

In a message sending, the message itself ( {x : (m 1 (aotl )) }) and the messages ({y : 
a o" }) which may be sent to its arguments are introduced in the output environment. 

3.1 Properties of the type system 

Proposition 3.1 (Structural preserving of type assignment) If A == Band Ej 0 f­
A : a then Ej 0 f- B : a. 

Proposition 3.2 (Subject reduction) If A is a CAP term such that Ej 0 f- A : r with 
'ria E Dom(O), E(a) ~ O(a) and A --t A' then there exists E', 0' and r' verifying 
E'jO' f- A': r' and 'ria E Dom(O'),E'(a) ~ O'(a). 

More precise information can be given for the new environments E', 0' and r'. 
If the reduction step is a communication (rule COMM) taking place on name a, then 
'rIx =F a, E' (x) = E(x) 1\ 0' (x) = O(x) and r' = p. For the other reduction rules, 
the environments and the type are unchanged. 

The subject reduction property takes a much simpler form if the typed expression 
is closed (a program). 

Proposition 3.3 (Subject reduction on closed terms) If C is a closed CAP· configu­
ration such that 0, 0 f- C : p and 0 --t 0' then 0,0 f- 0' : p. 
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The complete proofs of these properties are detailed in [3]. 

Proposition 3.4 (Type system soundness) If the typing of a closed CAP expression 
A succeeds then its reduction can not produce any safety orphan message. 

PROOF: The semantic value Error from the COMM-ERR and ORPH-ERR rules cannot be 
typed. Then the subject reduction property ensures that any typable expression will 
not be reduced to an untypable one. 0 

3.2 Typing examples 

Linear ceU (cbanging interfaces actors). The following storage cell behavior is 
initially empty, it can be written once and then can be read forever : 

Lin_cel := [put(v) = ((ee, _)(ee I> [get(c) = ((e" S I)(e <J rep (v) II e, I> sl)]) ] 

It has the type: (a, a o ) with: 

• a = (getW ((rep1 (tv))) , put1 (tv)) where tv is the type of the argument ii, 

• a o represents the messages sent to the behavior in its context. Without any 
specific context, it takes the empty value a o = O. 

a gives a rather informative abstraction of this behavior. It specifies all the messages 
that this behavior will be able to handle, that is, exactly one put message and any 
number of get messages. It also specifies that the parameter of a get message must be 
able to handle one rep message. However, it does not specify that the put message 
must be handled before any get message can be treated. 

Let us use this behavior in the following configuration: 

C1 := a I> Lin_cel II d I> [m() = ((e, s)1>] II a <J put (d) 

C1 is well typed, so we have Eb 0 1 f- C1 : (p. E1 is such that the input type of the 
actor dis E1 (d) = (m1 ()); which means that "d can only handle the message m and 
that it will handle it only once". 

Let us consider another configuration: 

C2 :=va,b,d(C1 II a<Jget(b) II bl>[rep(r) = ((e,s)(r<Jm() II el>s)]) 

This configuration cannot be typed. The input type of d is (m1 ()) and its output 
type is (mW()). The constraint in the (Restriction) rule for d «(m1()) ~ (mWO)) is not 
satisfied. This failure results from the following interpretation: d is held in the linear 
cell and its value is required by b. As other actors could require the value from the 
cell, the type system must take into account that other messages m may be sent to the 
value stored in the cell. Therefore, it is necessary to consider the message sent to the 
value returned by the cell as unlimited. 
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Replicated computation (short lifetime objects). In order to replicate computation 
carried out in a client/server model, computation requests should be sent to an actor 
rep which will duplicate and forward the request to both servers hal and sal. rep will 
also create for each eval request a new, short-lifetime, actor jn whose purpose is to 
receive the results from both servers and to forward one of the result to the initial client. 
In the following example, the join actor in forwards the first result and eliminates the 
second one. 

