
JCCAP: CAPABILITY-BASED ACCESS CONTROL
FOR JAVA CARD

D. Hagimont
S1RAC Project 1NR1A, 655 av. de l'Europe, 38330 Montbonnot Saint-Martin, France

{ Daniei.Hagimont}@ inrialpes.fr

J.-J. Vandewalle
Gemplus BP 10013881 Gemenos cedex, France

{ieanjac}@ research.gemplus.com

Abstract This paper describes JCCap, a protection facility for cooperating appli
cations in the context of Java Card. It enables the control of access rights
between mutually suspicious applications, either between one terminal
application and one Java Card applet or between two applets hosted
inside the same Java Card. Using JCCap, access to objects is controlled
by means of software capabilities that can be exchanged between mutu
ally suspicious applications. An important advantage of JCCap is that
the definition of the protection policy of an application (i.e., how ac
cess rights are granted to other applications) is completely separated
from the application code. The protection policy is described in an ex
tended Interface Definition Language (IDL) at the interface level, thus
enhancing modularity, separation of concerns, and ease of expression
in the design of the overall security architecture. Each application can
define its own protection policy independently from the other appli
cations, thus enabling the expression of mutual suspicion without any
prior knowledge about the policies of other applications. Every protec
tion policy is then applied when applications interact with each other.
This paper describes the implementation of a prototype of JCCap. It
shows the feasibility and applicability of this technique in today's Java
Card and outline its advantages.

Keywords: Smart cards, security, access control, capability.

1. INTRODUCTION

With the advent of open smart cards, it becomes possible to embed
multiple applications within one smart cards [1]. These applications may

http://dx.doi.org/10.1007/978-0-387-35528-3_22

366 IFIP CARDIS 2000

need to cooperate with other applications, either co-located within the
same smart card (we call them local applications), or located in the ter
minal1 in which the card is inserted (we call them remote applications).

More precisely, in the context of Java Card [9], two local applications
can cooperate through Java method invocation on "shareable 11 objects,
and two remote applications can cooperate through a remote invocation
mechanism such as DMI [15], an equivalent of the Java standard RMI
mechanism [12] dedicated to Java Card. Thanks to the Java programming
language and to the DMI facility, the development of smart card-based
applications is greatly simplified.

However, enabling cooperation between applications requires mecha
nisms to control the access rights that one application grants to its peers.
Naturally, with Java Card, an access control policy should be expressed
in terms of checks on which methods one application may or may not in
voke on objects of another application. The current release of Java Card
specifications only defines a mechanism for sharing objects between local
applications but does not provide any integrated facility for managing the
access control policy associated with those shared objects. That implies
that the application programmer must explicitly manage such a policy.
Such a burden makes applications difficult to develop and maintain as it
implies to mix the functional application code with security-related code,
such as authentication and access right checks, and explicit access right
transfers. In this paper, we propose a protection facility called JCCap,
which addresses the above issue. It is based on software capabilities [5]
and therefore enables mutually suspicious applications to dynamically
exchange access rights according to their protection policy and their ex
ecution context.

JCCap has the following advantages:

• Mutual suspicion: JCCap supports mutual suspicion in two ways.
First, it allows an application to dynamically grant access rights to
another application. Therefore, the access rights that the applica
tion must grant at the bootstrap of the execution can be restricted
to a minimum; access rights are granted on demand, following the
well-known "need-to-know" principle. Second, each application is
responsible for the definition of its own protection policy, which is
transparently taken into account at run-time. Therefore, there is no
need for an a-priori definition of a global protection policy agreed
by all the applications. Applications that are mutually suspicious
can each define their own protection policy independently of the

1 From now on, we call terminal the host in which the card is inserted

JCCap: Capability-based Access Control for Java Card 367

others. At run-time, applications can discover themselves and co
operate by dynamically granting access rights while transparently
checking accesses according to their protection policy.

• Modularity: JCCap brings modularity in the application design
since the definition of protection policies is totally separated from
the application code.

• Transparency: the expression of a protection policy is not impacted
by the location of the involved applications. The involved applica
tions can be local (within the same card) or remote (one in the
terminal and one within the card).

JCCap has been implemented on top of the Java Card 2.1 environ
ment. It consists in a stub generator which generates filter objects, which
are responsible for implementing the access controls associated with the
application protection policy. This paper presents the protection model
of JCCap and its implementation in the Java Card environment.

The rest of the paper is structured as follows. In section 2, we motivate
the overall design choices for JCCap. We present JCCap's access control
model in section 3. Section 4 describes the implementation of JCCap.
Section 5 exhibits our experiments using JCCap and we conclude the
paper in section 6.

2. OVERALL DESIGN CHOICES

In order to motivate our work, we first present a simple application
example that is used to identify the requirements for the design of the
JCCap facility. We then introduce the capability-based protection model,
on which JCCap relies. Finally, we discuss the rationale of our choice for
a capability-based protection mechanism in regards with the existing
literature and the problem of its implementation costs.

