
3

FAULT DETECTION POWER OF A WIDELY
USED TEST SUITE FOR A SYSTEM OF
COMMUNICATING FSMS

Ana Cavalli *, Svetlana Prokopenko 0, Nina Y evtushenko 0

*1 nstitut National des Telecommunications

9 rue Charles Fourier

F-9JOll Evry Cedex

France

Email: Ana.Cavalli@int-evry.fr

o Tomsk State University

36 Lenin avo

634050 Tomsk

Russia
Email: prokopenko.rff@elefottsu.ru.qel@asd.iao.tsc.ru

Abstract This paper studies the fault detection power of a widely used test suite, i.e., a
test suite that traverses each possible transition of each component FSM
(Finite State Machine) in the reference system. It is shown that such a test suite
is complete, with respect to single output faults of a component under test, if
the output of the component is accessible during a testing mode. Experiments
have been performed showing that a test suite detecting single outputs faults of
each component is good: 92 % of transfer and output faults of the composite
FSM are detected.

Keywords: conformance testing, embedded testing, fault detection, communicatings
FSMs

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. Ural et al. (eds.), Testing of Communicating Systems

10.1007/978-0-387-35516-0_20

http://dx.doi.org/10.1007/978-0-387-35516-0_20

36 TESTING OF COMMUNICATING SYSTEMS

1. INTRODUCTION

One important aspect of automatic test generation is the derivation of
tests for a complex system of a distinguished structure. The problem is
known as gray-box testing [7]. A number of approaches have been
developed for testing a system under an assumption that at most one
component can be faulty. In this case, the system is divided into two parts:
the context that is assumed to be fault-free and the component that should be
tested. This problem is well known as embedded testing [7] or testing in
context [17]. Some of the approaches proposed to solve the problem for a
system of communicating Finite State Machines (FSMs) are heuristic and do
not guarantee a complete fault coverage [9]. Other approaches
[11,12,13,17,18,19,25,26] deliver complete test suites with respect to
various fault domains, i.e. sets of possible implementations of the
component under test.

In this paper, we consider a system of communicating FSMs and study
fault detection power of a widely used test suite that should traverse each
involved transition of each component FSM in the reference system. We
formally show that the test suite detects all single output faults of a
component when the output of the component under test is accessible during
a testing mode. The performed experiments clearly show that a complete
test suite w.r.t. single output faults of each component FSM usually also
detects "almost all" transfer and output faults of the corresponding
composite FSM, i.e. is good enough. There exist a number of methods for
such test suite derivation [1,9]. Similar to the paper [19], our results are
based on a so-called embedded equivalent that represents all faulty traces of
the component FSM that can be detected at points of observation. However,
in our case, component FSMs can be partially specified. To illustrate our
approach we present the testing of a system composed by telephone
services.

The rest of the paper is structured as follows. Section 2 presents some
basic notions. Section 3 is devoted to the problem statement and explains
how an embedded equivalent for partial FSMs can be derived. This section
also the results of the performed experiments. We then present, in Section 4,
a set of external input sequences that traverse each transition of a component
under test in the reference system. We show that this set of external inputs is
a complete test suite W.r.t. single output faults of the component FSM if the
component's output is accessible during a testing mode. A procedure is
proposed to perform the fault coverage evaluation of a given test suite.

Fault Detection Power of a Widely Used Test Suite 37

Section 5 comprises an example of testing a system composed by telephone
services. Finally, section 6 gives the conclusions of this work.

2. PRELIMINARIES

2.1 I/O Finite State Machines

An I/O finite state machine (often simply called an FSM or a machine
throughout this paper) is initialized, possibly partially specified and a finite
set of states with SoE S as the initial state, X is a finite nonempty set of
inputs, Y is a finite nonempty set of outputs, and h is a behavior function
mapping a specification domain DAc;;,SxX into P(SxY) where P(SxY) is the
set of all nonempty subsets of the set SxY. The machine A is deterministic if
Ih(s,x)I=l for all (s,x)EDA. In a deterministic FSM, the function h usually is
replaced with two functions: next state function &. DA -7 S and output
function A: DA -7 Y. Deterministic I/O finite stste machine is denoted by 7-
tuple (S,X,Y,o,A,DA,so). The machine A is complete if DA=SxX; otherwise,
the machine is partial. The machine B=(T,X,Y,g,DB,so) is called a
submachine of A if Tc;;,S, DB=DA and for all (s,x)EDA' g(s,x)c;;,h(s,x).

In the usual way, the function h is extended to a so-called output function
hYover an appropriate subset IA of input sequences with results in the set of
nonempty subsets of output sequences. The set IA is the set of all input
sequences where a behavior of the A is defined. The set hY(d) comprises
each output sequence that can be produced by the FSM when the sequence
a is submitted. As usual, given input sequences X\ .. .xk and output sequence
Y\ ... Yk> the sequencexdYh···,x,jYk is called a trace of the A if hY(X\ .. .xk)=Y\ ... Yk.

Given two FSMs A=(S,x,Y,h,DA,so) and B=(T,X,Y,g,DB,to), FSM A is
called a trace reduction of the FSM B, or simply a reduction of B, denoted
Ag], if the set of traces of A is a subset of that of the FSM B, i.e. IAgB and
for any input sequence aE lA, hY(so, d)c;;,gY(to, d). If for some input sequence
aE IA nIB it holds that hY(so, a)c:t.gY(to, d) then the sequence a is said to
distinguish the FSM A from B.

