
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35533-7_26

http://dx.doi.org/10.1007/978-0-387-35533-7_26

220 T. Steinert and G. Ropier

tions) technology. Other functions are realized by applications running
on dedicated servers which are connected to the PBX. Call centers are
the most prominent systems where server applications and the PBX to­
gether realize the desired functionality.

The main motivation to build the load test system is that the overload
protection in the switching software has to be tested with realistic traffic.
A second motivation for the load test system is that call centers require
extensive testing under high and correlated load. Aspects that need
to be tested are the interaction between the PBX and the servers as
well as the correct handling of service requests by the call distribution
according to the customer specific call flow scripts. Furthermore, the
load test system allows to verify that a call center can handle the load
which has been specified by a customer.

While there are quite a number of call generators commercially avail­
able, many of them are not able to generate the required call rate of
at least 30000 calls per hour. Moreover, these call generators often lack
some features which we think are important. The simulated behaviour
must be the same as the behaviour of real users. This implies that all
durations follow given distributions instead of generating calls with fixed
interarrival times. Furthermore, the load test system must be able to
react appropriately on the actions taken by the PBX, for example by
repeating a call attempt after a call has been rejected. Finally, the load
test system must be capable to produce load peaks like those arriving at
call centers when a phone number is shown in a television commercial.

The focus for the load test system is on the switching software, whereas
physical interfaces and the message forwarding by line cards can be
tested using other tools. Hence the basic function is to generate and
terminate calls at high rates with statistically correct behaviour in time.
Statistical correctness means that the functional and temporal charac­
teristics of the generated traffic are the same as from real users. An
important feature is flexibility in the sense that it has to be easy to
modify the simulated user behaviour and to introduce new signalling
messages or even a new signalling protocol in the load test system. This
flexibility has to be achieved without requiring significant changes to the
load test system software.

This paper is structured as follows: Section 2 describes the developed
method for the specification of realistic user behaviour by means of User
Models where the definition of the functional behaviour is separated
from the definition of the temporal behaviour. The architecture of the
load test system and a basic test scenario are presented in section 3
and section 4 concludes the paper with some final remarks about the
application of the load test system at Tenovis.

Generation of realistic signalling traffic using SDL User Models 221

2. SPECIFICATION OF USER BEHAVIOUR
The main purpose of the load test system is to generate realistic sig­

nalling traffic, which allows to determine the behaviour of the system
under test in heavy load situations. This leads to the question, how
this realistic signalling traffic can be specified. The approach chosen for
this load test system is to emulate each single user by a so called "User
Model" which acts independently from the other emulated users. The re­
sulting traffic of all User Models together represents a realistic signalling
traffic load, as it would be created by a multitude of real users.

This section describes the developed method for specifying User Mod­
els emulating real user behaviour. Section 2.1 motivates the general
principle for the method, 2.2 presents the description technique for the
functional behaviour of a User Model which is based on the Specifica­
tion and Description Language (SOL) defined by the ITU-T in [1] and
2.3 describes the way for specifying the temporal behaviour of a User
Model, so that realistic traffic can be generated.

2.1. GENERAL PRINCIPLE
The generation of realistic signalling traffic of the load test system

is, as described above, based on User Models. A User Model emulates
the behaviour of a real user, i.e. it sends signals for triggering signalling
scenarios and reacts appropriately on incoming signals depending on
distribution functions.

To emulate the behaviour of a real user concerning signalling the
scenario of a simple phone call is analysed. Its phases are sketched
in Figure 1. There are two types of events occurring at the user during
the phone call: "User Actions" representing actions triggered by the user
himself and "User Receptions" caused by the PBX.

User Actions

User Receptions

Off hook Dialled Digits On hook

JwJJ·····J
_:i!i:mmwmmmw:wmwm:mw:wm!:

Dial tone Ring tone Conversation Busy tone
(after on hook
of peer user)

Figure 1 Phases of a phone call from user's point of view

t
•

Figure 2 contains a state-transition diagram of the FSM resulting
from the scenario of the simple phone call. Again, there is the distinction
between the "User Actions", which are sketched above the state symbols,

222 T. Steinert and G. Ropler

and the "User Receptions", which are sketched under the state symbols.
The state-transition diagram uses the same "User Actions" as those of
Figure 1, but different "User Receptions". Instead of the continuous
signals like e.g. "Dial tone", atomic signals for the start of a tone and
for the end of a tone are applied.

