18

TEMPORAL AUTHORIZATION IN THE
SIMPLIFIED EVENT CALCULUS

Steve Barker

Abstract This paper shows how the simplified event calculus (SEC) may be used to repre-
sent security models for discretionary access control when access rights may be
expressed as holding for limited periods of time.

The approach involves formulating a set of axioms to represent a specific
security model with time-constrained authorizations. These model-specific ax-
ioms are combined with a set of rules which represent the core axiom of the SEC
and a set of ground atomic assertions which record a history of security events
which affect a database. In this framework, a subject’s request to exercise an
access right on a database object is allowed only if authorization can be proved
from the axiomatization.

An example security model is presented to demonstrate the approach, exten-
sions to this model are outlined and implementation issues are discussed.

Keywords: Event calculus, temporal authorization model

1. INTRODUCTION

The need to protect a database against unauthorized access has long been
recognized as important [4]. However, while languages for expressing access
rights and methods for deciding questions of authorization have been supported
in commercial database management systems for some time, more powerful
means for expressing security information are increasingly being demanded.
One such demand is for access control methods which permit privileges on
database objects to be granted to subjects for limited periods of time [14].

When access rights are only allowed for a certain duration they are auto-
matically removed on the expiration of the interval of time for which the rights
were initially permitted. The facility which enables access to be specified as
lasting for a restricted interval of time gives the grantor of a right a good deal

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35508-5_22

V. Aduri et al. (eds.), Research Advances in Database and Information Systems Security

© IFIP International Federation for Information Processing 2000

http://dx.doi.org/10.1007/978-0-387-35508-5_22

272 DATABASE AND INFORMATION SYSTEMS SECURITY

of control over the permissions they give to grantees and restricts the scope the
latter have for compromising the security of the data contained in a database.

In this paper a method is presented which may be used for discretionary
access control when access rights may be restricted by time. As such, our work
addresses similar issues to those considered in [2]. Our approach is, however,
quite different and has certain advantages.

In [2], a language is described which enables users to specify temporal au-
thorizations and derivation rules. The former are used to explicitly record the
rights individuals have been granted on objects by whom and for how long.
The latter are used to derive the privileges which are implied by the tempo-
ral authorizations. The temporal authorizations and derivation rules may be
expressed as holding for a particular interval of time.

Rather than providing a specific language for users to express their security
information, in our treatment a security administrator chooses a security model
to implement and formulates this model in the simplified event calculus (SEC)
[10]. Moreover, the notion of an event, rather than an interval of time, is central
in our approach.

The expressive power of the SEC provides a security officer with consider-
able scope for representing various security models which support the specifi-
cation of time-constrained privileges. This scope is achieved by treating secu-
rity actions as constants in rules which are written in clausal form logic [5] to
describe the consequences of a security event being performed on a database.
The use of clausal form logic, on which the SEC and our approach is based,
makes it possible for users to express their security requirements in a clear and
concise way. Moreover, this formalization may be regarded as an executable
specification which may be verified, informally with prospective end-users and
formally by proving properties of the specification, prior to implementation.

The rest of this paper is organized in the following way. In Section 2, a brief
overview of the simplified event calculus is presented. In Section 3, the details
of the event-based specification of security information are given. In Section
4, our use of the SEC to represent a particular security model with temporal
authorizations is outlined. In Section 5, theoretical and practical issues are
addressed and, in Section 6, various extensions to our example security model
are discussed. In Section 7, some conclusions are drawn and suggestions are
made for further work.

2. THE SIMPLIFIED EVENT CALCULUS

The original event calculus [7] consists of a number of general axioms, ex-
pressed in terms of Horn clauses augmented with negation as failure [3], which

Temporal Authorization in the SEC 273

are intended to be used for knowledge representation in situations where rea-
soning about time and events is required.

The basic idea is that the general axioms of the event calculus be combined
with a set of domain-specific axioms, which define the initiation and termi-
nation of relationships, and a description of events which have occurred in the
world a database describes. From this set of axioms and a description of events
the consequences of those events may be derived together with the periods of
time for which they hold.

