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Abstract: Highly interactive multimedia applications, like browsing in video 
databases, generate strongly varying loads on the media server during the pre­
sentation of media data. Existing admission control approaches for limiting the 
number of concurrent users and thus guaranteeing acceptable service quality 
are only suited for applications with uniform load characteristics like video­
on-demand. We propose a session-oriented approach to admission control that 
is based on the stochastical model of Continuous Time Markov Chains, which 
allows to describe the different presentation states occurring in the interactive 
access to the multimedia database. The model is derived from semantic in­
formation on the forthcoming browsing session. In particular, it considers the 
relevance of the videos to the user. In this way a more precise prediction on 
resource usage can be given for achieving the two goals of Quality of Service 
(QoS) and good server utilization. The admission control mechanism is part 
of a multimedia database architecture for supporting efficient browsing in large 
video collections. 

4.1 INTRODUCTION 

Large digital collections of multimedia data, like Digital Libraries (OL), are get­
ting increasingly important due to the widespread use of information networks 
like the World Wide Web. The amount of data available in digital multime-
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dia collections is huge. Thus, a user needs to be supported to efficiently ex­
plore the digital collections by preselecting the data. Besides Digital Libraries, 
other applications also require this type of access, for example, previewing in 
pay-per-view systems or telelearning applications, where scholars from various 
disciplines study videos as primary source material [25]. 

In this article we focus on the problem of browsing multimedia data col­
lections, in particular video collections. Browsing in video collections is par­
ticularly relevant, since content-based querying on video data is still not well 
supported. Browsing differs from other types of accesses to video databases, in 
particular video-on-demand applications. Only the relevant parts of the video 
are accessed and no complete videos need to be streamed to the user. By limit­
ing data delivery to the relevant portions of videos the system throughput can 
be improved [3]. Frequent user interactions in browsing scenarios, like selec­
tion of videos, that are encoded in various formats, use of VCR-functions, and 
simultaneous presentation of videos, cause highly varying data consumption 
rates during a browsing session. In addition, the required Quality of Service 
(QoS) may vary for different requests [18]. 

Thus, the media storage components have to provide mechanisms which are 
able to deal with this characteristics of highly interactive multimedia applica­
tions. In order to achieve the required presentation quality, the clients compete 
for limited resources on the server. The basic strategies to deal with limited 
resources can be classified as optimistic or pessimistic ones. 

With optimistic strategies all requests are served as well as possible (best 
effort). These strategies are typically used in client-pull architectures, where the 
client aperiodically requests small chunks of media data at the server during 
presentation [16]. The client-pull architecture is best suited for interactive 
applications with varying resource requirements. In case of user interactions, 
the client only has to change its data request behavior, for example, it will 
request larger blocks of a media or send more frequent requests. Bottlenecks 
are dealt with either by the server or clients with various strategies, e.g., by 
means of quality adaptation mechanisms at the client [8] or at the server [20, 21]. 

With pessimistic strategies full guarantees, based on worst-case resource 
requirements, or stochastical guarantees, are made at the server in advance. An 
admission control mechanism usually checks at the server if enough resources 
are available for the adequate delivery of data to a new media request. If 
there are enough resources available, the client is admitted and the resources 
are reserved until the end of the presentation. For interactive applications 
reservations based on stochastically specified resource parameters (i.e., mean 
rate with high rate deviation) waste server resources. Heuristic predictions 
on the future resource consumption of a client are more appropriate since the 
resource demands may vary extremely. This prediction can either be based on 
the past behavior of a client, or can be predicted by exploiting knowledge on the 
semantics of the request. Both approaches have their pros and cons. History 
based predicitions do not require high-level understanding of the semantics 
of the request and truly reflect the actual system usage. Thus, as long as 
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the users behave in a uniform way, this approach appears to be appropriate. 
On the other hand, the implicit heuristic assumption that user behavior does 
not change may be inappropriate if opposite knowledge exists. Therefore, in 
situations in which knowledge on the forthcoming access behavior is available, 
it might be substantial to derive predictions from that, though, inevitably, 
many assumptions and heuristics might be involved in the prediction. We 
give a concrete example for illustration. H users request access to a multimedia 
database for unrestricted browsing, a uniform model of usage is appropriate and 
access can be granted if it can be derived from access statistics that sufficient 
resources are available. H users request access to a multimedia database to 
browse a pre-specified subset of data, e.g. given by the result of a retrieval 
request, this subset may bear certain characteristics which allow much more 
precise estimations of future resource usage. For example, only low quality 
videos have been selected, and thus resource consumption is substantially lower 
than in the general case where both low and high quality videos are accessed 
equally. 