2.1. APPLICATION EXAMPLE

Let's consider the example of a Bank application that manages client
accounts (Figure 1).

This application has to cooperate with Client applications for which
the accounts are managed. Whenever a Client2 connects to the Bank
through a Gateway object, the Bank returns to the Client a reference to
its Account object, allowing the client to read the state of the Account.
Each application (Bank and Clients) knows the cooperation interfaces,

2 From now on, the term client refers to the client application (not a person)

368 IFIP CARDIS 2000

interface gateway {
Account connect (String name String

Interface Account {
State read O;
void write (States);

Figure 1 The Bank example.

i.e. the interfaces of the Gateway and Account objects. The interface of
the Gateway object allows the Client to connect to the Bank, providing
the client name and the pin-code associated with that client name. The
connect method returns a reference to the client Account object. The
interface of the Account object defines two methods, which respectively
allows reading and writing the state of the account (we use the syntax
of the Java programming language).

Let's study the requirements in terms of access control in this appli
cation example. The Bank has full access right on its own objects, but
clients should not. A client should be allowed to read its bank account
(and only its), but not to arbitrarily write it (only a bank transfer initi
ated by the bank should be granted write access on the account).

Therefore, when the bank returns a reference to the account object to
the client, this reference should only allow the client to read the account.
This reference should only include restricted access rights on the account
object. Moreover, a client should not be granted access to the account
object as long as it doesn't obtain such a (protected} reference to the
account object through the connect method of the Gateway object. The
connect method requires the client to provide the correct password (pin
code) associated with the account.

The above application example shows that access control between co
operative applications should allow dynamic evolution of access rights.

JCCap: Capability-based Access Control for Java Card 369

It is not possible to define statically (prior to applications execution) the
access rights required by applications to execute properly. In the Bank
example, a client application may acquire an access right on the account
object, provided it passed the correct pin-code parameter to the connect
method. This implies that the access control system must allow access
rights to evolve dynamically during execution. Transferring an access
right from one application to another generally occurs when applications
interact and more precisely when one application provides a reference on
one of its objects to another application. The reference passing has to be
accompanied by a right transfer.

These requirements led us to the definition of a capability-based access
control model. The next subsection introduces capability-based access
control, before the description of the JCCap model in section 3.

2.2. CAPABILITY-BASED ACCESS CONTROL
The JCCap model is based on software capabilities [5]. The advantage

of capabilities is that they allow access rights to evolve dynamically,
which is one of our objectives.

A capability is a token that identifies an object and contains access
rights, i.e. the subset of the object's methods whose invocation is allowed.
In order to access an object, an application must own a capability to
that object with the required access rights. When an object is created, a
capability is returned to the creator, that usually contains all rights on
the object. The capability can thus be used to access the object, but can
also be copied and passed to another application, providing it with access
rights on that object. When a capability is copied, the rights associated
with the copy can be restricted, in order to limit the rights given to the
receiving application.

Therefore, each application executes in a protection environment in
which it is granted access to the objects it owns. This application can
obtain additional access rights upon method invocation. When an object
reference is passed as parameter of an invocation, a capability on that
object can be passed with the parameter in order to provide the receiving
application enough access rights to use the reference.

In a Java environment, a capability may be viewed as a Java refer
ence with restricted access rights. A system operation should allow the
restriction of the access rights associated with such a reference, which
can then be passed as a parameter when an object from an untrusted
application is invoked.

In order to illustrate capability-based protection, let us consider the
Bank example described previously. A capability on the Gateway object

370 /FIP CARDIS 2000

is given to the client applications providing them with the right to con
nect to the bank. When a client wants to read its account, the client
connects to the bank using this capability. In return from the connect
invocation, the client receives a capability on the account object, which
only allows reading the account. This capability allows the client to read
its account.

However, even if managing capabilities simplifies protected applica
tions development, the access control policy of an application still has to
be programmed in the code of the application, thus leading to complex
programs. Our goal was to separate the access control aspect from the
implementation aspect of the application. This simplifies the expression
of an access control policy, keeps application code simple and enforces
modularity. The JCCap capability-based model is presented in the next
section.

2.3. RATIONALE

Capability-based protection mechanisms have been defined and imple
mented in a variety of systems (5, 14, 6] including the Java environment
(2]. However, in all the proposed approaches, capabilities are made avail
able at the programming language level through capability variables that
are used explicitly for accessing objects, changing protection domains
and transferring access rights between protection domain. Therefore, it
is demanded a programming effort to implement them in a particular ap
plication. Moreover, this binding of the protection mechanism with the
implementation code does not help a clear cut separation between the
security policy and its control at the runtime.

Our JCCap capability-based model rely on the Hidden Software Capa
bilities defined and developed by one of the author (4]. The hidden soft
ware capabilities technique overcome the difficulties of capability-based
systems as presented in the section 3. We have extended the application
of this technique to the Java Card environment in two directions:

• Protecting the access to objects in different card applet contexts (cf.
section 4.1) with an implementation of hidden software capabilities
with Java Card 2.1 (13] shared objects (objects that implements a
Shareable interface).