The simplified event calculus, as its name suggests, is a restricted form of
the event calculus which nonetheless has proved to be useful for treating a
number of practical problems (see, for example, [6]).

The SEC only permits forward persistence and is based on the simplifying
assumption that complete information exists about events, including the times
at which they occur. Under this assumption, a single persistence axiom is all
that is required to specify that an initiated relationship, R, continues to persist
until an event occurs to terminate it. The core axiom of the SEC, CO (say),
which captures this notion may be expressed thus (where — denotes a chosen
form of negation and < is an “earlier than” relation):

holdsat(R, T)<happens(E1,T1),initiates(EI,R),T] < T,
—3E2,T2[happens(E2,T2),terminates(E2,R),T1 < T2,T < T2}

More fully, CO expresses that a relationship R holds at a time point 7T if
an event E] happened which initiated R (i.e., made R true) at an earlier point
in time 7'/ and no intervening event E2 has terminated R (i.e., made R false)
subsequent to its initiation.

Notice that for CO, and henceforth, terms which appear in the upper case
denote variables.

An example of the type of domain-specific rules which are used to define
the initiates and terminates predicates appearing in CO is given in Section 4.
Before presenting these rules, however, we consider the representation of a
history of security events performed on a database.

3. EVENT DESCRIPTIONS AND AUTHORIZATION
HISTORIES

To record the fact that a security event has taken place, the notion of a secu-
rity event description is used. A security event description consists of a set of
ground assertions which, as the name implies, describes the occurrence of an
event which has taken place and which is relevant to the security of a database.

274 DATABASE AND INFORMATION SYSTEMS SECURITY

To see what is involved in representing these events, suppose that Bob
creates a database object ol on 1/1/99 and takes read and write access rights on
ol. This event, e0 (say), may be represented by the following event description:

{happens(e0,1/1/99),act(e0,create),creator(e0,bob),object(e0,01),
mode(e0,read),mode(e0,write)}

Any constant which appears in a security event description is one of: an
event, a time, a subject, a group identifier, an object or an action which is
permissible in the security model.

In the event €0, create is the action performed. Now, while a subject clearly
needs to be able to do more than just create objects, the precise set of actions
they may perform depends on the choice of security model to be implemented.

The actions upon which the example security model given in Section 4 is
based are those which are included in the set, A={create,grant,grantgroup,
revoke,revokegroup,destroy}; the access modes considered are those in the set,
M={read,write}. That is, subjects may create and destroy objects and may
grant and revoke some or all of the read and write privileges individuals or
groups of individuals may have on database objects.

Notice that security event descriptions for any of the actions in A will be
similar in form to the event description for e0. Whilst the predicate names and
constants will differ, a security event description will always be represented
using a set of ground binary relations. A simple front-end may be used to assist
users in describing security events and a validation procedure is used to ensure
that security event descriptions are syntactically and semantically meaningful.

To see more fully what is involved in describing a history of events affecting
database security, suppose that Bob has created the database object ol and
consider the following narrative:

On 2/1/99 Bob grants John write access on o1 until 5/1/99 and read access until
20/6/99. On 15/4/99, Bob grants Sue read and write privileges on ol indefinitely
into the future. On 25/4/99, Bob grants every member of the Sales department
read access to ol until 1/6/99. Sue’s write privilege on ol is removed, by Bob,
on 20/5/99.

The following set of event descriptions (in which ei, where i is a natural
number, denotes an event) describes this scenario:

{happens(el,2/1/99),act(el,grant),grantee(el,john),object(el,0l),
mode(el,write),stop(el,5/1/99)}

{happens(e2,2/1/99),act(e2,grant),grantee(e2,john),object(e2,01),
mode(e2,read),stop(e2,20/6/99)}

Temporal Authorization in the SEC 275

{happens(e3,15/4/99),act(e3,grant),grantee(e3,sue),object(e3,01),
mode(e3,read),mode(e3,write)}

{happens(e4,25/4/99),act(e4,grantgroup), grantee(ed,sales),object(e4,01),
mode(ed,read), stop(e4,1/6/99)}

{happens(e5,20/5/99),act(e5,revoke),revokee(e5, sue),object(e5,01),
mode(e5,write)}

A set of security event descriptions is recorded as part of the information
which is maintained in the database to be used for access control. In the ex-
ample security model which we consider, only the creator of a database object,
O, can grant and remove access rights and decide the period of time for which
rights are allowed on the object. As such, an event description is only permis-
sible for O if it is asserted by the creator of O. The validation procedure for
security event descriptions ensures that the specifier of such a description for
O is always O’s creator.