In a previous paper, we have introduced an admission control framework 
that exploited the client request history as an indicator for its future behav­
ior [7]. This approach is fully application-independent and it does not exploit 
available knowledge on the application semantics for improved estimations of 
expected resource requirements. In this paper, we will make predictions for 
the resource demands of browsing sessions in multimedia databases based on 
the semantics of the request. We propose an admission control mechanism for 
browsing applications which models the user behavior in a browsing session. 
The model is based on information that is extracted from the set of browsing 
candidates selected by a preceding retrieval request. We assume that the start­
ing point to a browsing session is given by a retrieval request. The result of 
the retrieval is a hit list with corresponding relevance values for each hit. From 
this information we derive a Continuous Time Markov Chain (CTMC) which 
stochastically models the presumable behavior of a user. From the CTMC we 
can derive a stochastic prediction of the future resource consumption of the 
client. This prediction is then used as an admission criterion. Thus, admission 
to the clients is granted in a session-oriented manner. The benefit of the session­
oriented approach is that after an interaction an admitted client will get media 
data with low delay. Especially in browsing applications with frequent scene 
switches this is of high importance. We expect that our techniques are not only 
suitable for browsing applications but with some adaptations also applicable 
for other types of access to multimedia databases, in particular preorchestrated 
multimedia presentations. 

The paper is structured as follows: We first introduce the browsing system 
architecture in Section 4.2. In Section 4.3, we model different types of browsing 
scenarios by using the CTMC model. In Section 4.4, we describe how resource 
predictions can be made on the basis of the CTMC models and how they are 
used as admission control criteria. We conclude the paper with related work, 
in Section 4.5, and remarks on the future research direction in Section 4.6. 
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4.2 SYSTEM ARCHITECTURE 

In this chapter, we describe the architecture of a multimedia retrieval and 
browsing system that is under development at GMD-IPSI. It is designed to 
support highly interactive browsing applications [19]. The system supports 
(1) conceptual access to data, (2) continuous media presentation by means of 
client-side buffering mechanism, and (3) admission control for highly interactive 
applications. 

Our browsing prototype is based on a client/server architecture. It consists of 
the following components: a Multimedia Database Management System (MM­
DBMS) that is responsible for the storage and retrieval of meta data and media 
objects, a multimedia retrieval engine, an admission control module to restrict 
the access to the limited resouces on the server and to schedule data requests, 
a client-side buffering mechanism for media data, and a user interface for query 
formulation and result presentation. Figure 4.1 displays the relationships of 
the different components. These are described now, in more detail. 

Legend: -discrete data -. 
control data -. 
continuous data 

Figure 4.1: System architecture 

4.2.1 Multimedia Database Management System 

Client 

Server 

Our browsing prototype is implemented on the object-relational DBMS In­
formix Dynamic Server (IDS) . The IDS enables the integration of so-called 
DataBlades which provide a flexible extension mechanism for new datatypes 
and their corresponding functions. We use the Video Foundation DataBlade 
[10] as basis for managing video data. The IDS DBMS stores the discrete data 
like text and images and the meta data for videos. The Video Foundation Dat­
aBlade enables to manage access to the external storage managers and devices. 
The external storage managers handle the storage of the various media streams. 
Thus, the media data and meta data of the media are stored separately. 

4.2.2 Retrieval Engine 

The Retrieval Engine provides content-based access by employing different mul­
timedia retrieval techniques, like feature extraction, feature aggregation, and 
classification for videos on scene granularity. Content-based access to media 
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data is supported by conceptual queries. For example, when a user is inter­
ested in indoor shots he specifies "artificial light" and "artefacts" . The queries 
are mapped according to a rule base to requests expressed in constraints on 
feature values [19] . As a query result a hit list of stills, scenes, and videos is 
returned, together with relevance values - ranging between 0 and 1. The rele­
vance values corresponding to a conceptual query are calculated by means of 
feature aggregation on video scene granularity. The basic image features, like 
edge analysis, grayscale, and entropy, are annotated in the IDS as meta data 
since feature extraction is a time consuming task. The features relate to single 
frames or scenes of a media. Rules define search criteria on the feature level 
which can be executed on the meta data [12]. Since meta data management is 
important to the browsing application, a MM-DBMS based implementation is 
best suited for providing the needed support for the retrieval engine [3] . 

4.2.3 Admission Control 

The admission control module is located on top of the video server. It is 
responsible to manage the limited server resources such as disk bandwidth and 
buffer space. Thus, given the delay-sensitivity of multimedia presentations, 
there is a limited number of clients that can be admitted for the service. The 
admission control module has access to meta data stored in the IDS DBMS. 