011 hook Dialled Digit Dialled On hook

Figure 2 Modelling a user via a Finite State Machine (FSM)

It is important to understand that the "User Actions" are essential
for generating realistic user behaviour, whereas the "User Receptions"
are input signals from the environment. These "User Actions" require
that the User Model is augmented by a specification of the temporal
behaviour. The reason is that in order to obtain realistic signalling
traffic, the time between the entry in a state and the arriving of a User
Action has to be a random variable with a given distribution. The
temporal behaviours of multiple User Model instances are independent
of each other, although these instances may have the same statistical
properties.

There are quite a number of publications ([2] provides a nice overview)
about augmented FSMs which describe both functional and temporal
behaviour. However, they mostly focus on the performance analysis and
not on the emulation of behaviour in real-time. One exception is the
paper by Lemppenau and Tran-Gia [3] which describes also a system for
traffic generation.

Our approach is to separate the specifications of functional and tem­
poral aspects as far as possible. The User Model FSM describes only
the functional behaviour of users. The temporal behaviour is defined
by means of so called "Event Generators", which create signals called
"Events" corresponding to the "User Actions". These Events are one
type of input signals of the User Model FSM. The principle of Event
Generators is described in detail in section 2.3.

The second type of input of the User Model FSMs are "Signalling­
SDUs" (Service Data Units) caused by the signalling messages sent by
the PBX. These Signalling-SDUs (in the remainder of this paper referred

Generation of realistic signalling traffic using SDL User Models 223

to as SDUs) result from the layer 3 protocol of an ISDN signalling sys­
tem. This protocol is realized as defined in the respective standard, but
the interface to the upper layer is adapted to the needs of the load test
system. Because several ISDN signalling systems, e.g. Q.931 [4J and
1 TR6 [5J, with different layer 3 protocols are supported by the PBX, the
interface to the User Model FSMs has to be independent of the signalling
protocol. Therefore protocol independent SDUs, whose definitions are
adopted from Annex A of Q.931, are applied at the interface to the User
Model FSMs. This type of signal is also used by the User Model FSMs
to communicate in direction to layer 3 of an ISDN signalling system, so
that the User Model FSM is able to control the underlying signalling
protocol. In Figure 3 the interfaces of a User Model FSM are depicted:
A User Model FSM receives Events from Event Generators to trigger
actions, like setting up a phone call. It sends SDUs to the Signalling
FSM for initiating signalling actions, e.g. for establishing a signalling
connection to the PBX and it receives SDUs sent by the Signalling FSM
indicating a state of a signalling connection.

Distribution
Density

Function D(\)

Event Generator User Action User Model FSM

Figure 3 Input- and output signals of a User Model FSM

In the following section 2.2 the definition of User Model FSMs repre­
senting the functional behaviour of an emulated user by means of SDL
is described.

2.2. SPECIFICATION OF THE
FUNCTIONAL BEHAVIOUR USING SDL

Emulation of real user behaviour involves both the generation of sig­
nals according to a certain distribution and the reaction on the signals
received from the PBX, depending on the current state of a signalling
connection. Furthermore, the reaction could also depend on some special

224 T. Steinert and G. Ropler

variables, e.g. the number of already repeated call attempts allowing to
limit the number of repeated call attempts until a user would give up.

SDL is used to specify the User Model FSMs for several reasons. SDL
is widely used in the software developing process in the telecommunica­
tion sector. Furthermore, commercial SDL tools can be used to create
SDL specifications and to verify that their syntax and the static seman­
tics are correct.

The load test system transforms the SDL specifications of User Model
FSMs into data structures. During the execution of a load test these
data structures are interpreted by the runtime system of the load test
system. The data structures address implemented C procedures whose
implementations are mostly short and simple. The main advantage of
this approach in contrast to the generation of C code by the aformen­
tioned SDL tools is the flexibility concerning the integration of new resp.
the adaptation of existing User Model FSMs without a compilation pro­
cess. Furthermore, the C procedures are part of the load test system
and are therefore optimized concerning the performance, so that the
real time requirements are fulfilled even if a large number of User Model
FSM instances is active simultaneously. For complexity and particularly
for performance reasons only a subset of the complete SDL grammar is
used for specifying the User Model FSMs.

