
23

TBE: A GRAPHICAL INTERFACE FOR
WRITING TRIGGER RULES IN
ACTIVE DATABASES*
Dongwon Lee, Wen lei Mao, Henry Chiu, Wesley W. Chu
Department of Computer Science

University of California, Los Angeles

Los Angeles, CA 90095, USA
{dongwon,wenlei,hychiu,wwc}@cs.ucla.edu

Abstract One of the obstacles that hinder trigger systems from their wide deploy­
ment is the lack of tools that aid users to create trigger rules. Similar
to understanding and specifying database queries in SQL3, it is difficult
to visualize the meaning of trigger rules. Furthermore, it is even more
difficult to write trigger rules using such text-based trigger rule language
as SQL3. In this paper, we propose TBE (Trigger-By-Example) to rem­
edy such problems in writing trigger rules by using QBE (Query-By­
Example) ideas. TBE is a graphical trigger rule specification language
and system to help the users understand and specify active database
triggers. TBE retains benefits of QBE while extending features to sup­
port triggers. Hence, TBE is a useful tool for novice users to create
simple triggers in a visual and intuitive manner. Further, since TBE is
designed to hide the details of underlying trigger systems from users, it
can be used as a universal trigger interface.

Keywords: Visual Query Interface, Triggers, Active Database

1. INTRODUCTION
Triggers provide a facility to autonomously react to database events

by evaluating a data-dependent condition and by executing a reaction
whenever the condition is satisfied. Such triggers are regarded as an
important database feature and implemented by most major database
vendors. Despite their diverse potential usages, one of the obstacles that
hinder the triggers from their wide deployment is the lack of tools that
aid users to create complex trigger rules in a simple manner. In many

'This research is supported in part by DARPA contract No. N66001-97-C-8601 and SBIRF
30602-99-C-0106.

H. Arisawa et al. (eds.), Advances in Visual Information Management
© Springer Science+Business Media New York 2000

368 VISUAL DATABASE SYSTEMS

environments, the correctness of the written trigger rules is very crucial
since the semantics encoded in the trigger rules are shared by many
applications. Although the majority of the users of triggers are DB As
or savvy end-users, writing correct and complex trigger rules is still a
daunting task, not to mention maintaining written trigger rules.

On the other hand, QBE (Query-By-Example) has been very popular
since its introduction decades ago and its variants are currently being
used in most modern database products. As it is based on the domain
relational calculus, its expressive power is proved to be equivalent to
that of SQL that is based on the tuple relational calculus (Codd, 1972).
As opposed to SQL, which the user has to conform to the phrase struc­
ture strictly, QBE user may enter any expression as an entry insofar
as it is syntactically correct. That is, since the entries are bound to
the table skeleton, the user can only specify admissible queries (Zloof,
1977). We proposed TBE (Trigger-By-Example) (Lee et al., 99) as a
novel graphical interface for writing triggers. Since most trigger rules
are complex combinations of SQL statements, by using QBE as a user
interface for triggers the user may create only admissible trigger rules.
TBE uses QBE in a declarative fashion for writing the procedural trigger
rules (Cochrane et al., 1996). In this paper, we discuss the design and
implementation issues of TBE. Further, our design to make TBE a uni­
versal trigger rule formation tool that hides much of the peculiarity of
the underlying trigger systems is presented.

To facilitate discussion, we shall briefly remind SQL3 triggers and
QBE in the following subsections.

1.1. SQL3 TRIGGERS
In SQL3, triggers, sometimes called event-condition-action rules or

EGA rules, mainly consist of three parts to describe the event, condition,
and action, respectively. Since SQL3 is still evolving at the time of
writing this paper, albeit close to its finalization, we base our discussion
on the latest ANSI X3H2 SQL3 working draft (Melton, 1999). The
following is a definition of SQL3:

Example 1: SQL3 triggers definition.

<SQL3-trigger> ::= CREATE TRIGGER <trigger-name>
{AFTER I BEFORE} <trigger-event> ON <table-name>
[REFERENCING <references>]
[FOR EACH {ROW I STATEMENT}]
[WHEN <SQL-statements>]
<SQL-procedure-statements>

<trigger-event> ::= INSERT I DELETE I UPDATE [OF <column-names>]
<reference> ::= OLD [AS] <old-value-tuple-name> I

TBE: A Graphical Interface for Writing Trigger Rules 369

NEW [AS) <new-value-tuple-name> I
OLD_TABLE [AS) <old-value-table-name> I
NEW_TABLE [AS) <new-value-tab Ie-name>

1.2. QBE (QUERY-BY-EXAMPLE)
QBE is a query language as well as a visual user interface. In QBE,

programming is done within two-dimensional skeleton tables. This is ac­
complished by filling in an example of the answer in the appropriate table
spaces (thus the name "by-example"). Another kind of two-dimensional
object is the condition box, which is used to express one or more desired
conditions difficult to express in the skeleton tables. By QBE conven­
tion, variable names are lowercase alphabets prefixed with "_", system
commands are uppercase alphabets suffixed with ".", and constants are
denoted without quote unlike SQL3. Let us see a QBE example. The
following schema is used throughout the paper.

