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Abstract: Conventional mathematical models for ecological processes are often complex 
and restricted in their predictive capability through the non-linear and non­
gaussian properties of the input data. In this paper we discuss the capability of 
an artificial neural network (ANN) model to predict the colonisation potential 
of New Zealand fur seals (Arctocephalus forsteri) around South Island, New 
Zealand. We used the distribution of food sources, sea configuration and 
coastline terrain to predict the potential condition of pups for coastline 
segments around South Island. We suggest that ANNs can be used effectively 
in combination with geographic information systems for ecological 
modelling. 

1. INTRODUCTION 
Conventional empirical modelling procedures often assume linear 

relationships among ecological variables, when often this is clearly not the 
case (Hornik et al. 1989; Lek et al. 1996; Guegan et al. 1998). However, 
artificial neural networks (ANN) have been proposed as a modelling 
platform on which non-linear models can be developed. One of the 
advantages of neural networks is their ability to discover patterns in data that 
are not readily observed by human researchers and conventional statistical 
methods. However, although neural network models have been used in many 
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different research fields, few l have been applied to ecological applications. 
In this paper our main objective is to discuss the merits of a neural network 
linked to a geographic information system (GIS) for the analysis of spatial 
data in ecology. Specifically, we discuss an example of analysing spatial 
data in population ecology - predicting the colonisation potential of New 
Zealand fur seals (Arctacephalus forsteri) around South Island, New 
Zealand. 

2. MODELLING THE EFFECTS OF THE MARINE 
ENVIRONMENT 

Though the quality of the marine habitat is assumed to be highly 
dependent on spatial and temporal changes to the marine environment, the 
precise nature of this dependency is difficult to determine. However because 
of their position atop the marine food web, there should be some sort of 
measurable functional relationship between the biological parameters of 
higher predators and the available marine resources. The parameters 
associated with fur seals at breeding colonies may be useful in this respect, 
because the female seals are limited in the distance that they are able to 
forage for food from the breeding site. Thus the measurable condition of 
seals at the colony should be particularly sensitive to fluctuations in local 
prey availability. 

In this study we examine the geographic variation in both the marine and 
terrestrial environment in the range of New Zealand fur seals (Arctacephalus 
farsteri) in a working model that can be used to compare the spatial 
configuration of marine resources (e.g., Wanless et al. 1997) with the 
geographic variation in pup condition. Using neural networks and 
comparative parametric models, we constructed indices of coastline 
suitability for colonisation. The derived information is potentially important 
not only because it can provide insight into the poorly-understood processes 
of marine mammal colonisation, but also because it can enable management 
authorities to identify potential areas of conflict between humans (i.e., 
usually commercial fisheries) and the expanding fur seal population. 

The goal of this investigation is to model the effects of the local 
environment on the quality of New Zealand fur breeding sites. To construct 
such a model some reliable measure that indicates the quality of a breeding 
site is needed. Since New Zealand fur seals are in the process of re­
colonising areas depleted by past human exploitation, with different colonies 
in different stages of this re-colonisation, the measurement of pup 

I For example, (Mastrorillo et al. 1997; Baran et al. 1996; Lek et al. 1996; Scardi 1996; Chon 
et al. 1996; Schreer et al. 1998). 
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production is not considered to be a particularly useful measure of breeding 
site quality here. It would seem that measuring the average condition and/or 
growth rate of the fur seal pups at a colony would serve as a better indicator. 
There are some difficulties, however, associated with conducting 
measurements of pup growth rates, so measuring the pup condition was 
considered to be more practical for this study. 

3. NEW ZEALAND FUR SEAL COLONIES 

The expected factors that affect seal colonisation are 
• The proximity and availability of food sources 
• Oceanic currents, along with the distance and configuration of the 

continental shelf 
• The configuration of the local terrestrial coastline environment (which 

might provide suitable forms of shelter). 

3.1 Model parameters 

As a consequence, there were four types of data used for this 
investigation: (1) fur seal pup condition; (2) food sources; (3) sea 
configuration; and (4) coastline terrain. The goal was to examine the manner 
in which food sources and the physical attributes of the sea and coastline 
affect the condition of the fur seal pups. 