• Protecting the access to object of a card applet from the terminal
application (cf. section 4.2) with an implementation of hidden soft
ware capabilities on top of a Java Card RPC-like communication
scheme developed by the other author (15].

JCCap: Capability-based Access Control for Java Card 371

These two applications of the hidden software capabilities have been
studied in order facilitate the definition and the implementation of com
plex protection schemes with Java Card that will surely face with this
problem in a near future. Today's, implementing a protection scheme
with off-the-shelf Java Card 2.1 platforms is difficult and requires a lot
of code to be hand-coded and added to the applets (shareable interfaces,
implementation of shared objects, authentication tool, etc.). Our solu
tion does not eliminate such addition of code to applets but automates
their production and therefore enables more reliable code and fastens its
development cycle.

3. THE JCCAP CAPABILITY-BASED ACCESS
CONTROL MODEL

In this section, we present our protection model based on software
capabilities.

3.1. THE MODEL
As explained in the previous section, software capabilities provide a

model in which access right can be dynamically exchanged between ap
plications. The issue is then to provide applications programmers with a
means for controlling rights exchanges with other applications.

One strong motivation for the JCCap model is modularity. Indeed, we
don't want to provide extensions to the programming language that allow
an application to express capability parameter passing when an object
from another application is invoked. This would overload programs and
make them much more difficult to maintain.

To achieve this goal, our idea is to define capability exchanges between
interacting applications using an interface definition language (IDL) [4].
Since an interface can be described independently from any implementa
tion, describing capability exchanges at the level of the interface allows
the protection definition to be clearly separated from the code of the
application, thus enhancing modularity.

Therefore, an IDL has been defined that allows the application pro
grammer to express the capabilities that should be transferred along
with parameters in a method invocation. This IDL allows the definition
of views. A view is an interface that includes the definition of an access
control policy. A view is associated with a capability and describes:

• the methods that are authorized by the access rights associated
with the capability,

372 IFIP CARD IS 2000

• the capabilities that must be transferred between the caller and
the callee along with the parameters of the methods authorized by
the view. These transferred capabilities are expressed in terms of
views.

Therefore, a capability includes the identifier of the target object, the
access rights that the capability provides to its owner and the capability
exchange policy which defines what capabilities must be passed along
with parameters when the object is invoked. The access rights and the
capability exchange policy are defined with a view.

The definition of views is naturally recursive since it specifies the ca
pabilities that should be transferred with parameters, this specification
being in terms of view. For that reason, each protection view is given a
name at definition time.

In the Bank example described above, two views may be associ
ated with an Account: a view reader_account that only grants access
to the read method and a view writer_account that grants access to
both methods read and write. For the Gateway class, we define the view
client_gateway which authorizes invocation of the connect method, which
signature in the view expresses that a capability with the reader _account
view must be returned to the caller application along with the refer
ence to the account object returned as result of connect. These views are
described below:

view reader account
implem;;;.ts Account {

State read();
void not write (State s);

} }

view writer account
implem-;nts Account {
State read();

void write (State s);

view client_gateway implements Gateway {
reader_account connect (String name, String pin-code);

}

Such a protection policy, defined only on the callee side, would be suffi
cient if we were considering a client/server architecture where protection
is only there to protect the server against its clients. Instead, we are con
sidering an architecture where applications are mutually suspicious. Each
application must have full control over the capabilities it exports to other
applications (each application may be a caller or a callee). Moreover, we
want to ensure applications independence. More precisely, it is not possi
ble for an application programmer to verify the protection policy defined
by an application that exports a service since at programming time, the
programmer may not yet know which applications it is going to interact
with.

JCCap: Capability-based Access Control for Java Card 313

For these reasons, each application can define its own view of the pro
tection policy to apply when interacting with other applications. There
fore, two views are associated with a capability: the view of the caller
application and the view of the callee application.

The view defined by the callee Z describes:

• The methods that are authorized.

• For each input parameter of a method (reference R received by
Z), the view describes the capabilities that are given by Z when
the reference R is used for method invocation. This view describes,
from the callee point of view, the capabilities that it accepts to
export.

• For each output parameter of a method (reference R given by Z),
the view describes the capability returned with the reference R.

and similarly the view defined by the caller A describes:

• For each input parameter of a method (reference R given by A),
the view describes the capability given with the reference R.

• For each output parameter of a method (reference R received by
A), the view describes the capabilities that are given by A when
the reference R is used for method invocation. This view describes,
from the caller point of view, the capabilities that it accepts to
export.

This symmetric scheme is the answer to mutual suspicion and applica
tions independence. Both the caller and the callee specify their protection
views for their objects. They are taken into account as follows.