Example 2: Define the emp and dept relations with keys underlined. emp.DeptNo
and dept.MgrNo are foreign keys referencing to dept.Dno and emp.Eno attributes,
respectively.

emp(Eno, Ename, DeptNo, Sal)
dept(Dno, Dname, MgrNo)

Then, Example 3 shows two equivalent representations of the query in
SQL3 and QBE.

Example 3: Who is being managed by the manager 'Tom'?

SELECT E2.Ename
FROM emp El, emp E2, dept D
WHERE E1.Ename = 'Tom' AND E1.Eno = D.MgrNo AND E2.DeptNo = D.Dno

emp Eno Ename DeptNo I Sal
dept I Dno Dname MgrNo

_e Tom
P.

The rest of this paper is organized as follows. Section 2 gives a brief
introduction to TBE. Section 3 is a simulation of a user session with
TBE. The design and implementation of TBE is discussed in Section 4.
Section 5 presents the design of some extensions that we are planning for
the TBE. Related work and concluding remarks are given in Sections 6
and 7, respectively.

2. TBE (TRIGGER-BY-EXAMPLE)
Triggers in SQL3 are procedural in nature. As shown in Example 1,

trigger actions can be arbitrary SQL procedural statements. Also, the
order among action statements needs to be obeyed faithfully to preserve

370 VISUAL DATABASE SYSTEMS

the correct semantics. On the contrary, since QBE is a declarative query
language, the order is immaterial. Further, QBE is specifically designed
as a tool for only: 1) data retrieval queries (i.e., SELECT), 2) data
modification queries (i.e., INSERT, DELETE, UPDATE), and 3) schema
definition and manipulation queries. Thus, our goal is to develop a tool
that can represent the procedural SQL3 triggers in its entirety while
retaining the declarative nature of QBE as much as possible.

2.1. TBE MODEL
SQL3 triggers use the ECA (Event, Condition and Action) model.

Therefore, triggers are represented by three independent E, C, and A
parts. In TBE, each E, C, and A part maps to the corresponding skeleton
tables and condition boxes separately. To differentiate among these three
parts, each skeleton table name is prefixed with its corresponding flags,
E., C., or A.. The condition box in QBE is extended similarly. For
instance, a trigger condition statement can be specified in the c. prefixed
skeleton table and/or condition box.

C.emp I Eno I Ename I DeptNo I Sal I I C.conditions I
I I I I I I I

SQL3 triggers allow only INSERT, DELETE, and UPDATE as legal
event types. QBE uses I., D., and U. to describe the corresponding
data manipulations. TBE thus uses these constructs to describe the
trigger event types. Since INSERT and DELETE always affect the whole
tuple, not individual columns, I. and D. must be filled in the leftmost
column of the skeleton table. Since UPDATE event can affect individual
columns, U. must be filled in the corresponding columns. Otherwise,
U. is filled in the leftmost column to represent that UPDATE event is
monitored on all columns. Consider the following example.

Example 4: Skeleton tables (1) and (2) depict INSERT and DELETE events on
the dept table, respectively. (3) depicts UPDATE event of columns Dname and MgrNo.
Thus, changes occurring on other columns do not fire the trigger. (4) depicts UPDATE
event of any columns on the dept table.

(1)
E.dept Dno I Dname I MgrNo

(2)
E.dept Dno Dname I MgrNo

I. I I D. I

(3)
E.dept Dno I Dname I MgrNo

(4)
E.dept Dno Dname I MgrNo

I U. I U. U. I

Note also that since SQL3 triggers definition requires that one trigger
rule monitors only one event, there cannot be more than one row having
an I., D., or U. flag. Therefore, the same trigger action for different

TBE: A Graphical Interface for Writing Trigger Rules 371

events (e.g., "abort when either INSERT or DELETE occurs") needs to
be expressed as separate trigger rules in SQL3 triggers.

2.2. TRIGGERS ACTIVATION TIME AND
GRANULARITY

The SQL3 triggers have notions of event activation time and granu­
larity. Event activation time specifies whether the trigger is executed
before or after its event. Granularity defines how many times the trigger
is executed for a particular event.

1 The activation time can have two modes, before and after. The
before mode triggers execute before their events and are useful for
conditioning of the input data. The after mode triggers execute af­
ter their events and are typically used to embed application logic
(Cochrane et al., 1996). In TBE, two corresponding constructs
(BFR. and AFT.) are introduced to denote these modes. The ap­
pended "." denotes that these are built-in system commands by
QBE convention.