Fur seal pup condition. 20 breeding colonies of New Zealand fur 
seals around the South Island were investigated during the period 1996-98. 
More than 6,000 seal pups from the twenty colonies were caught and 
measured with respect to length (to the nearest 0.1 m) and weight (to the 
nearest 0.1 kg) (Laws 1993). A condition index (eI) for seal was obtained 
by calculating the logistic regression of pup mass against the length and then 
calculating the ratio of the observed mass to the predicted value. Pup 
condition per colony was summarised by calculating the range of the pup 
condition index and dividing the range of all observed pups into distinct 
classes (the group divisions were identified where there was a clear 
separation between distinct clusters of performance values). The classes are 
shown in Table 1. 
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Table 1. Colony performance class ranges for 1996-98. 

Year Pup condition range Class No. Colonies 
1996 0.9628 - 1.0346 0 5 

1.0727 - 1.0983 1 2 
1.1342 -1.1471 2 3 
1.1945 - 1.2621 3 5 

1997 0.9776 - 1.0532 0 8 
1.0837 - 1.1241 1 7 
1.1401-1.1713 2 4 

1998 0.8425 - 0.8846 0 6 
0.9034 - 0.9211 1 8 
0.9295 - 1.0126 2 5 

Food sources. Inshore trawl survey data (1979-97) for eight principle 
fur seal prey species were obtained from the New Zealand National Institute 
of Water and Atmospheric Research (NIW A) so that local availability of 
these species for each site could be estimated. The species were arrow squid 
(Nototodarus sloanii), New Zealand octopus (Octopus maorum), barracouta 
(Thyrsites atun), hoki (Macruronus novaezelandiae), red cod (Pseudophycis 
bachus), and jack mackerel (Trachurus novaezelandiae, T. murphyi, T. 
declivis). 

Sea configuration. Fur seals forage over a bottom depth of 100 - 300 m, 
so the information about the local configuration of the continental slope and 
water depth was covered obtaining digitised data on the position of the 250, 
500, 750, 1000, and 1250m isobaths for New Zealand waters (NIWA). 

Coastline terrain. The terrain at areas where fur seals come ashore to 
breed is assumed to have an impact on their living conditions, so a broad 
terrestrial habitat classification was obtained from The New Zealand Atlas of 
Coastal Resources (Tortell1981). 

3.2 Fur seal colony models 

The fur seal colonies were modelled with respect to how input 
parameters concerning food sources, sea configuration, and coastline terrain 
affected the mean pup condition of the colony. The neural network 
architecture was that of a feedforward, multilayer perceptron, consisting of 
an input layer of nodes (one for each input parameter), a single "hidden" 
layer, and an output layer (one node for each output class). Neural network 
modelling was performed in three basic steps: 

1. Train the neural network by using the measured pup colony output 
class information as the training data. (The neural network training 
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employed a node connection-value penalty function, which resulted in 
the pruning of some node connections and hidden-layer nodes.) 

2. Discretise the hidden-layer node activation values by means of a 
clusterisation method. (Note that the output values had already been 
discretised by identifying the pup condition output class clusters.) 

3. Generate rules from the transfer of the discrete values to the hidden 
layer and to the output layer. 

The clusterisation procedure performed in step 2 above is based on the 
n2 statistic and is described in (Purvis et al. 1997). When employed in 
connection with the hidden-layer node activation values, it provides 
boundaries of the subintervals of these values. If there are N activation 
values, then there are N+] subintervals: -1 < ml < m:z < ... < mN-1 < 1. A 
node activation (assuming that tanh is the node activation function) falls into 
the subinterval [mj_J, mj] if its weighted inputs satisfy the condition: 

tanh-l(mj_l) < weighted inputs < tanh-I(m) 

From these relationships it is possible to obtain rules, in the form of 
constraint equations, from the input layer to the hidden-layer values. 

For the second-level rules (corresponding to rules from the hidden-layer 
to the output-layer values), we employed the X2R approach (Liu & Tan 
1995): 
- Generate a rule to cover the most frequently occurring pattern. This is 

the shortest rule that can differentiate the pattern from patterns of other 
output classes. Then remove this pattern from further consideration. 

- Repeat the previous step until all patterns are accounted for. 
- The generated rules are then grouped in terms of their class labels. 
- For each rule cluster remove redundant rules and delete more specific 

rules in favour of more general rules for the cluster. 
With the two sets of rules obtained, it is sometimes useful to combine them 
into a single set of rules (from input values to output values). 

4. MODELLING RESULTS 

Separate neural network models were trained for each of the years 1996, 
1997, and 1998. The training results for these models are shown in Table 2. 
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Table 2. Neural network architectures and training performance. 
Year Input Hidden Output Training 

Nodes nodes Nodes Accuracy 

1996 17 4 4 87% 

1997 17 10 4 100% 

1998 17 10 4 79% 

After training, some of the hidden nodes were pruned. For example for 
the 1997 data, one of the hidden nodes was pruned, leaving three hidden 
units. The hidden-layer subintervals generated by the clusterisation 
procedure for this network are shown in Table 3. 