2.2.1 Applied SDL subset. For specifying the functional be­
haviour of a User Model the SDL subset contained in Figure 4 is applied.

c=J Start L.> __Jllnput u.1I __ .J.JII Procedure Call L-__ Text

() State C=> Output <> Decision

Figure 4 Applied SDL subset

The elements Start, State, Input, and Output are applied as usual in
the context of User Model FSMs. The meaning of the other elements of
the SDL subset is as follows:

Procedure Call: This element is applied for calling specific proce­
dures. The indicated procedure name addresses a compiled proce­
dure. There is a set of compiled procedures for the specification of
the User Model FSMs, which can easily be expanded.

Decision: The decision statement allows to decide which branch of a
transition has to be executed. The decision is performed by a pro-

Generation of realistic signalling traffic using SDL User Models 225

cedure. The procedure name in this SDL statement addresses, as
in the Procedure Call statement, a compiled procedure. Depend­
ing on the return value of this procedure, a branch of the transition
is chosen for further execution.

Text: The text element is used for defining variables for the User
Model FSM. Within the text symbol the variables are defined by
applying the SDL DCL statement ("Declare"). Only the data
types defined for the User Model FSMs can be utilized, but new
data types can easily be added. The processing of variables of
these types is performed in the compiled procedures which can be
called by means of the Procedure Call statement. The utilization
of variables within User Model FSMs is explained in detail in the
following section.

2.2.2 Procedures and variables. The use of procedures and
variables in the specification of a User Model FSM allows to introduce
more sophisticated features. They permit to hide complex algorithms
behind a simple SDL Procedure Call, e.g. for determining the current
location of an emulated DECT user. Furthermore, it is possible to define
application dependent data types, e.g. for the ISDN Signalling Informa­
tion Elements, which are used within the ISDN signalling for negotiating
the call parameters of an ISDN call.

To realize procedures and variables for User Model FSMs, there is a
supporting library, the "FSM Runtime Library". This library contains
the definitions of data types, which can be used within the SDL spec­
ification of User Model FSMs. Each data type of a User Model FSM
has to correspond to a definition included in the FSM Runtime Library.
Furthermore, the library contains the procedures applied in the SDL Pro­
cedure Call statements and the SDL Decision statements. The library
is implemented in the C programming language and can be expanded
by applying some simple interface rules. The relation between the SDL
specification of a User Model FSM and the FSM Runtime Library is
depicted in Figure 5.

A special data type is the one representing ISDN Signalling Informa­
tion Elements. These Information Elements are used for specifying the
parameters of an ISDN connection and for the application of supplemen­
tary services. They are realized within the User Models so that different
services can be addressed without changing the implementation of the
Signalling FSM.

2.2.3 Interfaces. This section describes the interfaces of a User
Model FSM and particularly goes into detail to the relation between User

226 T. Steinert and G. Ropier

User Model FSM

SDL Specification FSM Runtime Library

f' Data Types 'f
struct LGenBool
{

}

/* procedures */

ProcDetDestNum(...)
{

Figure 5 Relation between SDL specification and FSM Runtime Library

Model FSM and Signalling FSM. As described in the previous section, a
User Model FSM disposes of interfaces based on messages to the Event
Generators and to the Signalling FSM. The messages which are sent by
the Event Generators are called "Events" and, therefore, are denoted in
an SDL input statement with the suffix Event. The SDUs exchanged be­
tween User Model FSMs and Signalling FSMs follow the principle of the
Abstract Service Primitives (ASP) defined in the ISO 10SI Basic Refer­
ence Model [6J: SDUs sent by the User Model FSMs to the Signalling
FSMs have either the suffix Req or Resp, those sent by Signalling FSMs
to User Model FSMs either Ind or Conf.

Figure 6 contains a signalling sequence diagram of a simple call with
all signals exchanged between Event Generators and User Model FSM,
User Model FSM and Signalling FSM and the resulting Signalling PDUs.