2 The granularity of a trigger can be specified as either a for each
row or for each statement, referred to as row-level and statement­
level triggers, respectively. The row-level triggers are executed
once for each modification to tuple whereas the statement-level
triggers are executed once for an event regardless of the number
of tuples affected. In TBE notation, R. and S. are used to denote
the row-level and statement-level triggers, respectively.

Users express trigger activation time and granularity at the leftmost
column of the event skeleton tables using the introduced constructs.

2.3. TRANSITION VALUES

When an event occurs and values change, trigger rules often need to
refer to the before and after values of certain attributes. These values
are referred to as the transition values. In SQL3, these transition values
can be accessed by either transition variables (i.e., OLD, NEW) for row­
level triggers or tables (i.e., OLD_TABLE, NEW_TABLE) for statement-level
triggers. Furthermore, in SQL3, the INSERT event trigger can only
use NEW or NEW3ABLE while the DELETE event trigger can only use
OLD or OLD_TABLE to access transition values. However, the UPDATE
event trigger can use both transition variables or tables. In TBE, a cou­
ple of special built-in functions (i.e., OLD3ABLEO and NEW_TABLEO for
statement-level, OLDO and NEWO for row-level) are introduced. The

372 VISUAL DATABASE SYSTEMS

OLD_TABLEO and NEW_TABLE 0 functions return a set of tuples with val­
ues before and after the changes, respectively. Similarly the OLD 0 and
NEW () functions return a single tuple with values before and after the
change, respectively. Therefore, applying aggregate functions such as
CNT. or SUM. to OLDO or NEWO is meaningless (i.e., CNT .NEWCs) is
always 1 and SUM.OLDCs) is always same as _s}. Using these built-in
functions, for instance, an event "every time more than 10 new employ­
ees are inserted" can be represented as follows:

E.emp I Eno I Ename I DeptNo I Sal I E.conditions I
AFT.I.S. I I _n I I I

When arbitrary SQL procedural statements (i.e., IF, CASE, assignment
statements, etc.) are written in the action part of the trigger rules, it
is not straightforward to represent them in TBE due to their procedural
nature. Because their expressive power is beyond what the declarative
QBE (thus TBE described so far) can achieve, we instead provide a spe­
cial kind of box, called a statement box, similar to the condition box.
The user can write arbitrary SQL procedural statements delimited by
";" in the statement box. Since the statement box is only allowed for
the action part of the triggers, the prefix A. is always prepended. An
example is:

A.statements

IF (X > 10)
ROLLBACK;

2.4. TBE EXAMPLES

Let us wrap up this section with two illustrating examples. These are
typical trigger rules to maintain database integrity constraints.

Example 5: When a manager is deleted, all employees in his or her department are
deleted too.

CREATE TRIGGER ManagerDelRule AFTER DELETE ON emp
FOR EACH ROW

DELETE FROM emp E WHERE E.DeptNo IN
(SELECT D.Dno FROM dept D WHERE D.MgrNo = OLD.Eno)

E.emp Eno I Ename I DeptNo I Sal I
AFT.D.R. I _e I I I I

A.dept I Dno I Dname I MgrNo I A.emp Eno Ename I DeptNo I Sal

I _d I I _e I D. I _d I
In this example, the WHEN clause is missing on purpose. That is, the trigger rule does
not check if the deleted employee is in fact a manager or not because the rule deletes

TBE: A Graphical Interface for Writing Trigger Rules 373
only the employee whose manager is just deleted. Note how the _e variable is used to
join the emp and dept tables to find the department whose manager is just deleted.
The same query could have been written with a condition test in a more explicit
manner as follows:

E.emp Eno Ename DeptNo Sal C.dept Dno Dname MgrNo

AFT.D.R. _e _d _m

C.conditions A.emp Eno Ename DeptNo Sal

D.

Example 6: When employees are inserted to the emp table, abort the transaction if
there is one violating the foreign key constraint.

CREATE TRIGGER AbortEmp AFTER INSERT ON emp
FOR EACH STATEMENT
WHEN EXISTS (SELECT * FROM NEW_TABLE E WHERE NOT EXISTS

(SELECT * FROM dept D WHERE D.Dno = E.DeptNo»
ROLLBACK

E.emp Eno Ename DeptNo Sal

AFT.I.5.

C.dept Dno Dname MgrNo
_d

A.statements

ROLLBACK

In this example, if the granularity were R. instead of S., then TBE would generate
slightly different SQL3 trigger rule as shown below. That is, a row-level trigger rule
generated from the same TBE representation would have been:

CREATE TRIGGER AbortEmp AFTER INSERT ON emp
FOR EACH ROW
WHEN NOT EXISTS (SELECT * FROM dept D WHERE D.Dno = NEW.DeptNo)

ROLLBACK

Please refer to (Lee et al., 99) for detailed discussion and more examples
of TBE.

3. A TBE SESSION EXAMPLE
To give a flavor of TBE, we describe a sample session in this section.

Consider the following example.