Henceforth, we will refer to a set of security event descriptions, like the one
above, as an authorization history.

In our example security model, it is the grant and grantgroup operations
which have a temporal component. That is, rights may be specified as being
granted for a limited period of time. Not surprisingly, the removal of a privi-
lege, P, from a subject, S, on an object, O, at a time, T, prevents S gaining P
access on O unless and until S is granted the privilege P at some time point
which is subsequent to T.

An access right is assumed to hold from the point in time at which the event
which grants the access actually happens. The difference between the time in a
happens(e,t) fact and a stop(e,tl) fact (where ¢ < tI) is the interval of time for
which the right, granted in the event e, is permitted to hold for the subject(s)
and object specified in the security event description for e. As our example
authorization history demonstrates, if a stop time is not associated with a grant
operation then the right which is granted is assumed to be permitted indefinitely
into the future. Conversely, if a stop time is associated with a grant then that
specifies the maximum future time point up until which a privilege is to hold.
The grantor of a privilege has the option of terminating this privilege earlier
than the maximal time by using a revoke operation.

4. A SEC-BASED SECURITY MODEL

As we have said, there are two sets of rules which are important in our ap-
proach. One set of rules is needed to represent the core axiom, CO, of the SEC;
the other set is needed to define the initiation and termination of the properties

276 DATABASE AND INFORMATION SYSTEMS SECURITY

of interest in the specific security model, with time-constrained access rights,
to be implemented.

To simulate the CO axiom the following three rules may be used:

(C1) holds(access(S,P,0))«happens(E,T),initiates(E,access(S,P,0)),
not ended(E,access(S,P.O),T)

(C2) ended(E,access(S,P,0),T)<happens(E1,T1),T < Tl,
terminates(E1l,access(S,P.0))

(C3) ended(E,access(S,P,0),T)«stop(E,T1),current-time(T2),T] < T2

The reading of this set of rules is similar to that for CO: if an event, E,
happens at time, T, which causes a subject, S, to be given the access right, P,
on a database object, O, and the period of time for which this right was granted
has not expired and no subsequent event is known to have occurred to have
ended the right P which S has to access O at time T then S holds the privilege
P on O. The variable, T2, in the current-time atom is instantiated with the time,
taken from the “system clock”, at which the current-time atom in C3 is selected
in the process of deciding whether a privilege has expired.

Notice that the C2 rule deals with the termination of a privilege as a con-
sequence of the occurrence of an event whereas C3 deals with the termination
of a privilege as a consequence of the ending of a period of time for which
the privilege was granted. Note also that the 7 < T condition in the C2 rule
assumes that properties hold only after their initiating event happens. The T
< T2 condition in C3 is based on the assumption that event descriptions do
not have identical times for the happens and stop predicates (any attempt to
include this type of meaningless security event description in an authorization
history would be rejected in the process of validating event descriptions).

To see what is involved in writing the domain-specific initiates and
terminates rules for the example security model based on A, we consider first
the initiates rule, P1, required to treat object creation. For that, suppose that
an event, E, happens in which a subject, S, creates an object, O, and takes the
right, P, on O. This event has the consequence of initiating (i.e., making true)
the fact that S has the right P on O viz.:

(P1) initiates(E,access(S,P,0))+ act(E,create),creator(E,S),
object(E,0),mode(E,P)

Similarly, if the creator of object O grants subject S the right P on O then
the initiation of a period of time during which S may exercise the privilege P

Temporal Authorization in the SEC 277

on O may be represented by the following rule:

(P2) initiates(E,access(S,P,0))<—act(E,grant), grantee(E,S),
object(E,0),mode(E,P)

To deal with the granting of rights to groups of individuals, the body of
the rule P2 needs to be slightly modified to include a condition for testing for
group membership. Specifically, we need:

(P3) initiates(E,access(S,P,0))«act(E, grantgroup),grantee(E,W),
memberof(S,W),object(E,O),mode(E,P)

Notice that a set of memberof facts (e.g., memberof(bill, sales)) may be
recorded in the database to permit group authorizations to be specified and
subjects may be members of several different groups simultaneously (without
conflicting privileges arising).