For the class of deterministic FSMs, the reduction relation coincides with
a so-called quasi-equivalence relation [5]. Deterministic FSM
A=(S,x,Y,t},A,DA,so) is a reduction of deterministic FSM B=(T ,x,Y,Ll,A,DB,to)
if and only if B is quasi-equivalent to A, i.e. IAgB and for any input
sequence aEIA , the output sequences of A and B to a coincide.

38 TESTING OF COMMUNICATING SYSTEMS

2.2 Fault Domain

One important aspect of high quality test generation is to specify an
appropriate fault model. We further assume that a reference system and a
system under test are modeled by deterministic FSMs specified over the
same input and output alphabets. We refer to an FSM modeling the
reference system as to a reference FSM while referring afault domain to the
set a of FSMs modeling all possible systems under test. A FSM Be a is
called an implementation. The B is called a faulty or a nonconforming
implementation if the reference FSM is not a reduction of B; otherwise it is
a conforming implementation.

A finite set of finite input sequences of the reference machine RM is a
test suite (w.r.t. .3) if it detects at least a single nonconforming
implementation. A test suite which detects each nonconforming
implementation is called a complete test suite w.r.t. the fault domain a.
Formally, given a reference FSM RM and a fault domain a, a test suite TS is
complete w.r.t. a if for each FSM Be a such that RM is not a reduction of B,
the TS has a sequence distinguishing RM from B.

Thus, if a reference FSM is deterministic, a system under test is modeled
by an FSM of the set a and is not detected by a complete test suite w.r.t. a
then one concludes that the reference system is a reduction of the system
under test, i.e. a behavior of the system under test coincides with that of the
reference system under any input sequence where the behavior of the
reference system is specified.

As it is claimed in [14,15,24], a complete test suite derived from a partial
reference FSM RM is different from that derived from the reference FSM
where each undefined transition of the RM is augmented as a looping
transition with the Null output. In the latter case, during a testing mode one
also checks the looping transitions that are never traversed during a working
mode. By this reason, in this paper, we derive a test suite without
augmenting partial FSMs. We now consider two widely used fault domains.

Given a deterministic reference FSM RM=(S,x,Y,o,)"DA,so) with n states,
a fault domain aRM has each FSM B=(S,X,Y,Ll,A,DB'SO) such that DB;;;JDRM
and for each (s,x)eDRM, Ll(s,x), i.e. only output faults may occur in
an implementation. The fault domain an comprises each complete FSM over
alphabets X and Y with at most n states. In the former case, a transition tour
of the reference FSM is a complete test suite [20]. In the latter case, also
transfer faults are involved. Procedures for a complete test suite derivation
w.r.t. the fault domain an are well developed [2,4,10,14,16,21,22,23,24].

Fault Detection Power of a Widely Used Test Suite 39

However, most of them only deal with a reduced reference FSM and deliver
tests with length proportional to the product of number of transitions and
number of states of the reference machine.

2.3 Composition of FSMs

We consider a system composed by two FSMs, as shown in Figure 1.
We refer to symbols of alphabet X\ and X2 as to external inputs, to symbols
of alphabets Y\ and Y2 as to external outputs while referring to symbols of
alphabets Z and U as to internal actions. In fact, one of the alphabets X\ or
X2 (Y\ or Y2) can be empty.

In order to define the composition of FSMs we do the following
assumptions. The system has always a single message in transit, i.e. the
environment submits the next input only when the system has produced an
output to the previous input. Moreover, a component machine accepting an
input may produce either an external or an internal output. If the component
machines fall into infinite internal dialog when an appropriate external input
sequence is submitted we say the system falls into live-lock under the input
sequence and its behavior is not specified under the input sequence. If the
behavior of one of component FSMs is not specified under a submitted input
we also assume the system behavior is not specified.

Under the above assumptions we can derive the composite FSM
ContextOSpec of the context FSM Context and the component FSM Spec
using various algorithms [11,17]. Below we briefly sketch the algorithm
from the paper [11].

r---------,
.spec I

L _________ .l

Figure 1. System model

Let the component FSMs Context and Spec have the sets Q and T of
states, respectively. Then the composite FSM is a FSM over alphabets
X\uX2 and Y\uY2 with the state space that is a subset of QxT. States of the
set QxT are divided into stable and transient states. By definition, the initial

40 TESTING OF COMMUNICATING SYSTEMS

state qolo is stable. Otherwise, the state is stable if it is reached after the
system has produced an external output. We start from the initial state qoto ..

Given a stable state qt and input x, there is a transition labeled with x/u
(x/z) from the initial state qt to a transient state q't (qt) if x/u (x/z) takes the
FSM Context (Spec) from the state q (t) to the state q' (t). There is a
transition labeled with x/y from the state qt to a stable state q't (qt) if x/y
takes the FSM Context (Spec) from the state q (t) to the state q' (t).

Given a transient state q't' with an incoming transition labeled by a/z
(a/u), a pair of internal actions zlu (u/z), and a transient state q"t' (q '('), there
is a transition labeled with zlu (u/z) from the state q't' to the state q"t' (from
the state q 't' to q 't ') if there is an outgoing transition from the state q' to the
state q"under zlu in the Context (under u/z in the Spec). There is a transition
labeled with zly (u/y) from the state q't' to a stable state q"t' (from the state
q 't' to q 'f') if there is a transition from the state q' to the state q" under zly in
the Context (from the state t'to the state ("under u/y in the Spec). The stable
states cannot be merged with transient states. Two transient states with the
same names are merged if they have an incoming transition labeled with a
pair with the same output part.