As it can be seen in Figure 6, a User Model FSM has a detailed
view on the underlying Signalling FSM. However, the Signalling FSM
contains all protocol internal procedures, like Timers or error recovery
procedures. Therefore, and because of the protocol independent SDUs
the User Model FSMs represent a high level of abstraction concerning
the applied signalling protocols.

There are many SDUs sent by a Signalling FSM to a User Model
FSM indicating a received layer 3 Signalling PDU which do not require
a reaction of a User Model FSM, like MoreInfo.Ind in Figure 6. A User
Model FSM can ignore these SDUs which results in simple User Model
FSMs.

Generation of realistic signalling traffic using SDL User Models 227

Evenl

CaliReq.
Evenl

ConnEnd.
Event

User
Model

SOU

Selup.Req

Morelnfo.lnd

Alert.lnd

Selup.Conf

Disc.Req

Release.fnd

Signalling
FSM

PDU

SETUP

CALLPROC.

ALERTING

CONNECT

CONNACK

DISCONNECT

RELEASE

RELCOMPL

PBX

PDU

SETUP

ALERTING

CONNECT

CONNACK

Signalling
FSM

SOU

Setup.lnd

Alert.Req

Setup.Resp

User
Model

SetupConnplele.lnd

DISCONNECT
Disc.lnd

Release.Req
RELEASE

RELCOMPL
Release. Conf

Event

CailAccept
Event

ConnEnd
Event

Figure 6 Complete signalling sequence diagram of a simple call

2.3. SPECIFICATION OF THE TEMPORAL
BEHAVIOUR

As described in section 2.1, the specification of User Models for em­
ulating real user behaviour is separated into two sections: The func­
tional behaviour which indicates what an emulated user does, specified
by means of an SDL process, and the temporal behaviour which defines
when an action of a User Model has to be performed.

The realization of the method for specifying the temporal behaviour
of a User Model is based on Event Generators. For each input signal of
a User Model FSM of type Event there is an Event Generator defined.
An Event Generator models a stochastic process by generating Events
whose interarrival times are statistically distributed according to a de­
fined distribution density function. The load test system disposes of an
expandable set of distribution density functions, which are applied by
the Event Generators for generating Events.

One purpose of the load test system is to generate statistically cor­
rect signalling traffic. If we analyse again the phases of a phone call
illustrated in Figure 1, it can be seen, that only two types of Event Gen­
erators are sufficient to describe real user behaviour in an appropriate
way: The "State Dependent" Event Generators which are related to a

228 T. Steinert and G. Ropler

state of a User Model and the "Rate" Event Generators which are used
for specifying the frequency of occurrence of an Event, independent from
the state of the User Model. These types are presented in the following
sections.

2.3.1 State Dependent Event Generator. Event Generators
of the State Dependent type are related to the state of a User Model
FSM, where the respective Event is specified as input signal. This means
they are only active during the time the User Model FSM is in the
respective state. Each time a state is entered, the respective Event
Generators are started. This means, they determine the time when the
Event should be delivered to the User Model FSM according to the
configured distribution density function. If this time is reached, the
Event will be delivered and the Event Generator will be stopped. If
another input signal causes a transition of the User Model FSM, the
Event Generator will be stopped before the Event will be delivered. An
example for an Event generated by a State Dependent Event Generator
in Figure 7 is the initiation of the "User Action" for accepting a call.

2.3.2 Rate Event Generator. In contrast to the State Depen­
dent Event Generators are the Rate Event Generators not only active
during a state of a User Model FSM. They are active as long as the cor­
responding User Model is active. This means they generate continuously
Events, independently of the current state of the User Model FSM. This
type of Event Generator is applied for specifying the call attempt rate
of a User Model.

An Event of a Rate Event Generator is delivered to the User Model
FSM at the time determined according to the configured distribution
density function. But in contrast to the State Dependent Event Gen­
erator the time for the next Event is determined immediately after the
delivery. If a User Model FSM cannot process an Event generated by a
Rate Event Generator, because this Event is not specified as an input
signal of the current state, the Event will be buffered until it can be
processed. The motivation for this approach is that the load test system
must be capable to drive the PBX into saturation. Some inaccuracies
concerning the adjusted rate of Events can be tolerated. Normally, the
configuration of the Event Generators of a User Model should be coor­
dinated in that way, that no or only very short buffering is necessary.