In order to share objects, applications must exchange object refer
ences (Java object references in the context of Java Card). Thus, the
runtime must provide a name server that allows objects references to be
exchanged, i.e. to associate symbolic names with object references. We
assume that this name server is used by applications in order to start
cooperating3 . When an application obtains a reference to an object from
the name server, it can invoke the object by using the Java interface that
this object is supposed to implement (the two applications must agree
on an interface in order to cooperate). Then, applications can exchange
references as parameters (onwards or backwards) without using the name
server.

3 This name server must also include an authentication mechanism in order to select to which
application a capability can be delivered.

374 IFIP CARDIS 2000

When an application exports an (Java) object reference through the
name server, it defines the view associated with the reference, i.e. the
capability that is exported for this exported reference. This way, the ap
plication also defines the capabilities that may be exported subsequently
to an invocation of that object.

When an application fetches the reference from the name server, it also
defines the view associated (on its side) with the reference it obtained.
This way, the application defines the capabilities that may be exported
subsequently to an invocation of the object.

Any invocation that derives from an invocation on that object will take
into account the view definitions from both interacting applications.

3.2. EXAMPLE
In order to illustrate the expression scheme of JCCap, let us consider

the example4 of a Printer object, exported by a print server, that allows
a client to print a file (Figure 2).

A capability on the Printer object is given to the client application
providing them with the right to print files. When a client wants to print
a file (File object), the Printer object needs to get read rights for this
file; therefore the client will pass, at invocation time (1), a read-only
capability on the file (file_capa) to the callee application. This capability
allows the Printer object to read the contents of the file (2).

Client Print server
frle_capa

C8J,
printer object file object

-D o,. __ -- --- ------------- --o 2

frle_capa

Figure 2 Print server example.

Here are the Java interfaces of the Printer application.

interface Printer_ itf {

4This example only aims at explaining the protection model. We don't use it as an example of
JavaCard- based application. This example has the advantage to include capability parameter
passing, onward and backward, and therefore to illustrate the power of JCCap.

JCCap: Capability-based Access Control for Java Card 375

void init (); I I initialize the printer
Job_ itf run (Text _itf text); I I send a text to the printer

}
interface Text_ itf {

String read();
void write (String s);

}
interface Job_ itf {

void stop ();
}

I I read the text
I I write the text

/I kill the current job

These interfaces are shared between the caller and the callee. In order
to make the print service available to the clients, the Printer applica
tion exports an instance of class Printer through the name server. The
Printer class is an implementation of the Printer jtf interface. On its side,
the client application fetches this instance from the name server and can
invoke a method (init or run) on this instance, using the Printer_itf in
terface. When the client wants to print a file, it invokes the method run
and passes a reference to an instance of class Text which implements
interface TexUtf. The run method returns a reference to an instance of
class Job that implements interface Job_itf. The client application can
invoke this instance in order to stop the job.

In the example, the definition of protection aims at avoiding the fol
lowing protection problems:

• the printer doesn't want the client to invoke the init method on its
printer objet (and to initialize the printer),

• the client doesn't want the printer to invoke the write method on
its text object (and to modify the text of the client).

In our protection scheme, the client and the server will define the
views described below. Each application defines a set of views that define
its protection policy. Each view "implements" the Java interface that
corresponds to the type of the objects it protects. A not before a method
name means that the method is not permitted. When an object reference
is passed as parameter in a view, the programmer can specify the view
to be passed with the reference, by using the view instead of the type of
the parameter. If no view is specified, this means that no restriction is
applied to this reference.

client

view client _printer
implements Printer_itf {

void init ();

print server

view server printer
implements Printer_ itf {
void not init ();

376 IFIP CARD IS 2000

}

Job_itfrun (
reader_ text text);

}

view reader_ text implements Text_ itf {
String read();
void not write (String s);

Job_itfrun (
Text_itf text);

In this example, the print server defines the view server which pre
vents clients from invoking method init. No restriction is applied to the
parameters of method run. The client defines the view client which says
that, when a reference to a text is passed as a parameter of method run,
the view reader must be passed, which prevents the print server from
invoking method write. Notice that the client doesn't have any reason to
prevent itself from invoking method init; this is a decision to be taken
by the print server.

When the print server registers an instance of class Printer in the
name server, it associates view server with it. When the client obtains
this reference from the name server, it associates the view client with it.
These two views and the nested ones (reader) define the access control
policy of the two applications.

To sum up, each application defines its own protection policy indepen
dently from any other application or server and this policy specification
is defined separately from the application implementation using views,
thus enhancing modularity.

4. IMPLEMENTATION OF JCCAP
The first subsection describes the implementation of JCCap for local

applications, while the second deals with remote applications.

4.1. LOCAL APPLICATIONS
In this section, we present the implementation of JCCap within the

JavaCard, i.e. we assume that the interacting applications are both lo
cated within the card.

For the implementation of JCCap within the JavaCard, we used the
fact that Java object references are almost capabilities5 . Indeed, since
Java is a safe language [3, 10], it does not allow object references to be
forged. This implies that if an object 01 creates an object 02, object
02 will not be accessible from other objects of the Java runtime, as long

5This is the case for any object-oriented strongly typed language (safe language).