If no stable state is reachable then a transition from the state qt under x is
undefined. Otherwise, given the final stable state q't' with an incoming
transition x/y, zly or u/y, the composite FSM has a transition from the state
qtto q'('under x/yo As mentioned above, no stable state is reachable if one of
the following conditions holds: a) a transition of the context (or the
component) at a current state is undefined under a submitted input; b) the
system falls into live-lock, i.e. has a cycle labeled with internal actions.

The procedure is repeated unless all reachable stable states with possible
external inputs are considered.

3. TEST SUITE DERIVATION FOR AN EMBEDDED
COMPONENT W.R.T. OUTPUT FAULTS

We consider a reference system composed by two deterministic FSMs,
as shown in Figure 1.

3.1 Discussion about Faults

Our first step is to specify a type of faults that should be detected with a
derived test suite, i.e. to define an appropriate fault domain. Usually two

Fault Detection Power of a Widely Used Test Suite 41

types of faults are considered, namely output and transfer faults. It is well
known that a test suite detecting all transfer and output faults is a high­
quality one. However, it can hardly be used in practical situations, for its
length is proportional to the product of number of transitions and number of
states of the reference FSM.

On the other hand, there are publications [see, for example, 3] where the
authors claim that for a proper kind of FSMs length of a test suite detecting
"almost all" faults is proportional to the number of states of the reference
FSM, i.e. tests can be used in practical situations. The result is also
confirmed with a widely distributed opinion that long tests are needed to
detect a very low percent of proper faulty implementations which can be
treated separately (if necessary). By this reason, we performed some
experiments before selecting a fault domain.

Given an FSM, experiments have been performed in order to evaluate
the fault coverage of a transition tour of the FSM w.r.t. transfer faults. Given
a complete reference FSM RM=(S,X,Y,8,A,DA,so) and a test suite, fault
coverage of the test suite is calculated as ratio (m1n)-lOO%. Here n is number
of FSMs over alphabets X and Y with the state set S which are not equivalent
to RM, while m is number of such FSMs which are detected with the given
test suite, i.e. have an unexpected output sequence to an appropriate test
case. Reference FSMs derived in pseudo-random way with up to 10 states
have been studied. The average fault coverage of a transition tour is equal to
96%. In order to perform experiments with more complex reference FSMs
we evaluated fault coverage of a transition tour w.r.t. 100 implementation
FSMs also derived in pseudo-random way. The same result has been
obtained.

We then considered a composition of two complete communicating
FSMs. Given a complete test suite w.r.t. single output faults of the context
Context and of the component Spec, we have evaluated its fault coverage
w.r.t. output faults of the reference composite FSM ContextOSpec. Our
experiments show it is about 95%. In other words, given a test suite
complete w.r.t. single output faults of the context Context and of the
component Spec, the fault coverage W.r.t. transfer and output faults of the
composite FSM is expected to be about 92%, i.e. such test is of a practical
use.

In the following sections, we show a set of external input sequences
which traverse each transition of a component under test in the reference
composition is a complete test suite w.r.t. single output faults of the
component when the component's output is accessible during a testing

42 TESTING OF COMMUNICATING SYSTEMS

mode. Length of such test suite is proportional to number of transitions of
the component FSM involved with a given context and there exist a number
of methods [1,9] for such test suite derivation without constructing a
composite FSM that usually has huge number of states.

3.2 Fault Assumptions and Test Architecture

1. We further assume that the context is correctly implemented.
2. Only single output faults are possible in the component under test. In

other words, the next state function of a faulty component implementation
Imp is an extension of that of the reference component Spec. Thus, the set
9ispec of all possible component implementations is the set of possible
extensions of all deterministic sub-machines of the FSM Spec' [8] that has
the same next state function as Spec with each output for each transition.

3. An implementation Imp of the component under test is conforming if
ContextOSpec is a reduction of ContextOImp while the Context (the Imp)
only produces internal output sequences where a behavior of the Spec
(Context) is specified.

4. We have an access to the internal output of the implementation
component Imp, i.e. can observe the internal output the component has been
produced (Figure 2). However, we cannot control its internal inputs.

Formally speaking, fault domain of our interest is the set ContextO 9ispec

of all composite FSMs of the reference context FSM and a component FSM,
possibly with a single output fault. However, the reference FSM now is
slightly different from the ContextOSpec, because of the point of observation
at the internal output of the component FSM during a testing mode. This
new situation is illustrated by Figure 2.

r---------,
X2 I I

L. _________ .J

Figure 2. Test architecture

Obsexvation of
internal outputs

It is well known that if the reference FSM Spec is a reduction of an
implementation component FSM Imp then the reference FSM ContextOSpec
also is a reduction of the ContextOImp. However, generally, a converse is

Fault Detection Power of a Widely Used Test Suite 43

not true. There can exist FSM Imp such that the machine ContextOSpec is a
reduction of ContextOImp while the reference component Spec is not a
reduction of Imp. In the case, when machines Context, Spec and
ContextOSpec are complete such machines Spec and Imp are called
equivalent in the context while Imp also is called a conforming
implementation in the context [18]. Thus, if one requires to have only
reference internal outputs for the machine Imp, some conforming
implementations can be rejected. The following example illustrates the
situation.