In our architecture, an admission control module for highly interactive brows­
ing applications is provided that considers the varying data rate requirements. 
Its tasks are divided into: (1) the admission of new clients, when it is assumed 
that system resources are sufficient, (2) the scheduling and adaptation of the 
single data requests of the admitted clients. 

4.2.4 Client Buffering 

Since the Video Foundatation DataBlade does not support continuous pre­
sentation, we developed the Continuous Long Field DataBlade. It manages 
continuous data transport, client-side buffering, and client-side quality adap­
tation in distributed environments [9] . Additionally, we enhanced the client 
buffer strategy to support browsing applications by means of a content-based 
preloading and replacement strategy. It considers, in addition to the current 
presentation state, the relevance to a conceptual query result, too [5] . The goal 
is to keep the most important scenes, corresponding to the current presentation 
state and to a previous query, in the buffer. 

4.2.5 User Interface 

The user interface enables the specification of a conceptual query that is sent 
to the retrieval engine and the selection of result scenes for presentation. At 
the server, the access to hits requested in a retrieval session are subject to 
admission control. During presentation the user has the possibility to control 
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the presentation through VCR-interactions and to jump interactively to other 
hits. 

4.3 MODELING OF BROWSING APPLICATIONS 

A major difficulty in estimating resource usage in interactive applications is 
the high variability of resource requirements. In this section, we will use a 
stochastical model, namely Continuous Time Markov Chains, to describe user 
interactions. It can be used to estimate future resource demands and, thus, 
to provide a more precise criterion for an admission control mechanism. The 
admission control mechanism itself will be discussed in the subsequent section 
4.4. We will use multimedia browsing sessions as an application scenario for 
inspecting multimedia retrieval results. 

4.3.1 Modeling of Multimedia Sessions as Continuous Time Markov Chains 

The retrieval and browsing system described in Section 4.2 delivers a result 
list L that contains references to scenes of videos or whole videos together 
with their relevance values as the result of a retrieval query. Thus an element 
Ii E L, i = 1, . . . , ILl is of the form Ii =< scenei, rVi >, where scenei is an 
identifier for a video scene and rVi E [0, 1] is a relevance value. Additionally, it 
is possible to compute physical information on the video scene from the meta 
data in the multimedia database, in particular, its duration d(scenei) E R+ 
and the datarate rate(scenei) E R+. 

This information is available when a browsing session is started. The brows­
ing session itself can be viewed as a state transition system, where the user 
switches between states for presenting particular videos and idle states for se­
lecting the next video to be presented. For resource control it is important to 
consider, in addition to those states, the temporal dimension, i.e., the hold­
ing time of a state. A well established model to describe such state transition 
systems stochastically are Continuous Time Markov Chains (CTMC) [22]. 

A state transition process is specified in a CTMC by a set of states I, by 
holding times t, i E I , and by transition probabilities Pi,j, with i , j E I, i =I j 
and E#i Pi,; = 1 for all i E I . IT the system jumps into state i, it stays in 
state i an exponentially distributed holding time with mean t independently 
of how the system reached state i and how long it took to get there. IT the 
system leaves state i, it jumps to state j with probability Pi,; independently 
of the holding time of the state i. States are memory-less, which is called the 
Markovian property, i.e., the history how a state is reached is not relevant [22]. 
CTMCs are an extension of discrete time Markov chains, which do not model 
the holding times in the states. 

Using CTMC for the modeling of a browsing session, the session states, i.e., 
the playback of a video scene or an idle time, are represented as corresponding 
states of a CTMC. The sojourn time or holding time in a state is the time until 
a user decides to change presentation process by an interaction. The transition 
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probabilities denote the probability that a user switches from one session state 
to another one. 

In our approach, we assume that the parameters determining a CTMC, i.e., 
the transition probabilities and the holding times of a state, are related to the 
relevance values rVi of a hit Ii E L, i E I. When a user finds a large number 
of hits he will not inspect all of them since the total presentation duration is 
too long. Typically, a user selects those scenes that have a high relevance with 
respect to the query. Furthermore, the time a user will spend to view a hit 
is dependent on its duration. The structure of the CTMC used to model the 
browsing session and the detailed relationship between the relevance values and 
the CTMC parameters are the subject of the next subsections. 

4.3.2 Modeling Browsing Behavior by CTMCs 

Depending on the application, a user may pursue different goals in a brows­
ing session. Some users may aim at getting an overview of all hits in the hit 
list (sneak preview), others may intend to extract detailed information from 
the hit list. This results in different browsing behaviors. In the following, we 
will discuss different possible browsing behaviors and model them by CTMCs. 
This discussion is not intended to exhaustively explore the issue of how brows­
ing sessions are structured, but to illustrate how different assumptions on the 
nature of browsing sessions lead to structurally very different CTMC models. 
From this, we will eventually analyse the computational methods required for 
a resource prediction used for admission control. 