JCCap: Capability-based Access Control for Java Card 377

as 01 does not explicitly export a reference to object 02 towards other
objects. The reference to 02 can be exported (as a parameter) when an
object invokes 01 or when 01 invokes another object. Therefore, as long
as an application within the JavaCard does not export a reference to one
of its objects, these objects are protected against other applications that
are loaded into the card. This protection relies on the JavaCard bytecode
verifier [7] which verifies that the bytecode which is loaded into the card
conforms to the strong typing of the Java language.

Thus, Java object references can be seen as capabilities. However, they
are ali-or-nothing capabilities since it is not possible to restrict the set of
methods that can be invoked using such a reference. In order to imple
ment our capabilities, we implemented a mechanism inspired from the
notion of Proxy [8], which allows access rights associated with a reference
to be restricted.

Our implementation relies on the management of filters that are in
serted between the caller and the callee. For each view defined by an
application, a filter class is generated (by a pre-processor) and an in
stance of that class is inserted to protect the application.

When a reference to an object is passed as input parameter of a method
call, instead of the real object, we pass a reference to an instance of the
filter class generated from the view defined by the application providing
the reference.

This filter class implements all the methods declared in the interface of
the view. It defines an instance variable that points to the actual object
and which is used to forward the authorized method calls. If a forbidden
method is invoked on an instance of a filter class, then the method raises
an exception.

The reference to the filter instance, which is passed instead of the ref
erence parameter, is inserted by the caller application. In fact, this filter
instance is inserted by the filter used for the current invocation. In figure
3a, the invocation of 02 performed by Appl passes a reference to 01 as
parameter. The filter F1(02), which corresponds to the protection policy
of App1 for invocations of 02, inserts filter F1(01) before the parameter
01. Therefore, filters that are associated with reference parameters are
installed by filters that are used upon method invocations.

Conversely, when a reference is received by an application, a reference
to a filter instance is passed instead of the received parameter, which
class is generated from the view specified by the application that receives
the parameter. In figure 3b, the filter F2(02) which corresponds to the
protection policy of App2 for invocations of 02, inserts filter F2(01)
before the received parameter.

378 IFIP CARDIS 2000

Appl

call to 02 Fl(OZ)

\-
GJ Fl(Ol)-'

a)

App2 Appl

Figure 3 Management of filters.

App2

b)

Therefore, two filter objects (Fl(Ol) and F2(01)) are inserted between
the caller and the callee for the parameter 01 passed from App1 to App2.
These two filters behave as follows:

• Fl(Ol): it enforces that only authorized methods can be invoked
by App2 and it inserts filters on the account of Appl for the pa
rameters of invocations on 01 performed by App2.

• F2(01): it inserts filters on the account of App2 for the parameters
of invocations on 01 performed by App2.

Below is the code of the filter classes for the print server example.
The filter class reader of the client forwards read invocations to the ac
tual instance, but it does not forward write invocations. Similarly, the
filter class server of the print server only forwards invocations of the
run method. In the filter class client of the client, method run takes as
parameter a reference text for which a capability with the reader view
must be passed. For this parameter, the run method of the filter class
creates an instance of the filter class reader and initializes it with the
actual parameter, and forwards the invocation, passing as parameter the
created filter instance instead of the actual parameter.

client

public class reader text
implements {

Text_itf obj;
public reader_ text(

Text_itf o) {
obj = o;

I

I
I

print server

I public class server printer
I implements Pri;;-ter _ itf {

Printer_ itf obj;
I public server _printer (

Printer_ itf o) {
obj = o;

JCCap: Capability-based Access ControlforJava Card 379

J I
public String read() { I

return obj.read(); I
J I
public void write(

Strings) { I
Exception!!! I

} I }

public void init() {
Exception!!!

public Job_itfrun(
Text_itf text) {
return obj.run(text);

J I J

public class client printer
implements Prlnter _ itf {

Printer itf obj;
public client _printer (Printer_ itf o) {

obj = o;

}

}
public void init() {

obj.init();
}
public Job_itf run(Text_itf text) {

reader stub= new reader_text(text);
return obj.run(stub);

Figure 4 illustrates the management of filter objects in the print server
example. At step 1, the invocation of the run method passes the reference
of the actual text object. This invocation is performed on the filter object
of the client for the reference to the printer object. This filter object
creates a filter object for the text parameter and forwards the invocation
to the filter object of the print server (step 2), passing the filter object
of the text parameter. The invocation is then forwarded to the actual
printer object. Later, the invocation of the read method on the text
object goes through the filter object that was inserted by the client.

Notice that if the client had defined a view job_ view for the reference
to the instance of class Job returned by method run, the filter class client
would have the following run method:

public Job_itfrun(Text_itftext) {

}

reader stub= new reader_text(text);
return new job_view(obj.run(stub));

This method creates two filter objects, one for the (text) input param
eter and one for the Uob) returned parameter. In the case of the print
server described earlier, view job_view is not necessary.