Example 7: When an employee's salary is changed more than twice within the same
year (a variable CURRENT _YEAR contains the current year value), record new values
of Eno and Sal into the log (Eno. Sal) table. Assume that there is another table
sal-change (Eno. Year. Cnt) that keeps track of the employee's salary changes.

Without TBE, a human expert would have written the following trigger
rule:

CREATE TRIGGER TwiceSalaryRule

374 VISUAL DATABASE SYSTEMS

AFTER UPDATE OF SalON emp

FOR EACH ROW
WHEN EXISTS (SELECT * FROM sal-change WHERE

Eno = NEW.Eno AND Year = CURRENT_YEAR AND Cnt >= 2)
BEGIN ATOMIC

END

UPDATE sal-change SET Cnt = Cnt + 1
WHERE Eno = NEW.Eno AND Year = CURRENLYEAR;

INSERT INTO log VALUES(NEW.Eno, NEW.Sal);

Figure 1 Initial screen.

Initially, TBE looks like Figure 1. Descriptions on the panel are only
added for explanation purposes. The main screen consists of two sections
- one for input and the other for output. The input section is where the
user creates trigger rules by a QBE mechanism and the output section
is where the interface generates trigger rules in the target trigger syntax
(default is SQL3). Further, the input section consists of three panels
for event, condition, and action, respectively. The user first chooses the
target system. Then, TBE adjusts its behavior according to the selected
target system specifics. Current implementation supports only SQL3
triggers.

At its start-up time, TBE first loads schema information and keeps
table, attribute, and type related information. This information is used
to guide users to write only admissible trigger rules. For instance, when

TBE: A Graphical Interface/or Writing Trigger Rules 375
the user tries to insert an empty skeleton table at one of the three panels,
TBE shows all the available table names to aid in the user's selection.
After the user picks the table, an empty table appears in the currently
active panel.

In our example, the user creates the trigger event. From the query
description, the user knows that the activation time and the granularity
of the triggers are "after" and "for each row", respectively. Further­
more, the Sal attribute needs to be monitored for the "update" event
(Figure 2). All these commands are provided by TBE and can be chosen
from the pop-up menu.

Figure 2 Event construction.

Next, the user constructs the trigger condition - "salary is increased
more than twice within the same year" . To do this, the user can use the
fact that "when an employee's salary is updated, if the Cnt attribute of
the sal-change of the same person has value greater than or equal to
2 within the same year, then his update event satisfies the condition".
Since the emp table needs to be joined with the sal-change table to find
the candidate employees, the user put variable ..n in the key attribute
(i.e. , Eno) of the emp table. (Figure 3).

Depfbio, Sal

Figure 3 A variable inserted at key attribute.

In the sal-change table, to specify the same year, CURRENT_YEAR is
inserted at Year attribute. In addition, to refer to the Cnt value later, a
new variable _c is inserted. Finally, the join condition between emp and
sal-change tables is expressed by entering the variable ..n in the Eno
attribute of the sal-change table (i.e., equi-join). After constructing
"changed more than twice" phrase using the special condition box, The
resulting TBE is shown in Figure 4.
To facilitate user rule specification, TBE provides the user with all the
valid context-sensitive options available for the user to select. For in­
stance, when the user right-clicks after positioning the cursor in the Eno
attribute, a pop-up menu appears (Figure 5).
Now, the user constructs the trigger action. Two actions are required
according to the query description: 1) system maintains Cnt value in

376 VISUAL DATABASE SYSTEMS

Figure 4 Condition construction.

Figure 5 Pop-up menu.

the sal-change, and 2) system logs the information of the employee
whose salary has been changed more than twice within the same year.
Since two actions operate on different tables, the user creates two empty
skeleton tables at the event panel. Then, using the variable ...n defined
in the emp table, the user increases the Cnt value by one (Figure 6).

Figure 6 Action construction for the sal-change table.

Second, the user needs to insert his employee number and his new
salary into the log table. The user enters another variable in the Sal
attribute of the emp table to refer to the employee's salary value. Fur­
thermore, to retrieve a new salary value after an update, the user uses
the NEWO function explicitly (Figure 7).

Finally, after the user clicks the down-arrow button to generate the
SQL3 trigger rule, the corresponding rule in SQL3 triggers syntax is
generated at the output section. Figure 8 shows the final screen after
rule generation.

TBE: A Graphical Interfacefor Writing Trigger Rules 377

i _:-n __

Figure 7 Action construction for the log table.

Figure 8 Final screen.

4. DESIGN AND IMPLEMENTATION
ISSUES

In this section, we discuss some of the interesting aspects of the TBE
implementation. A preliminary version of TBE prototype is being im-

378 VISUAL DATABASE SYSTEMS
plemented in Java using jdk 1.2.1 and swing 1.1. The main issues that
we encountered in designing and implementing TBE are:

• How to represent TBE internally?