When combined with an authorization history and the core axioms of the
SEC, the initiates rules are used to infer the start of an interval of time for
which access rights are held by subjects on database objects.

As previously discussed, the C3 axiom is applicable when the interval of
time for which an access right holds is ended by a stop time in an event de-
scription. For the cases where an action is performed which ends a subject’s
right to access an object, a set of terminates rules is required. These terminates
rules are used in conjunction with the core axiom C2 and enable the owner of
an object to remove privileges from subjects.

The following pair of terminates rules may be used for dealing with
revocations in our example model:

(P4) terminates(E,access(S,P,0))«act(E,revoke),revokee(E,S),
object(E,0),mode(E,P)

(P5) terminates(E,access(S,P,0))act(E,revokegroup),revokee(E,W),
memberof(S,W),object(E,O),mode(E,P)

Finally, to deal with the termination of rights when an object is destroyed
by its creator we need:

(P6) terminates(E,access(*, * 0))«act(E,destroy),object(E,0O)

In P6 the variable ‘*’ denotes any subject and any privilege.

278 DATABASE AND INFORMATION SYSTEMS SECURITY

As we have said, the set of access rules, Pi (i € {1,..,6}), represents the
particular security model which we have chosen to use to demonstrate our
approach. Different security models may be represented by choosing different
security actions to support and then writing the model-specific initiates and
terminates axioms to represent the consequences of performing these actions.
Similarly, any number of auxiliary rules may be included in a security model to
simplify the specification of an authorization history (e.g., a “write permission
implies read permission” rule may be used).

In contrast to [2], the rules defining the security theory above do not have
a time interval associated with them to represent the periods during which
they apply to a particular subject exercising a right to access an object. In
our approach, the intervals of time for which the rules are applicable to a (sub-
ject,privilege,object) triple are implicit from the times included in an authoriza-
tion history. This simplifies the specification of time-constrained privileges but
without compromising the scope a security officer has for representing security
theories.

S. THE ACCESS CONTROL PROCEDURE

Given an authorization history, to decide whether a subject, S, should be
permitted to exercise the privilege, P, on object, O, the approach we adopt in-
volves attempting to prove that the access request is a theorem of the authoriza-
tion history together with the axiomatization which defines a chosen security
model with time-constrained privileges. The existence of a proof permits S
to perform P on O at the time at which the access is requested; otherwise the
access request is denied.

Henceforth, we will denote, by %, the set of core axioms, Ci (i € {1,2,3}),
together with the Pj rules, (j € {1,..,6}), which define our example security
model. Similarly, we will denote the authorization history given in Section 3
by H.

Since ¥ can be described as a set of function-free stratified clauses [1] it
follows that access rights may be determined by using safe SLDNF-resolution
[8]. That is, to decide whether a subject, S, can exercise privilege, P, on a
object, O, an SLDNF-derivation [8] for the goal clause <—holds(access(S,F,0))
may be attempted on the security theory ¥ U H. In this context, if ¥ U H
U {«holds(access(S,P.0))} has an SLDNF-refutation [8] then subject S has
the privilege P on O. Conversely, if £ U H U {«holds(access(S,P,0))} has a
finitely-failed SLDNF-tree [8] then S does not have the privilege P on O.

Notice that it is impossible for inconsistent access rights to arise in ¥ for

any authorization history. For inconsistency, holds(access(S,F,0)) would need
to be simultaneously true and false (for some substitution for variables). How-

Temporal Authorization in the SEC 279

ever, since there is only one definition of holds in ¥ and SLDNF-resolution is
consistent, it should be clear that inconsistent access rights do not arise.