We have presented the implementation of JCCap within the Java
Card. The implementation within the card relies on the safety of the Java

380 IFIP CARDIS 2000

language (enforced by the bytecode verifier) and on the Java Card fire
wall that isolates the different applet contexts. Filters are implemented
by the means of Java Card 2.1 shared objects that enable capabilities
to be accessible from different contexts. In the next section, we describe
how this implementation can be adapted in order to control access rights
between remote applications, i.e. one application being within the Java
Card and the other being executed on the terminal.

4.2. REMOTE APPLICATIONS
In this section, we describe the adaptations to the previously described

implementation that are required in order to control access rights be
tween remote applications (one in the card and one in the terminal).

The implementation for local applications relies on Java strong typing
(implemented by the bytecode verifier when code is loaded into the card).
Since each class loaded into the card is verified prior to loading, the
environment guarantees that an application which uses a reference to a
filter object, did not forge it and obtained it either as a parameter of
an invocation or from a name server (which generally authenticates the
application); this reference to a filter object acts as a capability.

When considering remote applications, we have to take into account
the following characteristics [15]:

• First, communication between the terminal and the card imple
ments a simplex (or master-slave) RPC paradigm. This means that
invocations can only take place from the terminal to the card (and
not the other way around). Therefore, regarding cooperation be
tween remote applications, we only have to deal with capabilities
stored in the terminal which reference objects within the card, and

print server

client

Figure 4 Filter objects management in the print server.

JCCap: Capability-based Access Control for Java Card 381

a capability transfer can only occur on return of a method invoca
tion.

• Second, even if an RMI-like facility (such as DMI) can be used for
cooperation between remote applications, communication between
the terminal and the card is based on message passing, messages be
ing structured as APDU (Application Protocol Data Units). Are
mote invocation facility, which implements remote references (from
the terminal to the card) must relies on APDU. Thus, if a card is
inserted in a malicious terminal, an application in that terminal
may send the APDU that would have been sent by the remote in
vocation facility (in other words, the application in the terminal
forged a remote reference to an object in the card). This implies
that the implementation of JCCap for remote applications cannot
rely on the safety of the Java language as for local applications.

We have implemented a DMI facility which integrates the manage
ment of JCCap capabilities. The basic different with the implementation
described in section 4.1 is that the Java reference between the two filter
objects become a remote reference (implemented with APDU message
passing).

In order to protect capabilities against forgery, we have to use secrets
or passwords, which allow capabilities to be authenticated by the card
when used for method invocation. The management of such passwords
may rely on cryptographic techniques when transferred over an untrusted
communication path; we only address here the issue of authenticating ca
pabilities which are used from the terminal in which the card is inserted.

Whenever a capability is exported from the card to the terminal, a
password is generated by the card and stored into the filter object on
the card side. The password is transferred to the reader along with the
returned reference and stored in the filter object on the terminal side.
In the terminal, when the capability is used for object invocation, the
password in the filter object is transferred along with the APDU which
implements the remote invocation. In the card, the filter object which
receives the invocation verifies that the password received in the APDU
corresponds with the password stored in the filter.

In Figure 5, App1 is an application in the reader machine and App2
is an application in the card. App1 invokes a method on object 01
from App2. Psw1 is included in the message (APDU) sent by F1(01)
to F2(01). F2(01) verifies that pswl is equal to psw2 and that the in
voked method is authorized in the view associated with this capability.
If so, the invocation is performed.

382 IFIP CARDIS 2000

Figure 5 Filter objects management between remote applications.

On return, we assume that a capability on object 02 (from App2
within the card) is returned to Appl. When F2(02) is created, a pass
word (psw3) is generated and stored in its state. An APDU is then
returned to the terminal, including all information required to initialize
F1(02) (which acts as an RMI stub). Psw3 is included in this APDU
and stored in F1(02) in the terminal.

With this implementation, capabilities on objects stored within the
card may be acquired by the terminal, and reused later when the card in
reinserted in the same terminal. Moreover, a malicious terminal in which
the card is inserted cannot arbitrarily invoke an object in the card, since
it is practically not possible to guess sparse passwords associated with
capabilities.

To sum up, we have presented the implementation of JCCap. The defi
nition of the protection policy of an application is based on the expression
of view that are used to generate object filters that are inserted between
the caller and the callee. Each application defines its own protection
policy independently from any other application. Capabilities protection
relies on Javas strong typing for capabilities within the card and on pass
words stored in filters for capabilities in the terminal.

The current prototype is composed of a view processor that generates
filter classes from views, and few runtime system classes (such as the
name server). This prototype has been validated on JavaCard 2.1 [11, 13).

5. APPLICATION EXAMPLE
The examples we used in this paper (bank, print server) to illustrate

our protection model only aimed at explaining the design and implemen
tation of JCCap.

JCCap: Capability-based Access Control for Java Card 383

In order to validate our protection model, we implemented a scenario
where several mutually suspicious applications cooperate.