• How to implement the translation algorithm?

4.1. INTERNAL REPRESENTATION
Each of the three panels in the GUI (event, condition, and action)

holds a vector of tables as created by the user. Before passing the vectors
to the translation module, the GUI processes sets (i.e., "[]" notation in
QBE), removing bracketed entries and replacing them with constants
and simple example 'elements. The modified tables are then used to
create internal representations of the tables for the translation module
(called TBETables). It contains the column header and a vector of non
empty fields. Other useful information such as the fields row and column
are stored as well.

The whole session of TBE can be stored on disk using Java's seri­
alization feature. Therefore, current implementation uses the TBETable
as an in-memory representation while the serialized object as an on-disk
representation of TBE.

For each clause and various checks in the translation algorithm, a
linear iteration through the TBETabies is required. That is, every time
a scan costs O(N * M), where N is the total number of rows in all
TBETables and M is the average number of non-empty fields in the
rows. Since the size of trigger rule is relatively small, this is not a
serious performance problem. One might minimize the constant factor
by performing multiple tasks through iterations, but this comes as a cost
to modularity.

4.2. TRANSLATION ALGORITHM
Our algorithm is an extension of the algorithm by (McLeod, 1976),

which translates from QBE to SQL. Its input is a list of skeleton ta­
bles and the condition boxes while its output is a SQL query string.
Let us denote the McLeod's algorithm as qbe2sql(<input» and ours as
tbe2triggers.

4.2.1 The qbe2sql Algorithm. We have implemented basic
features of the qbe2sql algorithm in (McLeod, 1976), except queries hav­
ing the GROUP-BY construct. The algorithm first determines the type
of query statement. The basic cases involve operators, such as SELECT,
UPDATE, INSERT, and DELETE. Special cases use UNION, EXCEPT,

TBE: A Graphical Interface for Writing Trigger Rules 379
and INTERSECT where the statements are processed recursively. Gen­
eral steps of the translation implemented in TBE are as follows:

1 Duplicate tables are renamed. (e.g., "FROM supply, supply" is
converted into "FROM supply SI, supply S2")

2 SELECT clause (or other type) is printed by searching through
TBETables' fields for projection (i.e., P. command). Then, FROM
clause is printed from TBETable table names.

3 Example variables are extracted from TBETabies by searching for
tokens starting with" _". Variables with same names indicate table
joins; table names and corresponding column names of the vari­
ables are stored.

4 Process conditions; variables are matched with previously extracted
variables and replaced with corresponding table and column names.
(e.g., a variable -Il at column Ena of the table emp is replaced to
emp . Ena). Constants are handled accordingly as well.

4.2.2 The tbe2triggers Algorithm. Let us assume that _var is
an example variable filled in some column ofthe skeleton table. calname(_var)
is a function to return the column name given the variable name _var.
Skeleton tables and condition or statement boxes are collectively called
as entries.

1 Preprocessing: This step does two tasks: 1) reducing TBE query to
an equivalent, but simpler form by moving the condition box en­
tries to the skeleton tables, and 2) partitioning the TBE query into
distinct groups when multiple trigger rules are written together.
This can be done by comparing variables filled in the skeleton ta­
bles and collecting those entries with the same variables being used
in the same group. Then, apply the following steps 2, 3, and 4 to
each distinct group repeatedly to generate separate trigger rules.

2 Build event clause: Input all the E. prefixed entries. The "CREATE
TRIGGER <trigger-name>" clause is generated by the trigger name
<trigger-name> filled in the name box. By checking the constructs
(e.g., AFT., R.), the system can determine the activation time and
granularity of the triggers. The event type can also be detected
by constructs (e.g., 1., D., U.). If u. is found in the individual
columns, then the "AFTER UPDATE OF <column-names>" clause is
generated by enumerating all column names in an arbitrary order.
Then,

380 VISUAL DATABASE SYSTEMS

(a) Convert all variables _vari used with I. event into NEWCvari)
(ifrow-level) or NEW_TABLECvari) (if statement-level) accord­
ingly.

(b) Convert all variables -vari used with D. event into OLD Cvari)
(if row-level) or OLD_TABLECvari) (if statement-level) accord­
ingly.

(c) If there is a condition box or a column having comparison
operators (e.g., <, 2:) or aggregation operators (e.g., AVG.,
SUM.), gather all the related entries and pass them over to
step 3.

3 Build condition clause: Input all the C. prefixed entries as well as
the E. prefixed entries passed from the previous step.

(a) Convert all built-in functions for transition values and aggre­
gate operators into SQL3 format. For instance, OLDCvar)
and SUM. _var are converted into OLD. name and SUM (name)
respectively, where name = colname Cvar).

(b) Fill P. command in the table name column (i.e., leftmost one)
of all the C. prefixed entries unless they already contain P.
commands. This will result in creating "SELECT tablel' * ,
... , tablen • * FROM tablel, ... , tablen " clause.