Example. Consider FSMs Context, Spec and ContextOSpec in Figure 3
when the external input and output sets X2 and Y2 of the component Spec are
empty. By direct inspection, one can assure that ContextOSpec is equivalent
to the FSM ContextOImp where the FSM Imp is shown in Figure 3d, i.e. the
ContextOSpec is a reduction of the FSM ContextOImp. Therefore, a
conforming implementation system at its observation points can produce an
unexpected output sequence Z2ZlYl when Xl is submitted, instead of the
reference ZIYl.

x.Jy2 U.jZ2

"bl 0
x.Jy2

"11u1 Ul/Zl @ UJZ2
ziU2

ZIYl UJZl

"bl 1

ziUl
b) c) d)

Figure 3. FSMs Context (a), Spec (b), ContextOSpec (c) and FSM Imp (d)

More rigorous analysis is necessary to determine which internal outputs
are allowed for an implementation component FSM when an external input
is submitted. In the case when FSMs Context, Spec and ContextOSpec are
complete, this analysis can be performed based on the embedded equivalent
[19] of the component FSM Spec in the given context. An FSM Imp is a
conforming implementation of the Spec in the given context if and only if
the FSM ContextOImp is complete and the FSM Imp is a reduction of the
embedded equivalent.

44 TESTING OF COMMUNICATING SYSTEMS

A complete test suite w.r.t. the fault domain ContextO 9lspec can be
derived by a procedure proposed in [19]. We first derive a complete test
suite TS w.r.t. the fault domain 9lspec from the embedded equivalent. An
internal test is then translated into a external test suite. We cannot use this
approach directly for FSMs Context and Spec that can be partially specified.
Moreover, we are interested only in single output faults; thus, a simpler
procedure for a complete test suite derivation can be expected.

3.3 Trace Detecting FSM

Given an external input sequence a such that the behavior of the
reference FSM ContextOSpec is defined under a, a trace over alphabets
X2uU and Y2UZ is said to be detectable with a [25] if any implementation
system with the component Imp having this trace has an unexpected
behavior when a is submitted, i.e. either the output response of the
implementation system to a is different from that of the reference system or
the behavior of the implementation system is not defined under a. A trace is
said to be detectable if it is detectable with an appropriate external input
sequence. Due to definition, the behavior of the implementation system is
not defined if the system falls into live-lock when a is submitted or the
behavior of the context is undefined under a current input. An observation
point at the internal output of the component enables to detect these faults.

In this section, we derive a so-called Trace Detecting FSM (TDF). We
show that the set of traces of a nonconforming implementation component
FSM intersects the set of traces of the labeling paths which have no cycles
and go from the initial state to a designated Fail state in the TDF. As usual,
we further refer to a path that has no cycles as to a simple path.

In fact, the TDF is a particular case of an embedded equivalent when the
FSMs Context, Spec and ContextOSpec can be partial, and the test
architecture allows to observe the internal output of the component under
test, and we are interested only in output faults. By this reason, to derive the
FSM TDF, we use the machine Spec' where Spec' has the same next state
function as the Spec and all possible outputs for each defined transition,
instead of the chaos machine [17,19]. The latter together with observation of
the internal outputs of the component under test allows to determine internal
traces implying live-locks as well as to simplify a procedure for a complete
test suite derivation.

To determine all the detectable traces we first derive a FSM F that
represents all possible composition traces and recognizes those of them that

Fault Detection Power of a Widely Used Test Suite 45

induce an unexpected behavior of the composition by a designated state
Fail. The FSM is derived as a composition of the context and the component
FSM Spec'. We use the FSM ContextOSpec to recognize traces with an
unexpected external output projection. FSM F then is projected onto
alphabets of the component Spec by a subset construction replacing each
subset having the state Fail by a designated state Fail without outgoing
transitions.

Let the FSMs Context, Spec and ContextOSpec have the state sets Q, T
and S, respectively. The state space of the FSM F is a subset of Q xTxS.
States of the set Q xTxS are divided into stable and transient states. By
definition, the initial state qotoSo is stable. Otherwise, the state is stable if it is
the fail-state or has an incoming transition with an external output. The
stable states cannot be merged with transient states. Two transient states
with the same names are merged if they have an incoming transition labeled
with a pair with the same output part. We start from the initial state qotoSo.
Then we apply the following procedure:

1. Given a stable state qts and input x, there is a transition labeled with
x/u (x/z) from the initial state qts to a transient state q'ts (qt's) if x/u (x/z)
takes the FSM Context (Spec) from the state q (t) to the state q' (t). There is
a transition labeled with x/y from the stable state qts to a stable state q'ts'
(qt's) if x/y takes the FSM Context (Spec) from the state q (t) to the state q'
(t) while x/y takes the FSM ContextOSpec from the state s to the state s'. If
the output of ContextOSpec at the state s to x is defined and is different from
y, we specify a transition from the state qts to the designated state Fail
labeled with x/yo The reason is if a component has a trace with the
corresponding projection then an unexpected external output will be
produced when an appropriate external input sequence is submitted to the
implementation system.

2. Given a transient state qts with an incoming transition labeled by a/z
(a/u) and a pair Z/U (ulz) , there is a transition from the state qts to the
designated state Fail labeled with Z/U (u/z) if one of the following conditions
holds:

a) z/u (ulz) provides a cycle labeled with pairs of internal actions, i.e.
when a component implementation FSM has a trace with the corresponding
projection the composition falls into live-lock;

b) the context (the component) is undefined at the state q' (1) under input
z (u), i.e. the context (the component) does not expect a submitted input at
the current state.

46 TESTING OF COMMUNICATING SYSTEMS

If none of the above conditions holds then there is a transition labeled
with zlu (u/z) from the state qts to a transient state q'ts (from the state qts to
qt's) where q' is a successor of q under zlu in the Context (t' is a successor of
t under u/z in the Spec).