In the following, we first make a simplifying assumption on result viewing. 
We neglect different VCR-presentation states, like fast forward, fast rewind, 
and slow motion. We consider only two principle states, namely the idle states 
in which the user selects the next scene and no resources are consumed, and the 
playback states where particular videos are viewed in standard playback mode. 
Only transitions back and forth between idle states and playback states are 
possible. Later we will indicate how to model different modes of presentation. 

The structural differences in CTMC models for browsing result from ac­
counting for the browsing history in different ways. Since the CTMC itself 
is memory-less any historical information needs to be encoded into additional 
states. 

4.3.3 Memory.free Browsing 

In the simplest case, the selection of the next step is fully independent of the 
previous browsing steps. For modelling this situation it is sufficient to use one 
single idle state is and playback states 1, ... , ILl for the presentation of the 
different videos in the hit list. The transition probability Pis,i is a function of 
rVi only. We choose the probabilities to be distributed in the same way as the 
relevance values, i.e., we use the normalized relevance values rVi of a hit Ii! 
given by 
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- rtf' • 1 ILl rVi = ",ILl' , = , ... , 
L..J;=1 rtf; 

as transition probabilities. Then Pis,i = rVi and ... ,JLI Pis,i = 1, whereas 
always Pi,is = 1. An advanced model might use a weightmg function in addi­
tion, e.g., to overproportionally increase the probability that videos of higher 
relevance are viewed. 

For the holding times, we assume the following heuristic model: for short 
scenes, the mean of the exponentially distributed holding time is proportional 
to the length of the scene. There is a minimum presentation time dmin and the 
mean is limited by a maximal presentation duration dmin + dmaz • In addition, 
we weight the mean by the relevance of the video, i.e. more relevant videos 
are viewed longer than less relevant ones. This heuristics is reflected in the 
following formula for the mean holding time: 

/ d(scenei). I I 
1 Vi = dmin + dmaz d( ) d rVi, t = 1, ... , L 

scenei + maz 

Example. To demonstrate the concepts, we use a running example in the 
following. A user query with 5 result scenes (ILl = 5) delivers the results 
shown in Table 4.1. 

Table 4.1: Example of query result list. 

d rate rv 

scene! 5see 1.5Mb/s 0.8 
scene2 60see 0.8Mb/s 0.7 
scene3 20see 4.0Mb/s 0.7 
scene4 lOsee 1.5Mb/s 0.1 
scene5 20see 4.0Mb/s 0.05 

By setting dmaz = 30sec and dmin = 3sec we get the following (rounded) 
values for the holding times: ;1 = 6.4, ;2 = 17, ;3 = 11.4, ;. = 3.75, ;5 = 3.6. 
For the idle state is, we assume a mean holding time = 5 which means it 
takes an average of 5 seconds to select the next presentation. 

The transition probabilites in the example are then: Pis,l = 0.34,PiB,2 = 
0.3,PiB,3 = 0.3,Pis,4 = 0.04,piB,5 = 0.02. 

In Figure 4.2 the CTMC is given for the example. The numbers at the 
arrows represent the transition probabilities between the states. 

4.3.4 General history-dependent Browsing 

In the most general model for browsing the transition probabilities are fully 
dependent on the browsing history. In order to model this case we have to use 
a CTMC with the tree structure indicated in Figure 4.3. The root represents 
the start state, the nodes at the first level represent all hits selected first, the 
nodes at the second level all hits selected second, and so on. In this way, 
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scene 2 

scene 1 0 

.1' 0.3 0 , 
o sceneS 0 

scene 4 

Figure 4.2: CTMC for memory-free browsing 

Figure 4.3: CTMC with tree structure for general history­
dependent browsing 

the CTMC represents all possible session histories. Each state represents a 
different viewing sequence of earlier videos and, since repetitions are possible, 
we end up with an infinite number of states. In contrast to the previous case, 
we have to distinguish a start state ss and different idle states iSh for each 
different presentation history h consisting of the sequence of videos that have 
been presented before. 

We discuss now a simple model of how the transition probabilities can depend 
on the previous browsing history. A video that has just been viewed is not likely 
to be selected again. However, the longer a video has not been selected and the 
more other videos have been selected the more likely it becomes that the video 
will be selected again. Assume, that the browsing session is in the idle state 
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iSh belonging to a certain sequence of videos that have been selected before. 
Then for every scene scenei, i = 1, . .. , ILl we modify the relevance values for 
videos that have previously been viewed as follows: 

I _ 2n 
rVi = rVin + ILl' 

where n is the number of times scenei has not been viewed in the history 
h. From the modified relevance values, we compute the normalized relevance 
values and use them as transition probabilities. Note, that for n = 0 we 
get = 0 and for n = ILl we get = rVi. The factor is monotonically 
increasing for n > O. 

