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Abstract: The paper addresses the problem of how to classify and diagnose the state of 
health of a river from the composition of its biological community. It is 
claimed that experts use two complex mental processes when interpreting such 
data, knowledge-based reasoning and pattern recognition. It is argued that 
existing classification methods are inadequate and that the application of 
advanced computer-based techniques is vital to the realisation of the full 
potential of biological monitoring. The paper then concentrates on a pattern 
recognition approach and demonstrates how Self Organising Maps (SOM), a 
type of unsupervised-learning neural network, can be used to classify and 
diagnose river quality. A brief introduction is given to the theory of SOMs 
and the interpretation of their output, as expressed in feature maps and class 
templates. SOMs are developed using two different methods of accounting for 
the confounding effects of environmental factors, and their relative 
performances are compared. Some improvements to the SOM architecture 
and functionality that are currently being implemented are briefly described, 
together with plans to use information theory for the assessment of 
performance. Finally, it is concluded that the methods of classification / 
diagnosis described in the paper have considerable potential not only in river 
quality monitoring, but also in other environmental fields. 
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1. INTRODUCTION 

1.1 River Quality Monitoring 

River quality was traditionally monitored by chemical analysis, but 
increasingly this has been supplemented by biological monitoring. The 
reasons are twofold: a) there are now so many different chemicals polluting 
our rivers that chemical monitoring alone is too onerous; and b) chemical 
data only relate to the state of the river at the time the sample was taken, 
whereas biological data relate to its state over preceding weeks. Thus, 
polluters who discharge at midnight may escape detection by chemical 
monitoring but not by biological monitoring, because the flora and fauna of 
the aquatic community act as witnesses of their crimes. However, biological 
data have to be interpreted into river quality terms. Existing data 
interpretation systems use relatively simple algorithms based upon numeric 
averages or look-up. The current system used in the UK is the General 
Quality Assessment (GQA) classification, which is based on a development 
of the Biological Monitoring Working Party (BMWP) system that takes 
account of site characteristics using a system called RIVPACS (Moss et at., 
1987). A comprehensive review of various systems used in Europe was 
given by DePauw and Hawkes (1993). None of these systems is capable of 
representing the complex non-linear relationships between composition of 
the aquatic community and river quality, and all fail to model some of the 
essential characteristics of both the data and its interpretation (Walley, 1993, 
1994 ; Walley and Hawkes, 1996, 1997; Walley and Fontama, 2000). For 
example, none of the existing systems takes account of the fact that the 
absence of some biota provides valuable information, or that different levels 
of abundance indicate different water qualities. Thus, the development of 
computer-based systems capable of interpreting the complex relationships 
involved is central to the realisation of the full potential of biological 
monitoring. This paper demonstrates one way in which this might be 
achieved. 

1.2 Confounding Factors 

Unfortunately, river quality is not the only factor affecting community 
composition. Seasonal variations and environmental factors like altitude, 
current velocity and the nature of the river bed also affect it. Consequently, 
these factors confound attempts to interpret community data into river 
quality terms, unless they are properly accounted for in the interpretation 
process. In addition, the effects of spatial isolation and extreme hydrological 
events (i.e. severe flooding and prolonged drought) are important factors in 
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some regions, but III the United Kingdom they are only of secondary 
importance. 

1.3 Classification and Diagnosis 

In the past, the main reason for routine biomonitoring was to provide data 
for the classification of river quality into one of n quality bands for the 
purpose of national audits. However, improvements in data collection and 
interpretation, together with the need to maximise the value gained from 
recorded data, has resulted in a drive to develop diagnostic systems. That is, 
systems capable of diagnosing the state of health of a river in terms of 
specific pollutants or types of pollutant. Such systems would enable 
chemical sampling and analytical effort to be directed more effectively. The 
overall result would be a more efficient and effective means of protecting 
our rivers, and added value from existing data collection programmes. 

1.4 An Artificial Intelligence Approach 

A new approach to the interpretation of biological data, based upon 
Artificial Intelligence (AI), has been under development in the United 
Kingdom since 1989 (Walley, 1994; Walley and Fontama, 2000). Early 
work with river ecologist Dr. H. A. Hawkes concluded that experts interpret 
data using two complementary mental processes. They use their scientific 
knowledge to draw a reasoned interpretation and their experience to 
recognise patterns that they have seen before. They then subconsciously 
combine these two approaches to draw a final conclusion. Walley and 
Fontama (2000) showed that inherent uncertainty in the meaning of the data 
was a key characteristic of the interpretation task, and that it has important 
implications for the selection of modelling techniques. They argued that 
Bayesian methods provide the best means of modelling the reasoning 
approach, and that a form of neural network, called a Self-Organising Map 
(SOM), is capable of modelling the pattern recognition approach. Since 
1995 this work has been carried out under contract to the Environment 
Agency for England and Wales, and the systems presented here were 
developed as part of a National R&D Project that investigated potential 
application of AI in river quality monitoring (Walley et ai., 1998). 

This paper describes two different approaches that were used to develop 
SOMs for the classification and diagnosis of river quality. The first 
approach accounted for the environmental factors through the definition of 
five site types and the development of a separate SOM for each type. In this 
case, each SOM had a lOx 1 0 output array and its input consisted of 
biological data only. The second approach accounted for the environmental 
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factors by including them alongside the biological data in the input to a 
single SOM with a 20x20 output array. The effects of seasonal variation 
were eliminated in both cases through the use of combined spring and 
autumn samples. 