3. There is a transition labeled with zly (u/y) from the transient state qts
to a stable state q'ts' (from the state qts to qt's) if there is a transition from
the state q to the state q' under zly in the Context (from the state t to the state
t' under u/y in the Spec) and x/y takes the FSM Context (Spec) from the
state s to the state s '. If the output of the ContextOSpec to x at the state s is
defined and is different from y, we specify a transition from the state qts
under zly (u/y) as a transition to the designated state Fail.

4. The procedure is repeated unless all reachable stable states with
possible external inputs are considered. Moreover, since there is an
observation point at the internal output of the component under test, given a
state of the FSM such that all its outgoing transitions result in Fail, we
replace the state with the Fail state.

U1!Z2 9 Z.jU1 ..
..... , , ,

"1m1 Ulz1 "- UlZ2 ,
Z.jU1 "- "-

0,0

zbl z.jul

@ 9
Figure 4. A fragment ofthe FSM F

Example. Consider FSMs Context, Spec and ContextOSpec shown in Figure
3. We derive the machine Spec' by adding each output to each defined
transition of the Spec. Consider the initial stable state (aO,9). There is a
transition under X-iY2 from the state to the same stable state and a transition
under XtlUI from the state to a transient state (bO,O). There are two
transitions from the state (bO,O): a transition under UtlZI to the transient state
(bl,O) and a transition under UtlZ2 to the transient state (bl,O). The latter two
transient states cannot be merged since they have incoming transitions
labeled by pairs with different output parts. There is a transition from the
former state (bl,O) to a stable state (al,O) under Zl/Yl while there is a

Fault Detection Power of a Widely Used Test Suite 47

transition from the latter state (bI,O) to a transient state (bI,O) under ziul.
There is a transition under UI/zI from the latter transient state (bI,O) to a
transient state (bO,O) where is a transition to a stable state (aO,O) under zIIYI.
A transition under ullz2 from the latter transient state (bI,O) provides a cycle
labeled with internal pairs, i.e. there is a transition to the Fail state under
UI/z2. This fragment of FSM F is shown in Figure 4. In the same way, the
fragment of the FSM is derived for a stable state (aI,O).
By construction, the FSM F has complete in about formation traces of the
Spec' that induce an unexpected behavior of the composition, i.e. the
following statement holds.

Proposition 3.1. Given the component Spec, let Spec' denote the
machine with the same next state function and each possible output for each
transition. A trace of the machine Spec' is detectable if and only if it has a
prefix {31 rsuch that the FSM F has a trace with the corresponding projection
{3lrresulting in the Fail state.

Thus, our next step is to project the obtained FSM F onto the set of pairs
{al{3: aEX2uU, {3E Y2uZ}. We perform this using a subset construction
[HoUl79]. Two states of the FSM are merged into a single state if there exist
traces to these states with the same projection over the component alphabets
X2uU and Y2uz. Each subset comprising a designated state Fail is replaced
with the state Fail without outgoing transitions. If for some state, all its
outgoing transitions result in Fail then we replace the state with the Fail
state. Denote TDF the obtained FSM and call it trace detecting FSM.

Theorem 3.2. Given the trace detecting FSM TDF derived by the above
procedure and an implementation component FSM Imp that is a submachine
of Spec', the reference FSM ContextOSpec is not a reduction of ContextOImp
if and only if the machine Imp has a trace that labels a simple path in the
TDF from the initial state to the Fail state.

Proof. If part is a corollary to Proposition 3.1.
Only if part. Suppose now that we have a nonconforming sub machine

Imp of Spec', i.e. the reference FSM ContextOSpec is not a reduction of the
ContextOImp. Due to Proposition 3.1, the FSM F has a trace resulting in the
Fail state such that its projection onto alphabets of the FSM is a trace
allb1...ai/bk taking the FSM TDF from the initial to the Fail state. Moreover,
suppose that the trace labels some path in the FSM TDF from the initial
state to the Fail state that has a cycle. In other words, we have So - alIbI
SI- a21b2 S2 ... - ai/bk Fail, along with Si=Sj for some i<j, iJ=O, ... ,k-l.
States of the TDF are subsets of state of the FSM F. Each state of the set So
is of a kind qtQS, i.e. has to as the component part of the state. When

48 TESTING OF COMMUNICATING SYSTEMS

projected, the component part of each state of the subset SI is a successor of
the state under the I/O pair alibi in the Spec' and so on. Thus, the FSM Imp
has also a trace
to - alibi -L. tj- aj+llbj+1 t j+1 ... - aibk ••

Therefore, the TDF has a trace
So- alibi ... Sj- aj+llbj+1 Sj+1 ... - aibk Fail,
that labels a path resulting in the Fail state and has no above cycle, i.e. FSM
Imp has a trace that labels a simple path resulting in the Fail state.

o
Example. The FSM TDF for FSMs Context and Spec in Figure 3 is

shown in Figure 5.

Figure 5. FSM TDF

4. TEST SUITE DERIVATION

4.1 Test Suite Derivation w.r.t. Output Faults

As a corollary to Theorem 3.2, we can establish sufficient conditions for
a test suite to be complete w.r.t. the fault domain Context09ispec.

Proposition 4.1. Given a test suite, the test suite is complete w.r.t. the
fault domain ContextO 9ispec if it detects each trace labeling a simple path in
the TDF from the initial state to the Fail state.