(c) Gather all entries into <input> list and call qbe2sql(<input»
algorithm. Let the returned SQL string as <condition-statement>.
For row-level triggers, create "WHEN EXISTS «condition-statement>),
clause. For statement-level triggers, create "WHEN EXISTS
(SELECT * FROM NEW_TABLE (or OLD_TABLE) WHERE «condition­
statement>))"

4 Build action clause: Input all the A. prefixed entries.

(a) Convert all built-in functions for transition values and aggre­
gate operators into SQL3 format like step 3.(a).

(b) Partition the entries into distinct groups. That is, gather
entries with identical variables being used in the same group.
Each group will have one data modification statement such as
INSERT, DELETE, or UPDATE. Preserve the order among
partitioned groups.

(c) For each group Gi, call qbe2sql(< Gi » algorithm accord­
ing to the order in step 4.(b). Let the resulting SQL string
for Gi as <action-statement>i. The contents in the state­
ment box are literally copied to <action-statement>i. Then,

TBE: A Graphical Interface for Writing Trigger Rules 381

final action statements for triggers would be "BEGIN ATOMIC
<action-statement> 1 ; ... , <action-statement>n; END".

5. TBE AS A UNIVERSAL TRIGGER RULE
FORMATION TOOL

At present, TBE supports only SQL3 triggers syntax. Although SQL3
is close to its final form, many database vendors are already shipping
their products with their own proprietary triggers syntax. When mul­
tiple databases are interconnected or integrating one database to an­
other, these diversities can introduce significant problems. To remedy
this problem, one can use TBE as a universal triggers construction tool.
The user can create trigger rules using TBE interface and saves them as
TBE's internal format. When there is a need to change one database to
another, the user can reset the target system (e.g., from Oracle to DB2)
to re-generate new trigger rules.

Ideally, we like to be able to add new types of database triggers in a
declarative fashion. That is, given a new triggers system, a user needs
only to describe what kind of syntax the triggers use. Then, TBE should
be able to generate the target trigger rules without further intervention
from the user. Two inputs to TBE are needed to add new database
triggers: trigger syntax rule and trigger composition rule. In a trigger
syntax rule, a detailed description of the syntactic aspect of the triggers
is encoded by the declarative language. In a trigger composition rule,
information as to how to compose the trigger rule (i.e., English sentence)
using the trigger syntax rule is specified. the behavior and output of TBE
conforms to the specifics defined in the meta rules of the selected target
trigger system. When a user chooses the target trigger system in the
interface, corresponding trigger syntax and composition rules are loaded
from the meta rule database into TBE system. The high-level overview
is shown in Figure 9.

5.1. TRIGGER SYNTAX RULE

TBE provides a declarative language to describe trigger syntax, whose
EBNF is shown below:

<Trigger-Syntax-Rule> ::= <event-rule> I <condition-rule> I <action-rule>

<event-rule> ::= 'event' 'has' <event-rule-entry> C,' <event-rule-entry»* ';'

<event-rule-entry> ::= <structure-operation> 'on' Crow' I 'attribute') I

<activation-time> I <granularity> I <evaluation-time>

<structure-operation> ::= CI.' I'D.' I 'U.' I 'RT.') 'as' <value>

<activation-time> ::= CBFR.' I 'AFT.' I 'ISTD.') 'as' <value>

<granularity> ::= CR.' I '5.') 'as' <value>

382 VISUAL DATABASE SYSTEMS

TBE Input

Meta Rules

~
TBE System

f-----.-------,----j
SQL310raclei ...

Trigger Rule

Figure 9 The architecture of TBE as a universal triggers construction tool.

<value> ::= <identifier> I ' <identifier> ' I 'nuli'I 'true'

<condition-rule> ::= 'condition' 'has' <condition-rule-entry> (',' <condition-rule-entry»* ';'

<condition-rule-entry> ::= <condition-role> I <condition-context>

<condition-role> ::= 'role' 'as' ('mandatory' I 'optional')

<condition-context> ::= 'context' 'as'

'(' ('NEW I 'OLD I 'NEW_TABLE I 'OLD_TABLE) 'as' <value> ')'

<action-rule> ::= 'action' 'has' <action-rule-entry> (',' <action-rule-entry»* ';'

<action-rule-entry> ::= <structure-operation> I <evaluation-time>

<evaluation-time> ::= ('DFR.' I 'IMM.' I 'DTC.') 'as' <value>

Although the detailed discussion of the language constructs is be­
yond the scope of this paper, the essence of the language has the form
"command as value" , meaning the trigger feature command is supported
and represented by the keyword value. For instance, a clause NEW_TABLE
as INSERTED for Starburst system would mean that "Star burst supports
statement-level triggering and uses the keyword INSERTED to access tran­
sition values" .