Assume that in our running example scene! has just been viewed. Then 
the modified relevance values for scene! used to compute the transition 
probability for the consecutive steps are 0,0.11,0.19, 0.26,0.30,0.34 assuming 
the video is not selected within those steps. Note that these values are not nor­
malized yet. A fragment of the CTMC with normalized values as transition 
probabilities, visualized as numbers at the arrows, is given in Figure 4.3. The 
dotted lines represent missing paths that are omitted due to the lack of space. 

4.3.5 Browsing without Repetition 

Up to now, we have assumed that the user is free to select any video for viewing 
an arbitrary number of times. We now investigate how further constraints on 
the selection of videos to be viewed impact the CTMC model for browsing. 

The first additional constraint we consider is, that the user can view each 
video only once. Thus, we will obtain a finite CTMC as opposed to the previ­
ously discussed case of general, history-dependent browsing, where an infinite 
CTMC has become necessary. The general structure of the resulting CTMC is 
depicted in Figure 4.4. Since we assume that each video will be viewed only 
once, the number of subsequent states decreases in each level by the state that 
has been presented already and, thereby, the one-step transition probabilities 
increase for the remaining videos. 

The transition probabilities are determined at each level from the normalized 
relevance values of the remaining videos. They are given for the case of our 
running example in Figure 4.4. 

4.3.6 Browsing in Relevance Order 

This is a very restricted form of browsing where the user can access the query 
result only in the order of their relevance values. Thus, the user basically only 
determines the holding times for each video that is viewed. In this case, we 
obtain a degenerated CTMC with a (nearly) linear structure, as displayed in 
Figure 4.5 for our running example. The state on the left side represents the 
start state, the relevance values rv of the hits viewed in the playback states 
decrease from left to right. States with the same relevance are modeled by 
alternative state sequences that are accessed with the same probability. 
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Figure 4.4: CTMC with tree structure for browsing without repe­
tition 

I I 
I I 0-<>. -<> I I I • -<> 0 -<> • scene 2 I I scene 3 .-<> 0 -<>. -<> 0 

scene I 0-<>. -<> scene 4 sceneS 
Start Slate . scene 3 scene 2 

Idle States 

Figure 4.5: CTMC with sequential linear browsing 

4.3.7 Representation of VCR-functionality 

As indicated earlier, in the different CTMC models, we have used the simplify­
ing assumption that the viewing of videos is represented by a single playback 
state in the CTMC. In practice, a user may use VCR-functionality. In the 
following we sketch how this can be accommodated within a CTMC model. 

We assume now that, during the presentation of a video, a user may switch 
to a fast forward, fast rewind, or slow motion state. We determine that these 
interactions are only accessible from the playback state and extend thus a 
CTMC in the following way: for each video of the hit list, we introduce addi­
tional VCR-states for fast forward, fast rewind, and slow motion. We assume 
fixed transition probabilities from the playback state to the VCR-states. The 
transition probability from the VCR-state to its playback state is always 1. 
The holding times can be derived from the holding times of the playback state, 
for example, by decreasing it for fast forward and fast rewind and increasing it 
for slow motion. 
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Legend: 
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CTMC for memory-free browsing with VCR-

We illustrate the extended CTMC for our running example in the case 
of memory-free browsing. As transition probabilities to the VCR-states, we 
have arbitrarily chosen Ppresent,fJ = 0.25,Ppresent,/r = 0.05,Ppresent,sm = 0.1 
in this example. Figure 4.6 displays the corresponding CTMC when VCR­
functionality is supported. Since the transition probabilities from the VCR­
states to the present state are all equal to 1 they are not displayed in the 
figure. 

4.3.8 Possible Refinements of the Modeling Approach 

Appearently, in the modelling, a number of assumptions have been made on 
parameters and functions that capture certain characteristics of browsing ses­
sions. It is beyond the scope of this paper to devise methods of how concrete 
parameters can be analytically derived from evaluations of concrete behavior of 
users. This is an important direction for future work. Such an approach allows 
not only to come up with better-substantiated heuristics on the user behav­
ior, but would also allow to determine the necessary parameters individually 
for different users or application scenarios. As a drawback, individualized user 
parameters require additional bookkeeping mechanisms. 