Table 3. 1997 Hidden-layer subintervals generated by clusterisation. 
Hidden Unit Subintervals 

Al [-1 to 0.196] and [0.196 to 1] 
A2 [-1 to -0.32] and [-0.32 to 1] 
A3 [-1 to 0.025], [0.025 to 0.034] and [0.034 to 1] 

Generated inference rules associated with the above (1997) hidden-layer 
subintervals to the output layer were as follows: 

IF Al 0.196 and A2 -0.320 
THEN performance class 1 

ElSE IF A2 < -0.320 AND 0.025 < A3 0.034 
THEN performance class 2 

ELSE (DEFAOLT) performance class = 0 
The Generated rules associated with input-layer to the hidden-layer (in 
the form of constraint equations) were 

Al 0.9175*SQO - 0.3639*OCT - 0.9706*BAR + 
4.6167*B250 - 4.8612*BI000 

A2 -0. 4372*OCT 
A3 1.2198*HOK 

(where SQU = arrow squid, OCT = octupus, BAR = barracouta, BXXX = 

position of the XXXm isobath, and HOK = hoki). 

Combining the two sets of 1997 rules yields the following composite 1997 
rules: 

IF (0.9175*SQU - 0.3639*OCT - 0.9706*8AR + 4.6167*8250 -
4.8612*81000) 0.196 

AND (-0.4372*OCT) -0.320 
THEN performance class = 1 

ELSE IF (-0.4372*OCT) < -0.320 



AND 0.025 < (l.2198*HOK) 0.034 
THEN performance class = 2 

ELSE (DEFAULT) performance class = 0 
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The performance of these inference rules when presented with the 1997 data 
is shown in Table 4. 

Table 4. 1997 inference rule performance. 
Class Correct Patterns Incorrect Patterns %Correct 

0 8 0 100.0 
1 5 2 71.4 
2 4 0 100.0 

Total 17 2 89.5 

Similar types of rules were derived for the 1996 and 1998 data. However 
the specific dependencies on food source parameters were not consistent 
across the three years. The performance of these rule sets is shown in Tables 
5 and 6. 

Table 5. 1996 inference rule performance. 
Class Correct Patterns Incorrect Patterns %Correct 

0 5 0 100.0 
1 2 0 100.0 
2 0 3 0.0 
3 5 0 100.0 

Total 12 3 80.0 

Table 6 1998 inference rule performance 
Class Correct Patterns Incorrect Patterns %Correct 

0 3 3 50.0 
1 7 1 87.5 
2 4 1 80.0 

Total 14 5 73.7 

5. DISCUSSION AND CONCLUSIONS 

The neural network model described in this paper was also compared 
with a conventional parametric statistical model (polytomous logistic 
regression - PLR) that was applied to the same data. Here all the coastal 
areas around the New Zealand South Island (the majority of which do not 
have any seal colonies) were given as input, and the two models were used 
to predict the distribution of pup condition classes for each of these sites. 
One would expect that the models would identify a significant overlap 
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between the sites that already have fur seal colonies and the sites that are 
predicted to have a high proportion of 'healthy' seal pups. Such was the 
case with the neural network model, but the PLR model did not show this 
expected overlap. Thus, on the basis of this comparison, the neural network 
model appeared to yield results more consistent with physical evidence than 
the PLR model did. 

There are additional advantages associated with neural network models. 
Neural network modelling does not require prior specification of data 
distribution characteristics and can have advantages (when compared with 
conventional parametric modelling techniques) in situations where the 
underlying causal links are not fully understood. Moreover, the existence of 
inference rule extraction techniques make it possible to use data mining 
techniques to derive knowledge from spatial data sets. 

Despite reasonably good inference rule performance, however, the rules 
derived in this study did not yield consistent relationships with respect to 
dependency on food sources over the three years. These results could be 
affected by the facts that there was a weak La Nina condition in 1996 and a 
strong El Nino condition in 1998 and that there was no available data that 
covered possible variations in prey availability over the three years. These 
effects could lead to modifications of female foraging behaviour in response 
to relative prey availability that have not been modelled. The real test of 
these considerations will come with further colonisation information of new 
fur seal colonies as the population continues to expand and spread. 
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