Example 8: SQL3 trigger syntax can be described as follows:

event has (

) ;

I. as INSERT on row, D. as DELETE on row, U. as UPDATE on attribute,
BFR. as BEFORE, AFT. as AFTER, R. as ROW, S. as STATEMENT

condition has (
role as optional,
transition as (NEW as NEW, OLD as OLD,

NEW_TABLE as NEW_TABLE, OLD_TABLE as OLD_TABLE)
) ;

action has (
I. as INSERT, D. as DELETE, U. as UPDATE

) ;

TBE: A Graphical Interface for Writing Trigger Rules 383

The interpretation of this meta rule should be self-describing. For in­
stance, the fact the there is no clause S. as ... implies that SQL3
triggers do not support event monitoring on the selection operation.
In addition, the clause T. as STATEMENT implies that SQL3 triggers
support table-level event monitoring using the keyword 'FOR EACH
STATEMENT'.

The partial comparison of the trigger syntax of SQL3, Starburst, Post­
gres, Oracle and DB2 system is shown in Table 1. Using the language
constructs defined above, these syntax can be easily encoded into the
trigger syntax rule. Note that our language is limited to the triggers
based on ECA and relational data model.

TBE SQL3 Starburst Postgres Oracle DB2

l. INSERT INSERTED INSERT INSERT INSERT
D. DELETE DELETED DELETE DELETE DELETE
U. UPDATE UPDATED UPDATE UPDATE UPDATE

RT. N/A N/A RETRIEVE N/A N/A
BFR. BEFORE N/A NjA BEFORE BEFORE
AFT. AFTER true true AFTER AFTER

ISTD. N/A N/A INSTEAD N/A N/A
R. ROW N/A TUPLE ROW ROW
S. STATEMENT true N/A true STATEMENT

NEW NEW N/A NEW NEW NEW
OLD OLD N/A CURRENT OLD OLD

NEW_TABLE NEW_TABLE INSERTED, N/A N/A NEW_TABLE
NEW-UPDATED

OLD_TABLE OLD_TABLE DELETED, N/A N/A OLD_TABLE
OLD-UPDATED

Table 1 Syntax comparison of five triggers using the trigger syntax rule. The leftmost
column contains TBE commands while other columns contain equivalent keywords of
the corresponding trigger system. "N/ A" means the feature is not supported and
"true" means the feature is supported by default.

5.2. TRIGGER COMPOSITION RULE
After the syntax is encoded, TBE still needs information on how to

compose English sentences for trigger rules. This logic is specified in the
trigger composition rule. In a trigger composition rule, a macro variable
is surrounded by the $ sign and substituted with actual values during
rule generation time.

Example 9: The following is a SQL3 trigger composition rule:

CREATE TRIGGER $trigger-name$
$activation-time$ $structure-operation$ ON $table$
FOR EACH $granularity$
WHEN $condition-statement$
BEGIN ATOMIC

$action-statement$

384 VISUAL DATABASE SYSTEMS

END

In rule generation time, for instance, variable $activation-time$ is re­
placed with value either BEFORE or AFTER since those two are only
valid values according to the trigger syntax rule in Example 8. In ad­
dition, variables $condition-statement$ and $action-statement$ are re­
placed with statements generated by the translation algorithm in Sec­
tion 4.2.

6. RELATED WORK
Past active database research has focused on active database rule lan­

guages (Agrawal and Gehani, 1989), rule execution semantics (Cochrane
et al., 1996), or rule management and system architecture issues (Simon
and Kotz-Dittrich, 1995). In addition, research on visual querying has
been done in traditional database research (Embley, 1989),(Zloof, 1977).
To a greater or lesser extent, all these research focused on devising novel
visual querying schemes to replace data retrieval aspects of SQL lan­
guage. Although some have considered data definition aspects (Collet
and BruneI, 1992) or manipulation aspects, none have extensively con­
sidered the trigger aspects of SQL, especially from the user interface
point of view.

Other work (e.g., IF02 (Teisseire et al., 1994), IDEA (Ceri et al.,
1996) have attempted to build graphical triggers description tools, too.
Using IF02 , one can describe how different objects interact through
events, thus giving priority to an overview of the system. Argonaut
from the IDEA project (Ceri et al., 1996) focused on the automatic gen­
eration of active rules that correct integrity violation based on declara­
tive integrity constraint specification and active rules that incrementally
maintain materialized views based on view definition. TBE, on the other
hand, tries to help users directly design active rules with minimal learn­
ing.

Other than QBE skeleton tables, forms have been popular building
blocks for visual querying mechanism as well. For instance, Embley,
1989) proposes the NFQL as a communication language between humans
and database systems. It uses forms in a strictly nonprocedural manner
to represent query. Other work using forms focused on the querying
aspect of the visual interface (Collet and BruneI, 1992). To the best of
our knowledge, the only work that is directly comparable to ours is RBE
(Chang and Chen, 1997). TBE is different from RBE in the following
aspects:

• Since TBE is designed with SQL3 triggers in mind, it is capable
of creating all the complex SQL3 trigger rules. Since RBE's capa-

TBE: A Graphical Interface for Writing Trigger Rules 385

bility is limited to OPS5-style production rules, it cannot express
the subtle difference of the trigger activation time nor granularity.