Before giving an example of the use of SLDNF-resolution to decide ques-
tions of access, we need to mention an important practical issue. For efficiency
reasons, ground instances of the initiates, terminates and ended predicates
may be memoized [9], by dynamic assertion [13], when a holds(access(S,P,0))
request is first evaluated. This approach, increases the size of the security
theory but has the advantage of permitting proofs of authorizations to be
efficiently performed since ground assertions may be used, almost entirely, in
the process. The existence of previously generated initiates, terminates and
ended facts is assumed in the example which follows.

Example

The following (abbreviated) SLDNF-derivation for ¥ U H U
+holds(access(john,write,01)), performed on 25/1/99 (say), reveals that John
is not permitted to write ol:

holds(access(john,write,01))
|
<—happens(E,T),initiates(E,access(john,write,0l)),
not ended(E,access(john,write,01),T)
|
+initiates(el,access(john,write,0l)),
not ended(el,access(john,write,01),2/1/99)

«not ended(el,access(john,write,01),2/1/99)

fail

For £ U H U {«holds(access(John,read,01))}, on 25/1/99, the SLDNF-
derivation is very similar to the one above. However, whereas ended succeeds
by C3 in the holds(access(john,write,01)) case, in the test for John’s posses-
sion of a read right on ol the ended subgoal finitely fails since John’s read
privilege over ol has been neither terminated by an event nor stopped as a
consequence of the inclusion of a stop atom in an event description. Thus, an
SLDNF-refutation exists for ¥ U H U {«-holds(access(John,read,01))} and
so, on 25/1/99, John is empowered to read 0ol. ¢

An issue which is sometimes raised in the context of temporal authorization
models relates to the ending of a period of time for which a privilege has been
granted during the test to determine whether a subject’s access to a database
object is permitted or not. In our view this is a matter of practical concern

280 DATABASE AND INFORMATION SYSTEMS SECURITY

rather than a security model issue and is not specific to temporal authorization
models since, unless steps are taken to prevent it, the revocation of a privilege
can take place whilst a question of access is being decided in a non-temporal
environment.

This problem does not, however, arise in our approach. To see why notice
that, since we assume that a leftmost selection rule [8] is used in the SLDNF-
derivations performed on X, in the C3 rule, the current time is used imme-
diately prior to the test for the expiration of a time-constrained access right.
Hence, even if a time-constrained privilege does expire after the access control
procedure has been invoked, it is not until the 71 < T2 condition is evaluated
in C3 that the expiration of this privilege is checked and at this point in the
computation the current time will have been extracted from the system clock
immediately prior to the test for 71 < T2.

In implementations of our approach periodic garbage removal may be per-
formed on the memoized assertions and on an authorization history to remove
redundant security event descriptions. For instance, if the current time is sub-
sequent to the stop time included in a security event description then the event
description may be physically deleted from the authorization history together
with any facts which were initiated by the event. For instance, the event de-
scription for e/ could be removed from H after 5/1/99 since John does not have
write access on ol after this point in time. If this deletion were performed then,
in any subsequent test of John’s permission to write ol, the access control pro-
cedure may establish more quickly that John does not have this privilege since
the early failure of the initiates(E,access(john,write,01)) condition will cause
holds(access(john,write,01)) to fail early too. Similarly, when an object is de-
stroyed the event description which created that object may be deleted together
with any dynamically asserted initiates, ended or terminates facts relating to
the object. Several other optimizations are possible including changing the
order of the conditions appearing in the rules of X to exploit the subgoal selec-
tion strategy used in an SLDNF-derivation. For example, by resolving an initi-
ates(E,access(S,P,0)) subgoal with an appropriate memoized ground instance
of the same form, it is possible to delay selecting the happens(E,T) condition
in CI until substitutions for E and T have been found.

Another practical issue which needs to be considered relates to the sound-
ness and correctness results applicable to the proof methods which may be
used to decide questions of access. For X (together with any authorization
history), Clark’s 2-valued completion [3] is a candidate declarative seman-
tics for our choice of access control mechanism. More specifically, since
¥ is always an allowed [11] and hierarchical [3] normal clause theory and
holds(access(S,P,0)) is an allowed query, it follows, from [12], that, for ¥,
(safe) SLDNF-resolution is sound and complete with respect to Clark’s se-

Temporal Authorization in the SEC 281

mantics. In this context, soundness implies that SLDNF-resolution correctly
identifies which subjects have which access rights on which database objects;
completeness means that all the access rights which are implied by an autho-
rization history, together with X, can be derived by using SLDNF-resolution.