Example. Due to proposition 4.1, we obtain a complete test suite {xlxd
w.r. t. the fault domain ContextO 9ispec after translation of the set of internal
traces {ul/zhUI/Z2; ul/z2,u l/z2} which label simple paths in the TDF (Figure
5) from the initial state to the Fail state.

Thus, coming back to procedure proposed in [19] for a complete test
suite derivation we now do not need to derive a complete test suite from a
nondeterministic FSM TDF. An internal test can be derived as the set of all

Fault Detection Power of a Widely Used Test Suite 49

traces of the labeled simple paths in the FSM from the initial state to the
Fail state. However, we notice that the condition of Proposition 4.1 is not
necessary, i.e. a shorter complete internal test may exist. We now establish a
necessary and sufficient condition for a test suite detecting all single output
faults of the component FSM.

4.2 Test Suite Derivation w.r.t. Single Output Faults

A single output fault t - alb t' of the component FSM is detectable if
there exists a simple path in the TDF from the initial state to the Fail state
such that the path traverses the transition t - alb t', while all other
transitions traversed by the path are transitions of the reference component
FSM Spec. We say that the path, or the trace labeling the path, captures the
fault t - alb t'. The trace detecting FSM can be essentially simplified if
we are interested only in single output faults of the component FSM. To
represent such faults we use the FSM Spec.W!' The next state function of the
FSM coincides with that of the Spec; output b is in the set of outputs to input
a at the state t if and only if the single output fault t - alb t' is not
detectable.

Proposition 4.2. Given an implementation ImpE 9lspec. Imp is a
conforming implementation if and only if Imp is an extension of some sub­
machine of SpecSo!'

Therefore, to detect an implementation component FSM with a single
output fault we need an external case that induces a trace traversing the
corresponding transition in the component FSM. A procedure for deriving
an internal test suite complete w.r.t. single output faults of the component
FSM is almost transparent. A complete test suite is a transition tour
traversing each detectable transition of the FSM Spec'. The obtained internal
test then is translated into external test suite.

Proposition 4.3. An external test suite is complete w.r.t. single output
faults of the component FSM if and only if the set of corresponding traces of
the component FSM in the reference system traverses each detectable
transition.

Proof. Only if part is a corollary of Proposition 4.2.
H part. Let ImpE 9lspec. t - alb t' be a faulty detectable transition and

m be the shortest prefix of a test case such that the corresponding traces of
the component FSM in the reference system is tailed by t - alb t'. All
other transitions of the trace induced by a are reference transitions; by this
reason, the global states of the systems ContextOImp and ContextOSpec after

50 TESTING OF COMMUNICATING SYSTEMS

acoincide. Thus, the external input induces the faulty transition f - alb f'

in the component implementation Imp, i.e. an internal (or external) output
sequence of the Imp is not in the set of output sequences of Specso!.

Therefore, m detects the nonconforming implementation Imp.
o

Here we notice that in general case, a test suite traversing each transition
of a component under test does not detect its all output faults in the
component under test. We can only guarantee that it detects each single
output fault. However, if there is the reference output response of the
component under test to each test case then there are no output faults in the
component.

Given a test suite, an implementation component FSM ImpE 9ispec is a
conforming implementation if and only if the output sequence at the
component's outputs to each test case is in the set of corresponding output
sequences of the FSM Spec.W!. Thus, a test suite derived by procedure
proposed in [9] is complete w.r.t. single output faults of the component FSM
when there is an observation point at the internal output of a component
under test. The same conclusion can be drawn about the Hit-or-Jump
method in [1]. However, both methods do not use a trace detecting FSM; a
verdict "pass" is only drawn in the case when the output sequence at the
component's outputs coincides with that of the reference component Spec.
By this reason, some conforming implementations can be rejected by a test
suite delivered by the above methods.

4.3 Fault Coverage Evaluation

Given a test suite TS, we can calculate its fault coverage w.r.t. single
output faults. As usual, the fault coverage is calculated as the ratio min
multiplied 100% where m is number of single output faults detected with the
test suite TS while n is number of all such detectable faults. Number n can
be calculated as the product IIY2uZl-p where I is number of defined
transitions of the FSM Spec which can be involved with the given context
[1] while p is number of single output faults over these transitions which are
not detectable. In the case of complete FSMs, an implementation with such
fault is equivalent to the specification component FSM Spec in the given
context [18].Number n is calculated in the same way: m=kIY2uZl-q, where k

is number of transitions of the component FSM traversed with the test suite
in the reference system while q is number of single output faults over these
transitions which are not detectable.

Fault Detection Power of a Widely Used Test Suite 51

Example. Consider the reference component FSM Spec (Figure 3).
There are two single output faults, namely 0 - UtlZ2 1 and 1 - UtlZ2 0
over transitions involved with the given context. The fault 0 - UtlZ2 1 is
not detectable since there is no trace in the FSM TDF (Figure 5) from the
initial state to the Fail state such that the trace traverses this transition while
all other transitions traversed by the trace are transitions of the reference
component Spec. An implementation component FSM Imp with the fault is
shown in Figure 3d. The system of the context and the FSM Imp is a
conforming implementation. To detect an implementation component FSM
with the fault 1 - UI!Z2 0 an external test case should induce an internal
trace with a prefix UI!Zh UI!Z2. By direct inspection, one can assure the test
case XIXI possesses the feature. We also notice that a test case XI does not
detect any nonconforming implementation w.r.t. single output faults of the
component FSM.