• The implementation of RBE is tightly coupled with the underlying
rule system and database so that it cannot easily support multiple
heterogeneous database triggers. Since TBE implementation is a
thin layer utilizing a translation from a visual representation to
the underlying triggers, it is loosely coupled with the database.

7. CONCLUSION
In this paper, we presented the design and implementation of TBE, a

visual trigger rule specification interface. QBE was extended to handle
features specific to ECA trigger rules. TBEextends the visual querying
mechanism from QBE and applies it to triggers construction application.
Examples to demonstrate SQL3-based trigger rule generation procedure
as well as the TBE to SQL3 trigger translation algorithm were given.
Extensions to make TBE a universal trigger rule interface was also dis­
cussed. For a trigger system s, we can declaratively specify the syntax
mapping between TBE and s, so that we can use TBE not only as a trig­
ger rule formation tool, but also a universal intermediary for translations
between supported systems.

References

Agrawal, R. and Gehani, N. (1989) Ode (Object Database and Environ­
ment): The Language and the Data Model, Proc. SIGMOD.

Codd, E. F. (1972) Relational Completeness of Data Base Languages,
Data Base Systems, Courant Computer Symposia Series, Prentice­
Hall, 6:65-98.

Collet, C. and BruneI, E. (1992) Definition and Manipulation of Forms
with F02, Proc. IFIP Visual Database Systems.

Chang, Y.-I. and Chen, F.-L. (1997) RBE: A Rule-by-example Action
Database System, Software - Practice and Experience, 27(4):365-394.

Ceri, S., et al (1996) Active Rule Management in Chimera, In J. Widom
and S. Ceri (ed.) Active Database Systems: Triggers and Rules for
Active Database Processing, Morgan Kaufmann.

Cochrane, R., Pirahesh, H. and Mattos, N. (1996) Integrating Triggers
and Declarative Constraints in SQL Database Systems, Proc. VLDB.

Embley, D. W. (1989) NFQL: The Natural Forms Query Language, ACM
TODS, 14(2):168-211.

386 VISUAL DATABASE SYSTEMS

Embury, S. M. and Gray, P. M. D. (1998) Database Internal Appli­
cations, In N. W. Paton (ed.), Active Rules In Database Systems,
Springer-Verlag.

Gatziu, S. and Dittrich, K. R. (1998) SAMOS, In N. W. Paton (ed.),
Active Rules In Database Systems, Springer-Verlag.

Lee, D., Mao, W. and Chu, W. W. (1999) TBE: Trigger-By-Example,
UCLA-CS-TR-990029, (http://www.cs.uc1a.edu;-dongwon/paper/).

McLeod, D. (1976) The Translation and Compatibility of SEQUEL and
Query by Example, Proc. Int'l Conf. Software Engineering, CA.

Melton, J. (ed.) (1999) (ANSI/ISO Working Draft) SQL/Foundation,
ANSI X3H2-99-079/WG3: YGJ-Oll , March.

Paton, N. W. (ed.) (1998) Active Rules in Database Systems, Springer­
Verlag.

Simon, E. and Kotz-Dittrich, A. (1995) Promises and Realities of Active
Database Systems, Proc. VLDB.

Teisseire, M., et al. (1994) Towards Event-Driven Modelling for Database
Design, Proc. VLDB.

Zloof, M. M. (1977) Query-by-Example: a data base language, IBM Sys­
tem J., 16(4):342-343.

Zaniolo, C., et al. (1997) Advanced Database Systems, Morgan Kauf­
mann.

Biographies

Dongwon Lee received his B.S. from Korea Univ. in 1993 and M.S. from Columbia
Univ. in 1995. He is currently a Ph.D student at UCLA. Prior to that, he has worked
at AT&T Bell Labs., Murray Hill, NJ (now AT&T Labs - Research) for two years.

Wenlei Mao is currently a Ph.D student in Computer Science Department of UCLA.
He received his M.S. in Computer Science from College of William and Mary in 1996,
and B.S. in Physics from Peking Univ. in 1992. His research interests include active
and temporal databases.

Henry Chiu is a recent graduate from UCLA with a B.S. in Computer Science
and Engineering, now entering the M.S. program. His interests include developing
graphical interfaces and tools.

Wesley W. Chu is a professor and the past chairman (1988-1991) of the Computer
Science Department at the University of California, Los Angeles. His current research
interests are in the area of intelligent information systems and medical information
systems. Dr. Chu is a Fellow of IEEE and the associate editor for the J. of VLDB
and J. of Data and Knowledge Engineering.