3. LOAD TEST SYSTEM

The load test system "LGen" is implemented in software and runs
on standard workstations. In the PBX, the real Interface Control Units

Generation of realistic signalling traffic using SDL User Models 229

(ICUs) which terminate subscriber and trunk lines are replaced by a
LAN ICU (LICU) which emulates Virtual ICUs (VICUs) on behalf of
LGen. The messages from LGen are the same as those from real ICUs,
thus the switching software running on the Generic Control Unit (GCU)
cannot distinguish between real ICUs and VICUs. The LICU forwards
these messages between the LAN and the PBX internal CBus.

The switching fabric is also involved in tests because the switching
software requests B-channels to be through-connected.

3.1. ARCHITECTURE
This section presents the architecture of the LGen software, which is

depicted in Figure 7. The architecture consists of the following building
blocks:

User Interface

Figure 7 Software architecture of LGen

User Model FSM: This block contains an instance of a User Model
FSM for each emulated user. The FSM Runtime Library is used for
execution of the SDL processes. Each instance of a User Model is
connected with an instance of a Signalling FSM. User Models com­
municate with these realizations of layer 3 protocols of ISDN sig­
nalling systems by means of protocol-independent SDUs. Within a
load test multiple User Model FSMs can be applied simultaneously.

Signalling FSM: The block Signalling FSM contains the realiza­
tions of layer 3 protocols of different ISDN signalling systems. The
messages exchanged between this block and the CBus Layer are
Signalling PDUs, which are built according to the respective stan­
dard. The Signalling FSMs are implemented in the same way as
the User Model FSMs, i.e. they are specified in SDL by applying
the same method as described in section 2.2. LGen transforms

230 T. Steinert and G. Ropier

these specifications into optimized data structures which are exe­
cuted during a load test. Only the FSM Runtime Library differs
slightly from the one of the User Model FSMs. This results in a
higher flexibility concerning the supported signalling systems. As
for the User Models it is also possible to run multiple Signalling
FSMs with different layer 3 protocols simultaneously.

Event Generation: This block contains the Event Generators for
the User Model FSMs generating Event messages according to de­
fined distribution density functions. Furthermore, the Timers for
the Signalling FSMs are realized within this block. To deliver the
Event and Timer messages at the specified time, a Calendar mod­
ule is applied. This Calendar is realized in a similar way than those
for event-driven simulations, but in the case of LGen the messages
are processed in real time.

Evaluation: This block contains modules for evaluating a load test.
The required information is provided by the User Model FSMs
and particularly by the Signalling FSMs. One type of informa­
tion are the measurement values concerning signalling connections
determined by the Signalling FSMs, like e.g. "Setup Answer De­
lay" or "Number of Accepted Setup". These values are passed
to the Evaluation block, to determine results as e.g. mean value
and standard deviation. Another type of information are the ex­
changed messages itself and the time when they were occurring.
Therefore, SDUs and PDUs can be recorded during a load test in
a file. Because of the large amount of recorded data it is possible
to filter this message trace by user-selectable filters. This allows
to examine in detail the exchanged messages or to determine the
signal flow delay from one emulated user to another emulated user.

CBus Layer: The purpose of the CBus Layer is to put the received
layer 3 PDUs in CBus messages and to send them through a TCP
connection to the LICU. In the other direction it has to extract
layer 3 PDUs from CBus messages received from the LICU. To
perform these actions, the CBus Layer disposes of a table assigning
CBus addresses of VIC Us and ports to emulated users. A second
task of the CBus Layer is to exchange the control messages between
LGen and LICU for activating and deactivating VICUs and ports.

Management: The management block contains the modules for
managing the entities of LGen. It administers the emulated users,
i.e. it activates and deactivates the respective User Model and Sig­
nalling FSM instances, according to the user-defined test sequence

Generation of realistic signalling traffic using SDL User Models 231

configuration. Furthermore, it initiates the activation and deacti­
vation of VICUs and controls the evaluation, e.g. by setting filters
for the message trace.

User Interface: This block allows the interaction between the tester
and LGen during a load test. A graphical user interface, which
can be connected to this module, allows to initiate actions, like
activating or deactivating emulated users, starting and stopping a
load test or setting of filters for the message trace. Furthermore,
it displays intermediate results of the evaluation of measurement
values.