6. EXTENDING =

A significant attraction of our approach is that it permits any number of se-
curity theories with temporal authorizations to be expressed in a simple and
completely uniform way. For a different security theory to X, a different set
of actions to A is chosen and the rules which define the consequences of per-
forming these actions are formulated.

In this section, we consider some possible extensions to X to demonstrate
the flexibility afforded by our approach. More specifically, we consider how
negative authorizations may be expressed, how proactive authorizations can be
supported, how shared privileges may be specified and how rules for default
authorizations may be represented.

To permit negative authorizations to be specified as holding for a restricted
interval of time, a not denied(access(S,P,0)) condition may be added to CI
while the following rule is added to the core axioms:

denied(access(S,P,0))<happens(E,T1),act(E,denying),
subject(E,S),object(E,0),mode(E,P),
stop(E,T2),currenttime(T3),T3 < T2, T1 < T3

It follows from this rule that, in addition to access being prohibited as a re-
sult of the occurrence of an event which terminates a privilege or the expiration
of a time interval for which a right was granted, a subject S may also be pre-
vented from exercising the privilege P on O if S has been denied access to O at
time T1 and the period of time for which the denial applies has not expired.

Notice that a stop time must be specified in a security event description
which relates to the act of denying and that a denials take precedence con-
flict resolution strategy is effectively enforced by our formulation of the core
axioms of the SEC.

Until now, we have assumed that an access right holds from the point in time
at which the event which grants it happens. However, the proactive initiation
of authorizations can also be supported in our approach. This makes it possible
to specify, on 1/6/99 (say), that, for example, Steve will be authorized to read
ol from 1/10/99. To achieve this, an event description is included in an autho-
rization history with an instance of a happens(E,T1) assertion such that if T'is

282 DATABASE AND INFORMATION SYSTEMS SECURITY

the current time then T < T1. The core axiom CI also needs to be extended to
include a current-time(T) condition and a T! < T condition.

To specify that privileges may be shared for a specified interval of time, the
following rule may be used:

initiates(E,access(S2,P,0))«act(E,sharing),subject(E,S1),sharer(E,S2),
S1+#82,0bject(E,0),mode(E,P),holds(access(S1,P,0))

This rule expresses that the subject S2 may exercise the privilege P on object
O for the period of time during which subject S1 (S1#£S2) has the right, P, on
0.

Authorizations may also be derived as a consequence of the absence of
others (as in [2]). For example, in [2] a whenevernot operator is defined and
used to express the mutual exclusivity constraint that a subject S1 is permitted
to exercise privilege P on O at all time points at which subject S2 does not
have this right. To represent this in a SEC-based security theory, the following
axiom may be included:

initiates(E,access(S1,P,0))«act(E,defaultpermit), permitted(E,S1),
excluded(E,S2),0bjec(E,0),S1#£8S2,
mode(E,P),not holds(access(S2,P,0))

The next rule enables the specifier of a security model to express that at all
points in time at which subject S1 holds a privilege P on object O, subject S2
is prevented from exercising the P privilege over O:

terminates(E,access(S2,P,0))«act(E,exclusion),permitted(E,S1),
excluded(E,S2),S1#S2,0bject(E,0),
mode(E,P),holds(access(S1,P,0))

The examples above illustrate a number of direct extensions to 3. However,
a number of less direct extensions are also possible. For instance, initiates rules
may be defined in terms of initiates or terminates conditions and terminates
rules can be defined in terms of initiates or terminates conditions, a with grant
option can be added to enable authorizations to be granted by subjects other
than owners of objects and temporal authorizations may be expressed as being
conditional upon the occurrence of events. The definitions of initiates and
terminates relationships can also be extended to include a time argument. This
makes it possible to specify temporal authorizations which are based on an
authorization history.