5. TELEPHONE SERVICES EXAMPLE

We demonstrate our approach by testing a system composed by
telephone services: the Basic Call Services (BCS), Call Forward
Unconditional (CFU) and Original Call Screening (OSC). The approach is
illustrated by testing OCS in the context of the BCS and CFU. The I/O
FSMs modeling the services (Figure 6) have been obtained from SDL
specifications of the system [13].

dial ,

a) !U
Figure 6. Context FSM (a) and OCS FSM (b)

52 TESTING OF COMMUNICATING SYSTEMS

Figure 7 presents the corresponding composite FSM while Figure 8
shows the trace detecting FSM.

Figure 7. The composite FSM

By direct inspection, one can assure each single output fault is detectable,
i.e. there are 12 detectable single output faults. Given a test suite
TS={ ofChook_A, dial_[A,B]; ofChook_A, dial [A,C], collecCdigits[other]},
we determine the set T of all single output faults detected with the test suite
TS. In our example, T=
{O - conreq_[A,B]/conreq_[A,C] 0;

0- conreq_[A,B]/disreq_[OCS,A] 0;
o - conreg [A,BlIplay _announcement 0;
o - conreg [A,GJ/conreg fA,B] 1;
o -conreg fA,GJ/conreg [A,B] 1;
o - conreg fA,GJ/disreg fOCSA] 1;
1 - collecCdigits[other]/conreg fA,B] 0;
1 - collecCdigits[other]/conreg fA,B]
1 - collecCdigits[other]/play_announcement OJ.
Thus, three faults remain undetectable with the test suite, i.e. the fault
coverage C/J(TS) of the TS w.r.t. single output faults is equal to
(12/15)100%=80%.

Consider a single output fault 1 - collecCdigits[I]/conreg fA,B] 0
undetected with the TS. By direct inspection of Figure 6 (a), one can assure
that to induce the trace traversing the transition 1
collecCdigits[1]/conreg [A,B] 0 in an implementation OSC, the context

Fault Detection Power of a Widely Used Test Suite 53

must enter the state 1, i.e. the external sequence ofChook_A, dial [A,C]

should be applied. At this point we

cOllect dl gLtsl ottle:r y
con:ceqJ:A,ID con:ceq[A,!Jlplayannoun
con:ceq[A,m

con:ceq[A,cyc on:ceq{A,m
con:ceq[A,Cydi lleq{O CS.dJ
con:ceq[A,cyc on:ceq{A,!Z]
con:ceq[A,B] disreq{ OCS.dJ
con:ceq[A,B]
con:ceq[A,BJplayannou.r((av

collect_ digi ts[o1her Y
disreq[OCS A,]

collect di!i.ts[o1hery
1 con:ceqIA,f!j

digi. ts[o1her y
playannoun
collect . gW[1 Y

digi. ts[1 Y Q collect digi. Y
con:cearA.Cl IC."'V disreq[OCSA]

digi. ts[1 yPlayannoun

Figure 8. FSM TDF

have the context at the state 3, the OCS at the state 1. The external input
sequence collecCdigits[l] then induces the desired transition if the
implementation OSC has such a transition. However, the context does not
expect the input conreq [A,B] at the current state 3, i.e. it is a faulty output.
Thus, a test case ofChook_A, diaC[A,C], collecCdigits[l] detects the single
output fault 1 - collecCdigits[I]/conreq [A,B] o.
By direct inspection, one can assure the same test case also detects single
output faults 1 - collecCdigits[I]/disreq [OCSA] 0 and 1 -
collecCdigits[I]/play_announcement 0, i.e. the fault coverage of the test
suite with the extra test case is 100%. Therefore, the set {ofChook_A,
dial_[A,B]; ofChook_A, dial [A,C], collecCdigits[other]; ofChook_A,
dial_[A,C], collecCdigits[l]} is complete w.r.t. single output faults. Here we
notice that a complete test suite not necessary traverses each transition of the
reference composed FSM ContextOSpec, as it happens in the above example.

Thus, if at observation points of a system under test we observe
the reference output sequence tone_A, conreq [A,B] , ring_C to the
ofChook_A, dial_[A,B]; the reference output sequence tone_A,
play_announcement, disreq [OCSA1, busy_A to the ofChook_A,
diaL[A,C], collecCdigits[other]; while the reference output sequence
tone_A, play_announcement, conreq [A,C], to the

54 TESTING OF COMMUNICATING SYSTEMS

ofChook_A, diaL[A,C], collecCdigits[1], then the system under test
has the reference system as its reduction. Otherwise, the system under
test is a nonconforming implementation.

6. CONCLUSION

In this paper, we studied fault detection power of a test suite widely used
in practice for a system of communicating Finite State Machines (FSMs).
The test suite traverses each involved transition of each component FSM in
the reference system. We have shown that the test suite is complete w.r.t.
single output faults of a component FSM when the output of the component
is accessible during a testing mode. The performed computer experiments
have shown that a test suite w.r.t. single output faults of each component
FSM usually also detects "almost all" transfer and output faults in the
corresponding composite FSM. We illustrated our approach by testing a
system composed by telephone services.

Some of the reviewers did very interesting remarks to the work presented
here: for our assumption that the output of the component is accessible
during testing, the reviewer signalled that there are real protocols where
outputs are not observable, in particular, when an unit implements several
layers it is not possible to observe such outputs. Our answer is that if
different layers are implemented by an unit, we will consider this unit as a
component. On the other hand, our experience on the test of services on a
CORBA platform shows that it is possible to observe exchanged messages
between software components.