The communication between these blocks is mainly based on the ex­
change of LGen internal messages. These messages dispose of a fixed
header containing information like sender and receiver address and mes­
sage type. Depending on the type of the message there are supplemen­
tary message parts, like a complete Signalling PDU. This message based
communication allows to decouple the execution of the different signal
processing entities.

To take advantage of running LGen also on multiprocessor work­
stations, the developed program uses multiple threads to process the
messages concurrently. The model applied is very similar to the "peer
model" (also known as "workcrew mode"), where all existing threads
work concurrently on their task, i.e. process LGen internal messages.
This load sharing principle allows LGen to adapt to the underlying hard­
ware platform in an optimized way. For a further description of thread
based programming we refer to [7] and [8].

3.2. BASIC TEST SCENARIO
This section describes how the signalling traffic generation is realized

with the architecture presented in the previous section. This is done
by explaining how a load test of LGen takes place and how the blocks
presented above interact during a load test.

After LGen is started, the Management is responsible for the control of
a load test. It initiates the activation of the VICUs by sending a message
to the CBus Layer. The CBus exchanges then the control messages
with the LICU through a TCP connection to activate the VIC Us and
ports. The activated ports are announced to the Management, so that
only those users are activated, whose ports are already active.

The Management activates the users according to the test sequence
configuration, which is provided at the configuration phase of LGen. To
activate a user, the Management sends a message to the User Model FSM
instance and to the respective Signalling FSM instance. The User Model

232 T. Steinert and G. Ropier

FSM instance starts the Rate Event Generators, performs the specified
start transition and starts the State Dependent Event Generators of
the first state. The Signalling FSM instance performs also the start
transition.

If a User Model FSM instance receives an Event, it stops all active
State Dependent Event Generators, performs the specified transition to
the next state and starts then the respective State Dependent Event
Generators. Normally, during a transition caused by an Event, an SDU
is sent to the related Signalling FSM instance. Upon reception of an
SDU the Signalling FSM instance performs the specified transition. If
there is a PDU to send, the Signalling FSM instance builds the PDU, as
defined in the respective standard, and sends it to the CBus Layer. The
CBus Layer builds a CBus message containing the PDU and, among
other information, the CBus address of the port, where the emulated
user is connected. This CBus message is transmitted by means of TCP
to the LICU, which sends the message via the CBus to the GCU, where it
is processed. For the GCU there is no difference between CBus messages
created by LGen and those of real ICUs.

The GCU transmits the messages for the ICUs (virtual and real ones)
on the CBus. The LICU recognizes those messages which have to be for­
warded and sends them through TCP to LGen. At LGen they arrive at
the CBus Layer, which extracts the PDU, determines the emulated user
by means of the CBus address and sends the PDU to the correspond­
ing Signalling FSM instance. The Signalling FSM instance performs
the transition which is specified for this PDU. If there is no transition
specified, it will be ignored and the Signalling FSM instance remains in
the current state. In most cases a PDU causes an SDU to be sent to
the User Model FSM instance. The User Model FSM instance checks
whether a transition is specified for this SDU. Only if there is a transi­
tion, the State Dependent Event Generators are stopped, the specified
transition is performed and the State Dependent Event Generators of
the new state are started.

To all SDUs and PDUs exchanged within LGen the filter rules of the
message trace are applied. If a message has to be recorded, it is sent to
the Evaluation, where the message and the current time are written to
a file. The Signalling FSM instances perform the measurements during
a signalling connection. At the end of the connection they send the
measured values to the Evaluation, where the statistical evaluation takes
place.

Besides the use of the test sequence configuration, it is also possible to
control a load test by means of the User Interface. Upon user action the
User Interface sends a message to the Management which interprets the

Generation of realistic signalling traffic using SDL User Models 233

message. It then determines the destination of the request and composes
the appropriate internal message for e.g. the activation of emulated
users, the setting of filters of the message trace or the stop of the load
test. During the load test the Evaluation includes intermediate results
in messages and sends them to the User Interface, where these results
are displayed in an appropriate manner.