Temporal Authorization in the SEC 283

The key point which arises from this discussion is that our approach pro-
vides a security administrator with a good deal of flexibility when it comes
to specifying security theories with time-constrained access rights. In prin-
ciple, an implementor can choose to support any set of security actions and
any set of privileges; all that is required is that appropriate initiates and ter-
minates rules be written to define the consequences of performing these ac-
tions on a database. In contrast, pre-specifying a set of security operators pre-
cludes the formulation of security models which do not include these operators
and, hence, may limit the scope a security administrator has for protecting a
database.

The only constraints on a security administrator who uses our approach are
those which apply to the methods used to decide whether a subject S has priv-
ilege P over O; whether, for instance, the methods available for deciding ques-
tions of access are sound, complete and guaranteed to terminate.

7. SUMMARY AND CONCLUSIONS

By using the simplified event calculus it is possible to represent a range of
security models for discretionary access control where privileges on database
objects may be granted to subjects for limited periods of time. These security
models may be formulated in subsets of clausal form logic for which efficient,
sound and complete theorem provers are known to exist.

The “high-level” nature of the language on which the event calculus is based
and the fact that users provide security information by writing ground atomic
assertions makes the suggested approach especially easy to use. Moreover, a
simple front-end may be developed to further ease the burden of expressing
security information.

Security models which are directly based on the theoretical framework out-
lined above have been implemented (in PROLOG) and have been successfully
employed to manage access to relational databases. However, since no assump-
tions have been made about the underlying data model, the approach may also
be used with other types of database.

In future work we will show how the SEC may be used to formulate a RBAC
security model with time-constrained assignments of permissions and users
to roles and how our current work on security in deductive databases can be
extended to include temporal authorizations.

References

[1]1 Apt, K., Blair, H., and Walker, A. (1988). Towards a theory of declarative
knowledge. Foundations of Deductive Databases and Logic Programming

284 DATABASE AND INFORMATION SYSTEMS SECURITY

(ed. J. Minker), Morgan-Kaufmann.
[2] Bertino, E., Bettini, C., Ferrari, E., and Samarati, P. (1996). A temporal
access control mechanism for database systems, TKDE, 8(1).

[3] Clark, K. (1978). Negation as failure. Logic and Databases (eds.
H.Gallaire and J. Minker), Plenum.

[4] Griffiths, P., and Wade, B. (1976). An authorization mechanism for rela-
tional database systems. ACM TODS, 1(3).

[5] Kowalski, R. (1979). Logic for Problem Solving, Elsevier.

[6] Kowalski, R. (1992). Database updates in the event calculus. Journal of
Logic Programming, 12.

[7] Kowalski, R. and Sergot, M. (1986). A logic-based calculus of events. New
Generation Computing, 4(1).

[8] LLoyd, J. (1987). Foundations of Logic Programming, Springer-Verlag.

[9] Michie, D. (1968). Memo functions and machine leaming. Nature, 218.

[10] Sadr, F. and Kowalski, R. (1995). Variants of the event calculus, Pro-
ceedings of ICLP, MIT Press.

[11] Shepherdson, J. (1984). Negation as failure. Journal of Logic Program-
ming, 1.

[12] Shepherdson, J. (1997). Negation as failure, completion and stratifica-
tion. Handbook of Logic in Al and Logic Programming, Volume 5, Logic
Programming (eds. D. Gabbay, et al., Oxford.

[13] Stirling, L. and Shapiro, E. (1994). The Art of PROLOG, MIT Press.
[14] Thomas, R. and Sandhu, R. (1993). Discretionary access control in

objected-oriented databases: Issues and research directions. Proceedings
of the Sixteenth National Computer Security Conference.

	18 TEMPORAL AUTHORIZATION IN THESIMPLIFIED EVENT CALCULUS
	1. INTRODUCTION
	2. THE SIMPLIFIED EVENT CALCULUS
	3. EVENT DESCRIPTIONS AND AUTHORIZATIONIDSTORIES
	4. A SEC-BASED SECURITY MODEL
	5. THE ACCESS CONTROL PROCEDURE
	6. EXTENDING ~
	7. SUMMARY AND CONCLUSIONS
	References