Some of the models introduced were very complex. One can devise different 
ways of how the complexity could be reduced in order to obtain computation­
ally more feasible models for browsing sessions, without giving up too much 
precision in the prediction. One obvious approach would be to aggregate states 
with similar characteristics, e.g., comparable resource consumption and holding 
time, and, thus, to substantially reduce the number of states in the model. An-
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other possibility would be to allow for small errors and just omit less importanl 
scenes, i.e., those with low relevance. 

In this paper, we have used a rather abstract view on how the occurence of a 
video within a query result is related to the probability that it will be accessed. 
Other parameters than the relevance value may influence the access probability 
to a video. In particular, the way in which the result list is presented at the 
user interface can playa substantial role. For example, for videos with the same 
or similar relevance value, the position in the result list can be of importance, 
or if the result hits are presented in a page oriented way, hits on the first page 
are more likely to be accessed than on later pages etc .. Thus the way, of how a 
multimedia presentation is generated from the hit list is certainly of relevance 
to the access behavior of the user. This discussion also shows that similar 
methods for modeling the user access to multimedia data may be employed for 
general preorchestrated multimedia presentations. 

4.4 ADMISSION CONTROL USING RESOURCE PREDICTION 

4.4.1 Analysis of CTMC Models 

In the previous section, we have modeled browsing behavior with CTMCs un­
der various assumptions of how browsing might be performed. The main pur­
pose was to explore the question which structures occur in the CTMC models, 
how these structures are related to different assumptions on how browsing is 
performed, and how the resulting CTMCs are suited to compute a resource 
prediction. 

The first important question in analyzing CTMCs is whether we have an 
open or a closed CTMC at hand. A CTMC is called closed if every state can 
be reached from every other state. This classification is important with regard 
to the applicable analysis methods. One distinguishes transient analysis and 
equilibrium analysis. Equilibrium analysis determines certain measures that 
are attached to a CTMC with regard to long term behavior. Transient analysis 
determines those measures over a given (short) finite time span. Equilibrium 
analysis is only applicable to closed CTMCs. With transient analysis we can 
also analyse CTMCs of infinite size, as they occured in the case of general 
history-dependent browsing. 

For the computational complexity of the analysis, the size of the CTMC 
is of importance. Both, for the CTMC model for general history-dependent 
browsing and for browsing without repetition the size of the (relevant fragment 
of the) model grows exponentially in the number of hits, when a transient 
analysis is performed. For memory-less and sequential browsing the size of the 
CTMC is linear to the number of hits. 

In this paper we will not be able to give a conclusive statement on which 
model and which type of analysis will prevail as the most relevant one. Rather, 
we will give the analysis for a selected case, namely memory-less browsing. 
As analysis method, we will use an equilibrium analysis. There are a number 
of reasons why this choice is reasonable and practical as well, in particular, 
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considering the requirement that the resource predicition has to be performed 
efficiently. 

From the computational viewpoint, encoding of histories into CTMCs leads 
to combinatorially explosive sizes of the resulting models and, thus, to pro­
hibitively high costs in the analysis. In addition, equilibrium analysis is com­
putationally simpler than transient analysis. A problem which further compli­
cates transient analysis is the choice of the expected duration of the browsing 
session. This does not occur in equilibrium analysis. 

When the impact of the history on the transition probabilities is small the 
equilibrium analysis is a good approximation of the transient analysis. This is 
also the case when only a few hits will be viewed in a browsing section, since 
then only a few transition probabilities change, too. In addition, there exists 
the possibility to redo the equilibrium analysis at a later stage with modified 
parameters and to accomodate changes that result from the previous history. 

4.4.2 Resource Estimation for memory-less Browsing using Equilibrium 
Analysis 

Since for each playback state the corresponding data rates are known, it is pos­
sible to stochastically determine an overall expected data rate for a single client 
session, based on its CTMC model for browsing. In the following, we will give 
the necessary steps to perform this calculation. Details on the mathematical 
background of this calculation can be found in [22]. 

A closed CTMC with bounded rates Vi, i E I has a unique equilibrium 
distribution Pi, i E I, where the P; can be interpreted as the probability that 
the CTMC is in state i . In order to compute this equilibrium distribution 
one first transforms it into a discrete Markov chain by introducing so called 
transition rates qi,j with 

qi,j = ViPi,j, with i,j E I,j 1= i. (4.1) 

Based on the transition rates, the equilibrium distribution can be determined 
by solving the following system of linear equations, which has a unique solution. 