This scenario is about a frequent flyer program. We will use the ex
ample of FrequencePlus, the frequent flyer program of AirFrance. This
program allows clients to cumulate miles as they travel flying Air France.
Later, these miles may then be used to benefit from free tickets on Air
France flights. However, there are many other partners (than AirFrance)
in the FrequencePlus program, notably many other airlines or car rental
companies (renting a car earns you miles). In the scenario we imple
mented, we assume that FrequencePlus only involves two partners: Air
France (airline) and Hertz (car rental).

A JavaCard is used in order to host applications which represent each
company. In our case, there are three applets in the JavaCard, one which
represents the FrequencePlus program, one which represents AirFrance
and one which represents Hertz.

The Hertz applet exports to the terminal an interface which allows a
car rental:

• to be booked,

• to be cancelled,

• to be closed (when the car is returned),

• to be read (to read the characteristics of this rental, such as the
category of the rented vehicle).

384 IFIP CARDIS 2000

interface !Hertz {

}

public int book (int category, int duration);
public void cancel (rentalid);
public void close (int rentalid, int kilometers);
public !Rental getinfo (int rentalid);

interface !Rental {

}

public int readDuration ();
public void writeDuration (int duration);
public int readKilometers ();
public void writeKilometers ();
public int readCategory ();
public void writeCategory (int category);

!Hertz is the interface exported by the Hertz applet to the terminal.
A car rental is here identified by an integer (a rentalld) return by the
book method. When the rental terminates, the close method is invoked,
which records the amount of kilometers performed with the car. All the
information about the car rental are recorded in a record object which
implements the !Rental interface. Notice that access rights to these meth
ods vary according to the entity which invokes them.

The Air France applet exports to the terminal an interface which allows
a reservation:

• to be booked,

• to be paid,

• to be cancelled.

interface IAirFrance {

}

public int book (int class, int flightNumber, int date);
public void cancel (int reservationNumber);
public void pay (int numReservation, boolean payWithMiles);

IAirFrance is the interface exported by the AirFrance applet to the
terminal. Notice that it is here possible to pay for a flight ticket using
FrequencePlus miles.

The FrequencePlus applet exports to the terminal an interface which
allows miles to be:

• to be directly credited. Some miles may be credited as a gift from
FrequencePlus to a client.

• to be credited as a consequence of a car rental or a flight on Air
France.

JCCap: Capability-based Access Control for Java Card 385

• to be used for paying an AirFrance flight ticket.

interface IFrequencePlus {
public int read ();

}

public void creditMiles (int miles);
public void creditCarRental (!Rental rental);
public void payWithMiles (int miles);

IFrequencePlus is the interface exported by the FrequencePlus applet
to the terminal. The creditCarRental method allows the Hertz applet to
pass a reference to a rental record (which implements the !Rental inter
face) in order to credit miles as a consequence of a car rental. Notice that,
within the card, Hertz has to cooperate with FrequencePlus for miles to
be credited when a car rental is validated (using the creditCarRental
method). The same cooperation would take place between AirFrance
and FrequencePlus when a client flew with AirFrance. Finally, a cooper
ation involves AirFrance and Frequence when a client buy an AirFrance
flight ticket and pay with FrequencePlus miles (using the payWithMiles
method)

This is illustrated on Figure 6.

AppletHenz , .. -----------------------,
' ' ' ' ' ' ' ' '

Hertz [I
Pay using miles

validate Validate flight

i
EJ

carrenW i \

' ,-----!------..

FrequencePlus
' '

Figure 6 The FrequencePlus applications scenario.

In this example, while the Air France and FrequencePlus applets belong
to the same company AirFrance (but could not), there is mutual suspi
cion between Hertz and FrequencePlus. Hertz does not want to grant
FrequencePlus full access to its internal data. Hertz want to grant (only)

386 IFIP CARDIS 2000

read access to the data required by FrequencePlus to credit the miles for
its client.

Therefore, using JCCap, Hertz defines the following views:

view VfrequencePlus implements IFrequencePlus {
public int read ();

}

public void creditMiles (int miles);
public void creditCarRental (VRental rental);
public void payWithMiles (int miles);

view VRental implements !Rental {
public int readDuration ();

}

public void not writeDuration (int duration);
public int readKilometers ();
public void not writeKilometers ();
public int readCategory ();
public void not writeCategory (int category);

Conversely, FrequencePlus does not want to grant Hertz access to the
"direct credit" operation (neither to the read method which returns the
client's miles total). Hertz must only be granted access to the operation
that credits miles as a consequence of a car rental.

Therefore, using JCCap, FrequencePlus defines the following view:

view VfrequencePlus implements IFrequencePlus {
public int not read();

}

public void not creditMiles (int miles);
public void creditCarRental (!Rental rental);
public void not payWithMiles (int miles);

This application has been implemented on top of JavaCard 2.1. Our
facility integrates both the DMI facility and the filtering of access rights
(capabilities). Therefore, after the (centralized) development of the ap
plication code, on the terminal side and on the card side, we just had
specify the previous view definitions and to use our stub generator in or
der to enable (controlled) cooperation between the terminal applications
and the applications within the card.