As described, LGen emulates real user behaviour as specified by means
of User Models. As LGen is capable to process a large number of em­
ulated users simultaneously with very low latency, the superposition of
the signalling messages represents realistic traffic load. The concept of
activating and deactivating emulated users is a natural way for emulat­
ing load peaks. It is sufficient to activate at a time several users, whose
User Models are specified in that way that they start to initiate a call
within a short time frame.

4. CONCLUSION
The LGen load test system is used mainly in the development de­

partments and in the test floor. The first application was to verify that
the existing overload protection mechanism worked as expected and to
test an enhanced overload protection mechanism. In real systems, the
observed fluctuations in call arrivals and other durations are due to, the
statistical nature of real traffic sources. LGen has demonstrated that
it is important for meaningful load tests to use realistic traffic instead
of using call generators which can only produce deterministic arrival
patterns.

The target rate of 30000 calls per hour is clearly exceeded by LGen.
The processor load is then still low which makes sure that the simulated
behaviour conforms to the expected distributions. On a Sun Ultra 1
workstation, call rates of more than 100000 calls per hour can be reached.
This very high call rate is useful for stress tests, even if the simulated
timing behaviour deviates from the target distributions. This deviation
is due to the non-negligible delays at LGen internal queues when the
processor load becomes high.

A second important application area for LGen are call centers and
other CTI (Computer Telephony Integration) applications. There are
two main reasons why call centers have to be tested under high loads.
First, some branches in the call flows which are executed by the external
call distribution application are only used when the load is high. An
example is a call flow which connects callers to an announcement for
the estimated waiting time until an agent will answer the call. Another
motivation for tests under high load is the experience that multiple sys-

234 T. Steinert and G. Ropier

tems from different vendors like in a call center do not always interact
smoothly, especially if some systems operate close to their maximum
load. LGen is used now in several areas in the context with call cen­
ters, and it has also been possible to demonstrate the performance of an
operational call center at a customer site.

Work has started now to extend LGen to use it in the DECT con­
text. LGen will be used to generate DECT-specific load peaks which
are caused by high call rates and also high roaming and hand over rates.
A typical situation where such a scenario occurs is at the end of a big
meeting when all participants leave the meeting room and many of them
try to make calls.

LGen has proven to be a useful tool for tests during development and
in the integration test floor. The key features are the realistic generated
traffic and the flexible modelling of user behaviour. Both features result
from the approach to model the behaviour in SDL and to use Event
Generators for the execution in real-time.

References

[1] ITU-T Recommendation Z.lOO: SDL+ methodology: Use of MSC
and SDL (with ASN.1)

[2] Mitschele-Thiel, Miiller-Clostermann: Performance engineering of
SDLjMSC systems, Computer Networks 31 (1999)

[3] Lemppenau, Tran-Gia: A Universal Environment Simulator for SPC
Switching System Testing, Proceedings 11 th International Teletraf­
fic Congress (lTC), Kyoto 1985

[4] ITU-T Recommendation Q.931: ISDN user-network interface layer
3 specification for basic call control

[5] FTZ Richtlinie 1 TR6: Kennzeichenaustausch ZWI-

schen DIVO(ISDN)-Vermittlungsstellen und ISDN-
Teilnehmereinrichtungen - ISDN -D-Kanal-Protokoll

[6] ISO 7498, Basic Reference Model for Open Systems Interconnection

[7] IEEE lO03.1c-1995, Standard for Information Technology, Portable
Operating System Interface (POSIX): System Application Program
Interface (API) Amendment 2: Threads Extension (C Language)

[8] Nichols, Buttlar, Farrell: Pthreads Programming,
O'Reilly&Associates, 1996

	GENERATION FOR REALISTIC SIGNALLING TRAFFIC IN ISDN LOAD TEST SYSTEM USING SDL USER MODELS
	1. INTRODUCTION
	2. SPECIFICATION OF USER BEHAVIOUR
	2.1. GENERAL PRINCIPLE
	2.2. SPECIFICATION OF THEFUNCTIONAL BEHAVIOUR USING SDL
	2.3. SPECIFICATION OF THE TEMPORALBEHAVIOUR

	3. LOAD TEST SYSTEM
	3.1. ARCHITECTURE
	3.2. BASIC TEST SCENARIO

	4. CONCLUSION
	References