03 == rep I> [ etJal( c) = «e, s)( e I> s 
II vin(hal <J etJal( in) 
II sal <J etJal( in) 
II in I> [ result( tJ) = «e, s)( c <J result( tJ) 

])) 
] 
hall>[etJal(c)=«e,s)(··· II c<Jresult(tJtJ) II el>s)] 
saIl> [etJal( c) = «e, s)(··· II c <J result( ww) II e I> 8)] 

This configuration is well-typed (E3 , 0 3 r- C3 : p) with: 

II e I> [result( -) = «e, s)(IP))) 

{
rep: (eval"'«result1(tv»»j } 

E3 = hal: (evaZ"'«resultl(tvv)})}j 
sal: (eval'" «result1 (t",,,,)))} 

03 = {rep: (}jhal: (eval'" «result1 (t"v)})j sal : (eval"'«resultl(tw",)))}} 

The environments E and 0 before applying the (Restriction) rule for the name in are 
such that E(jn) = (result2 (ttJ)} and O(jn) = (result2 (ttJtJ A tww)}. This example 
presents the use of short lifetime objects such as in. The static analysis ensures that 
in does not introduce any safety orphan messages (it can handle two messages and 
will be sent less than two). 

4 THE INFERENCE ALGORITHM 

The previous type system is defined for decorated CAP expressions; the inference 
algorithm decides if a non-decorated expression is typable or not. The application of 
the previous typing rules is completely syntax-directed, so these rules can be used to 
extract constraints on type variables, leading to a system that will be solved by the 
algorithm. The constraints are the side-conditions appearing on the previous rules, 
except Ab(a) ~ u appearing on the (Actor) rule that will be automatically verified by 
the strategy of the algorithm. 

There are two other kinds of constraints: equalities, which define the input type 
associated to a name, and multi-inclusions for checking communication safety. In 
summary, the algorithm is based on three steps: 

1. constraints extraction from the non-decorated expression (not detailed here); 

2. computation of input types (equalities resolution); 

3. inclusion constraints solving. 

Theresulting algorithm (see [3, 7]) is complete in the sense that it always terminates 
and its answer is equivalent to the typability problem. 
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5 RELATED WORK AND CONCLUSION 

Many different studies are currently related to the static analysis of non-uniform service 
availability. 

Following lines proposed by Nierstarz [18], Ravara and Vasconcelos [23] on one 
hand, and Najm and Nimour [17] on the other hand, propose the use of more sophisti­
cated type abstraction (in fact, the structure of their types is a process calculus). Their 
work is very promising as their abstractions preserve more causal relations. However, 
the feasibility of type inference is still a conjecture. In this purpose, a joint work 
between the first author and Ravara has recently begun using a more sophisticated 
constraint resolution algorithm than the one presented in this paper. 

Our approach for the abstraction of message sendings was derived from the effect 
system proposed by Kobayashi et al. [13]. The main difference is that they must 
consider finite sets of possible values determinated by an integer M (0, ... , M - 1, w) 
which represent the accuracy of the analysis in order to have a terminating algorithm. 
Our algorithm terminates without choosing a maximal value. 

The type system presented in this paper rejects statically all CAP terms which may 
lead to safety orphan messages. This type system has been implemented using CaML­
light. This prototype will be integrated in the type system of ML-AcT, an actor based 
extension ofML (see [8]). 

A first restriction for the use of this type system results from the safe type abstraction 
which rejects some correct programs as developed in 2.1. This restriction follows from 
the (Behavior) rule which computes a safe approximation of the messages sent in all 
the configurations Ci (~iEl Oi). The same kind of limitation is found in Kobayashi 
et al. [13]. In order to overcome this restriction, the introduction of a conditional 
type operator as advocated by Aiken et al. [2] and the authors [19] is currently under 
investigation. 

A second restriction follows from deadlocks in programs which can still produce 
messages which will not be handled even if they are not safety orphans in the sense 
described in this paper (they can be handled in the future but never will be because 
of the deadlocks, for example, sending get messages to a linear buffer without ever 
sending a put message). 

Therefore, the second part of our future work will be the introduction of causality 
information to detect some deadlocks along the line proposed by Kobayashi in [12]. 
Each binding of a behavior to an address and each sending of a message to an actor 
will be decorated with a time-stamp, ordered by the imbrication of the term structure. 
Cyclic time-stamp chains can then be interpreted as potential deadlocks. 

Apart from improving the type abstraction and the multiset constraints solver, the 
precise information (maximum number of messages which may be handled and which 
will be sent) synthesized by the type system will be used in order to improve the garbage 
collection strategy and to optimize the code generated by theML-Act compiler (mainly 
by using arrays as mailboxes instead of lists). 
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