ViPi = I: qk,iHc, i E I 
k,¢i 

(4.2) 

(4.3) 

For the concrete case of the CTMC for memory-less browsing we can compute 
the expected data rate as follows. Given holding times Vi, and Vi, i = 1, .. . , ILl 
we get = qiB,iPiB since the states i can only be reached from stateiB and 
thus 
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Pi = PiB,iPiB for i = 1, ... , /L/ (4.4) 

using equation 4.1. 
Substituting equation 4.3 for our concrete case with LiE ILl Pi + PiB = 1 and 

using equation 4.4 yields 

1 
P;B = 1 + !!U. . . 

LJi=l,oo.,ILI tli PIS,. 
(4.5) 

from which the other values Pi can be immediately derived. 
The expected value E(i) ofresources required by state i within the long-run 

analysis is determined then by 

E(i) = Pi * res (i) 

where res (i) is the amount of resources consumed in state i. 
The expected amount of resources required by a client c within a browsing 

session is then 

Ec = LiEf E(i). 

Since idle states do not consume resources, the expected resource demand is 
then computed for our concrete case as 

Ec = L Pi * rate(scenei). 
i=l,oo·,ILI 

This derivation shows that for the CTMC for memory-less browsing we can 
derive the equilibrium distribution and, thus, the expected resource demand in 
linear time cost in the size of the result list. 

For our running example, we obtain by means of using equation 4.4 and the 
Vi and Pi values from Section 4.3.3 the equilibrium probabilities 

PiB = 0.31, PI = 0.14, P2 = 0.32, P3 = 0.21, P4 = 0.01, Ps = 0.005. 

Note, though the first video has higher relevance the probability that the system 
is in the state of presenting the second or third video is higher. This is due 
to the fact that those videos have substantially longer holding times. The 
expected resource demand for this client session is then Ec = 1.35Mb/s. 

4.4.3 Admission Control of Pending Clients 

The MM-DBMS limits the number of active clients that are allowed to simul­
taneously perform a browsing session for inspecting the hit list. Thus when a 
client issues a query, the results will only be presented if sufficient resources 
are available. For determining whether sufficient resources are available the 
prediction models introduced in the previous section are employed. A client 
that has been admitted will be served for the complete browsing session, with 
high probability in the required quality. 
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Let us assume the system has already admitted clients Cl, ••. ,Ck and a new 
client Cp requests admission. Then the admission control mechanism computes 
the expected resource demand of the running clients Ec; ,j = 1, ... ,Ck, and the 
expected resource demand Ecp of the new client. Then the admission criterion 
is 

Ecp + L Ec; < T*Smaz, 
j=l •...• Ck 

where Smaz is the amount of maximal available resources and T E [0,1] is a 
safety margin to allow small deviations from the expected resource usage. The 
quantity T determines how close the average load values may approach the 
maximum server load, and thus how much tolerance is available to compensate 
for deviations between predicted and real server load. High values of T repre­
sent a permissive admission policy, while low values of T represent a cautious 
admission policy. For a large number of possible clients, such a criterion based 
on an estimation of the average resource usage appears to be appropriate, since 
deviations from the average values of single clients can be expected to com­
pensate for statistical reasons. For a small number of clients, other admission 
criteria based, for example, on maximum expected resource usage or maximum 
expected deviation, can be considered in addition. 

The actual resource usage of a client can be determined a posteriori by 
analyzing its requests to the system. This technique has been used in [7] to 
devise an alternative admission control mechanism, based on the lookback to 
past system behavior. It may occur thai; the predicted resource usage of a 
client and the actual resource usage systematically deviate from each other. In 
such a case, it is quite clear, that one can use the information on the actual 
behavior to systematically correct future predictions. A detailed discussion of 
this approach is, however, beyond the scope of this paper. 

For the concrete realization of the admission control mechanism a number 
of further issues need to be resolved, like the definition of admission points, 
the treatment of rejected clients, the recomputation of predictions for admit­
ted clients and the reaction to overload situations. Some solutions to that 
extent have been presented in [7], in particular, a complete specification of an 
admission control algorithm. 

4.5 RELATED WORK 

Most approaches to admission control consider the requests of single media 
streams. The resource requirements are prespecified by the media request in 
terms of constant rate or little rate deviations [16]. The available system re­
sources are calculated by stochastic [13], [24] or deterministic approaches [23], 
[14]. Based on the knowledge about the already reserved and freely avail­
able resources, it is possible to reject requests in case of server overloads. Most 
concepts providing stochastical service guarantees assume stochastical retrieval 
time from storage system which we do not consider. For example, [24] exploit 
the variation in access times from disk. In the following, we focus on strategies 
that consider interactive applications. 



RESOURCE PREDICTION AND ADMISSION CONTROL FOR INTERACTIVE BROWSING 43 

A priori reservation. To guarantee a given QoS worst-case assumptions 
about the required data rate can be made. Obviously, in case of reservation 
of this high data rate server resources are wasted and the number of clients 
that can be served in parallel is decreased. Dey-Sircar et al. [4] give stochas­
tical guarantees by means of reserving separate server bandwidth for VCR­
interactions. The drawback of their work is that they assume interactions to 
occur rarely. 