References

[1] Cavalli, A, Lee, D., Rinderknecht, c., and Zaidi, F. Hit-or-Jump: An algorithm for
embedded testing with applications to IN services. Proceedings of Joint Inter. Conf.
FORTFlPSTV99, pp: 41-58.

[2] Chow, T.S. (1978). Test software design modeled by finite state machines. IEEE
Transactions on Software Engineering, 4(3): 178-187.

[3] David, R., and Wagner K. Analysis of detection probability. IEEE Transactions on
Computers, 39(10): 1284-1291.

[4] Fujiwara, S., v.Bochmann,G., Khendek, F., Amalou, M., and Ghendamsi, A (1991).
Test selection based on finite state models. IEEE Transactions on Software
Engineering, 17(6): 591-603.

[5] Gill, A Introduction to automata theory. Me Graw-Hill, NY, 1962.

Fault Detection Power of a Widely Used Test Suite 55

[6] Hopkroft, J.E. and Ulman, J.D. (1979). Introduction to automata theory, languages
and computation. Addison-Welsey, NY.

[7] Infonnation technology. (1991) Open systems interaction. Conformance testing
methodology andframework. International standard IS-9646.

[8] Koufareva, I., Petrenko, A, Yevtushenko, N. Test generation driven by user-defined
faults. Proceedings of 12th IWTCS, pp: 215-236.

[9] Lee, D., Sabnani, K.K., Kristol, D.M., and Paul, S. (1996). Conformance testing of
protocols specified as communicating finite state machines - a guided random walk
based approach. IEEE Transactions on Communications, 44(5): 631-640.

[10] Lee, D., and Yannakakis, M. (1996). Principles and methods of testing finite state
machines, a survey. IEEE Transactions, 84(8): 1 090-1123

[11] Lima, L.P., and Cavalli, AR. (1997). A pragmatic approach to generating test
sequences for embedded systems. Proceedings of 10th IWTCS, pp: 125-140.

[12] Lima, L.P., and Cavalli, AR. (1997). Application of embedded testing methods to
service validation. Second IEEE Intern. Conf. on Formal Engineering methods.

[13] Lima, L.P. (1998). A pragmatic method to generate test sequences for embedded
systems. Ph.D.Thesis. Institute National des telecommunications, Evry, France.

[14] Petrenko, A Checking experiments with protocol machines. Proceedings of 4th
IWTCS, 1991, pp: 83-94.

[15] Petrenko A, Yevtushenko, N., and Dssouli, R. (1994). FSM based strategies for
testing communicating FSMs. Proceedings of 7th IWTCS, pp:181-196.

[16] Petrenko A, Yevtushenko, N. and v.Bochmann, G. (1996). Testing deterministic
implementations from their nondeterministic specifications. Proceedings of 9th
IWTCS, pp: 125-140.

[17] Petrenko A, Yevtushenko, N., and v. Bochmann, G. (1996). Fault models for testing in
context. Proceedings of Joint Inter. Conf. FORTEIPSTV96, pp: 125-140.

[18] Petrenko, A, Yevtushenko, N., v. Bochmann, G., and Dssouli, R. (1996). Testing in
context: Framework and test derivation. Computer Communications, 19: 125-140.

[19] Petrenko, A, and Yevtushenko, N. (1997). Testing faults in embedded components.
Proceedings of 10th IWTCS, pp: 125-140.

[20] B.Sarikaya and G.v.Bochmann. Synchronization and Specification issues in protocol
testing. IEEE Transactions on Communications, Vol. COM-32, April 1984, pp. 389-
395.

[21] Vasilevsky, M.P. (1973). Failure diagnosis of automata. Cybernetics, (4): 653-665.

[22] Vuong, S.T., Chan, W.W.L., and Ito, M.R. (1989). The UfO-method for protocol test
sequence generation. In IFIP TC6 Second Inter. Workshop on Protocol Test Systems,
pp.161-175.

[23] Yannakakis, M., and Lee, D. (1995). Testing finite state machines: fault detection.
Journal of Computer and System Sciences, (50): 209-237.

[24] Yevtushenko, N., Petrenko, N. On fault detection power of checking experiments with
automata. Automatic Control and Computer Science. Allerton Press, N.Y., 1989, Vol.
23, No.3, pp: 3-7.

[25] Yevtushenko, N., Cavalli, AR., and Lima, L.P. (1998). Test minimization for testing in
context. Proceedings of lith IWTCS, pp: 127-145.

56 TESTING OF COMMUNICATING SYSTEMS

[26] Yevtushenko, N., Cavalli, A.R., and Anido, R. (1999). Test suite minimization for
embedded nondeterministic finite state machines. Proceedings of 12th IWTCS, pp:
237-250.

	3 FAULT DETECTION POWER OF A WIDELYUSED TEST SUITE FOR A SYSTEM OFCOMMUNICATING FSMS
	1. INTRODUCTION
	2. PRELIMINARIES
	2.1 I/O Finite State Machines
	2.2 Fault Domain
	2.3 Composition of FSMs
	3. TEST SUITE DERIVATION FOR AN EMBEDDEDCOMPONENT W.R.T. OUTPUT FAULTS
	3.1 Discussion about Faults
	3.2 Fault Assumptions and Test Architecture
	3.3 Trace Detecting FSM
	4. TEST SUITE DERIVATION
	4.1 Test Suite Derivation w.r.t. Output Faults
	4.2 Test Suite Derivation w.r.t. Single Output Faults
	4.3 Fault Coverage Evaluation
	5. TELEPHONE SERVICES EXAMPLE
	6. CONCLUSION
	References