This experiment demonstrates the adequacy of this facility, since the
application programmer only has to focus his/her interest on the problem
the application aims at solving.

6. CONCLUSION AND PERSPECTIVES
In this paper, we presented a protection model, which allows the def

inition of access control policies for Java Card-based applications.

JCCap: Capability-based Access Control for Java Card 387

Access control is defined at the level of the application interface, thus
enhancing modularity and making this definition easier and clearer. The
model is based on software capabilities and allows access rights to be dy
namically exchanged between mutually suspicious applications. In this
model, each application defines its protection policy independently from
any other application. This policy is enforced dynamically during execu
tion.

Our protection scheme has been prototyped on the Java Card 2.1
environment and experiments with simple applications revealed the ad
vantages of this approach.

References

[1] R. Di Giorgio, M. Montgomery, "Write OpenCard services for
downloading Java Card apps", Java World 4; 2, February 1999.
Available from author: http:/ /www.javasoft.com/javaworld/jw-
02-1999 /jw-02-javadev .html

[2] T. Goldstein, "The gateway security model in the Java elec
tronic commerce framework", Proc. of Financial Cryptogra
phy'97, pp. 340-354, Springer, 1997. Available from author:
http://www .javasoft .com/ products/ commerce/ docs/whitepaper /
security/ JCC_gateway.html

[3] J. Gosling and H. McGilton, "The Java Language Environment:
a White Paper", Sun Microsystems Inc., 1995. Available from au
thor: http:/ /java.sun.com/whitePaper /java-whitepaper-1.html

[4] D. Hagimont, J. Mossiere, X. Rousset de Pina and F. Saunier,
"Hidden Software Capabilities", Sixteenth International Confer
ence on Distributed Computing Systems (ICDCS), May 1996.

[5] H. M. Levy, "Capability-Based Computer Systems", Digital Press,
1984.

[6] J. Richardson, P. Schawrz, and L.-F. Cabrera, "CACL: Efficient
Fine-Grained Protection for Objects", Proc. of the Conference on
Object-Oriented Programming Systems, Languages, and Applica
tions (OOPSLA'92), ACM SIGPLAN Notices 27.10, pp. 263-275,
1992.

[7] E. Rose, "Towards Secure Bytecode Verification on a Java Card",
Master's thesis, University of Copenhagen, September 1998. Avail
able from author: http:/ /www.ens-lyon.fr/ evarose/speciale.ps.gz

[8] M. Shapiro, "Structure and Encapsulation in Distributed Systems:
The Proxy Principle", Proc. of the 6th International Conference
on Distributed Computing Systems, pp. 198-204, 1986.

388 IFIP CARD IS 2000

[9) M. Siddalingaiah, "The Java Card", The devel-
oper.com Journal, October 1997. Available from author:
http://www.developer.com/journal/techfocus/n-tech_javacard.html

[10) Sun Microsystems, JDK 1.1 Documentation,
Sun Microsystems. Available from author:
http:/ /www.javasoft.com/products/jdk/1.1/docs/index.html

[11] Sun Microsystems Inc., Java Card Applet Devel-
oper's Guide, July 1998. Available from author:
http:/ /java.sun.com/products/javacard/JCADG.html

[12] Sun Microsystems Inc., Java Remote Method Invocation - Dis
tributed Computing for Java, May 1998. Available from author:
http:/ /java.sun.com/marketing/collateral/javarmi.html

[13] Sun Microsystems Inc., Java Card 2.1 Virtual Machine,
Runtime Environment, and Application Programming Inter
face Specifications, February 1999. Available from author:
http:/ /java.sun.com/products/javacard/

[14] A. S. Tanenbaum, S. J. Mullender, and R. V. Renesse, 11 Using
sparse capabilities in a distributed operating system 11 , Pro c. og the
Sixth IEEE International Conference on Distributed Computing
Systems, pp. 558-563, 1986.

[15] J.-J. Vandewalle, E. Vetillard, "Developing Smart Card-Based
Application using Java Card", 3rd Smart Card Research and Ad
vanced Applications Conference, September 1998.

	JCCAP: CAPABILITY-BASED ACCESS CONTROLFOR JAVA CARD
	1. INTRODUCTION
	2. OVERALL DESIGN CHOICES
	2.1. APPLICATION EXAMPLE
	2.2. CAPABILITY-BASED ACCESS CONTROL
	2.3. RATIONALE

	3. THE JCCAP CAPABILITY-BASED ACCESSCONTROL MODEL
	3.1. THE MODEL
	3.2. EXAMPLE

	4. IMPLEMENTATION OF JCCAP
	4.1. LOCAL APPLICATIONS
	4.2. REMOTE APPLICATIONS

	5. APPLICATION EXAMPLE
	6. CONCLUSION AND PERSPECTIVES
	References