Re-admission at interaction points. A straightforward way to use standard 
admission control policies with interactive applications is to perform admission 
control for each single media object request that can occur as the result of an 
interaction as described in Gollapudi and Zhang [6]. One drawback of their ap­
proach is, in contrast to our session-oriented approach, that each client request 
is subject to the admission control. This means, for example, when the first 
scene of a video is admitted there is no guarantee for the immediately admission 
of the subsequent scenes of the same presentation. This may lead to unaccept­
able delay in presentation when too many clients send requests. Moreover, the 
admission of one continuous media stream of a multimedia presentation does 
not necessarily guarantee the timely admission of another continuous media 
stream that has to be synchronized with the already admitted streams. 

Smooth the application data rates. Some approaches to admission control 
for interactive applications propose to "smooth" the data rate deviations to 
achieve a relatively constant workload. Shenoy and Yin [17] reduce the high 
data rate for fast forward and fast rewind of MPEG-videos by encoding the 
stream in base and enhanced layers. The encoding of the base layer is done 
by reducing the temporal and spatial resolution. For fast forward, only the 
base layer is used. Chen, Kandlur, and Yu [2] suggest segment skipping where 
a segment can be a set of Group of Pictures (GoP) of an MPEG-video. For 
fast forward or fast rewind, some segments are skipped. Chen, Krishnamurthy, 
Little, and Venkatesch [1] change the order of MPEG-frames to a priority se­
quence. For fast forward and fast rewind, only the most important frames (l­
and P-Frames) are pushed to the client. The higher data rate is reduced by 
quality adaptation on the temporal dimension of other requests by a dynamic 
resource reservation. Reddy [15] reduces the latency of "urgent" requests, but 
neglects varying bandwidth requirements. The smoothing approach is, how­
ever, restricted to relativley simple interactive scenarios where interactions take 
place within the presentation of one single media stream. 

Inspect the past system behavior. In earlier work, we presented a general 
admission control mechanism which is applicable for varying resource require­
ments of highly interactive applications [7]. It consists of (1) the admission 
of new clients when server resources are available and (2) the scheduling and 
adaptation of requests of admitted clients. For the admission of new clients, 
we inspect the past system behavior. For a large number of parallel sessions, 
the average client consumption is a good estimate for prediction. Data rate 
variations are accounted for by introducing a safety margin. Thus, an admit­
ted client is supposed to obtain sufficient resources. IT in spite of the admission 
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control resource bottlenecks occur, strategies for rescheduling requests are used 
to achieve high QoS by means of load balancing. In the worst case quality 
adaptations are required to enable guaranteed continuous delivery. 

Usage of application semantics. Zhao and Tripathi [26] propose a session­
based reservation approach for multimedia applications with varying resource 
requirements. A multimedia session consists of the presentation of multiple 
multimedia objects that have to be synchronized in temporal order. The tem­
poral order of the presentation is known at admission time. They propose an 
"advanced resource reservation" mechanism, i.e., to reserve resources for time 
intervals in the future. The goal of the approach is to determine a starting 
point for the presentation for which all required resources (i.e., network and 
end system) are available. The basic reservation model does not consider user 
interactions. They propose the following extensions for interactions: (1) the 
specification of a minimum upper bound which is not economically and (2) 
re-admission at interaction point as discussed earlier in this section. 

The use of continuous-time Markov chains for modeling the access behavior in 
a multimedia database system to support the efficient vertical data migration 
between the tertiary and secondary storage has been devised in [11]. This shows 
that the application of the CTMCs to model resource usage in multimedia 
databases is not only limited to admission control but is applicable to other 
aspects of resource management as well. 

4.6 CONCLUSION 

In this paper, we presented a session-oriented admission control mechanism for 
highly interactive browsing applications by considering application semantics 
for the admission of new clients. It is based on the stochastical resource pre­
diction of clients. We assume that the user behavior is related to the relevance 
values of a conceptual query and specify the user behavior as Continuous Time 
Markov Chains. 

A Java based implementation of the admission algorithm within the IDS 
based system architecture described in Section 4.2 is under way. Future work 
will concentrate on the refinement and evaluation of the approach and on learn­
ing models for user profiles. An evaluation of the concept will strongly depend 
on the availability of sufficient real-world data against which the proposed mod­
els can be calibrated. From this data the statistical parameters of the Markov 
chain models can be learned to adapt the admission control framework to par­
ticular application scenarios. In combination with the retrospective approach 
to admission control by inspection of past system behavior, the goal is a self­
adapting admission control framework for multimedia database access. 
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