2. SELF-ORGANISING MAPS 

SOMs are trained using unsupervised learning. That is, they learn to 
identify and categorise patterns in data without knowing what the patterns 
represent. This is very useful in cases where the available data do not 
included details of their correct interpretation (e.g. a list of symptoms 
without their cause). This is the case in biomonitoring, because 
interpretations produced to date are either incomplete or unreliable. 

A trained SOM allocates each input to a pattern category represented by 
one of the bins in the output array. However, these cannot be used for 
classification or diagnosis until the cases allocated to each output category 
have been examined and labelled by experts to indicate the specific 
condition they represent. The process is similar to a baby learning to 
recognise the faces of family members and then later learning the names to 
associate with them. 

2.1 Structure and Function 

The output of a SOM takes the form of a two-dimensional array of nodes, 
as shown in Figure 1. Each output node (j) is fully connected to the input 
vector (x], X2, ... Xio ... xn), and represents a particular pattern in the data, as 
defined by the set of weights on the links connecting the node to the input 
vector. That is, the weight vector (Wlj, W2j, ... wij, ... w,y) is the exemplar 
pattern represented by node j. These patterns are determined by the training 
algorithm during the learning phase. Initially, all weights are randomised, so 
each output node represents an arbitrary pattern. Representative input data 
are then presented to the network and compared to the exemplar pattern of 
each output node to determine which gives the best match. The similarity 
metric most commonly used is the Euclidean distance: 

(1) 
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Input Vector 

Figure 1. Topology of a Self-Organising Map with a 5x5 output array. Note that all output 
nodes are connected to the input vector, not just node} as shown. 

The exemplar pattern of the winning node, and all nodes in its 
'neighbourhood', are then modified to make them slightly closer matches to 
the input pattern. The modified weights, wij, are derived as follows: 

(2) 

where: ul = learning-rate coefficient and Uz = neighbourhood coefficient. 

Both coefficients are less than or equal to unity and decay with training 
time. In addition, the neighbourhood coefficient decreases with distance 
from the winning node, thus the node's distant neighbours are modified less 
than its close neighbours. The neighbourhood coefficient is typically 
defined by a bell-shaped function with its maximum value (i.e. unity) 
centred on the winning node. Initially the bell is very wide, covering a large 
neighbourhood, but as training time proceeds its diameter gradually shrinks, 
thus confining the neighbourhood to an ever tightening circle around the 
winning node. Hence, equation (2) has the effect of gradually reducing both 
the size and spatial extent of the modifications as training proceeds. The 
final result is that neighbouring nodes represent very similar patterns and 
well-separated nodes represent very different ones. Readers seeking a more 
detailed introduction to the use of neural networks for pattern recognition are 
referred to the texts by Haykin (1994), Bishop (1995) and Kohonen (1997). 
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2.2 Feature Maps 

Any element of the exemplar patterns (e.g. W2j) can be plotted on the 
output array as a contoured map, commonly referred to as a feature map. If 
the input variable (or attribute) corresponding to this element is an important 
discriminating factor the feature map will be well defined, otherwise it will 
appear more like random noise. Figure 2 shows the feature maps of two 
input variables to a river quality SOM having a lOx 10 output array 
(SOM10/2 described later). The maps show the abundance levels of two 
aquatic families, Asellidae (the water hog louse) and Heptageniidae (a 
mayfly). Each grid intersection represents an output category (or bin) and the 
contours show the variation in abundance level across the array. Note that 
Heptageniidae, which is indicative of good quality waters, tends to occupy a 
different part of the array than Asellidae, which is more indicative of poor 
quality waters. Both are key discriminators and therefore produce well­
defmed feature maps. 
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Figure 2. Feature maps for two of the input variables to SOM I 0/2. The vertical and horizontal 
scales merely serve to provide the 'x' and 'y' co-ordinates of the 100 'classification bins' 
located at the grid intersections. 

3. THE DATA 

The study was based on a validated database derived from the 1995 River 
Quality Survey of England and Wales. It consisted of biological and 
environmental data for 6038 monitoring sites covering all six GQA 
biological quality classes from 'a' (good) to 'f (bad). Table 1 shows the 
distribution of sites with respect to GQA class and site type. The definition 
of the site type is given later, but basically ranges from fast flowing upland 
rivers (type 1) to slow flowing lowland rivers (type 5). 
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Table 1. Distribution of the sites GQA class. 
GGA Class 

Site Type a b c d e f Total Percentage 
1 463 475 148 58 62 17 1223 20.3% 
2 387 341 203 123 125 30 1209 20.0% 
3 307 270 259 168 138 23 1165 19.3% 
4 357 304 336 161 73 19 1250 20.7% 
5 248 357 325 128 90 43 1191 19.7% 

Total 1762 1747 1271 638 488 132 6038 100% 
Percentage 29.2% 28.9% 21.0% 10.6% 8.1% 2.2% 100% 

The biological data consisted of spring and autumn samples of 
macroinvertebrates living in or on the river bed, and covered 76 BMWP 
families in all, each of which was recorded as either absent (0) or present in 
one of four abundance categories (i.e. 1 = one to nine individuals present, 2 
= 10 to 99, 3 = 100 to 999 and 4 = over 1000). For the purpose of this study, 
the spring and autumn samples were combined to give a single 'combined 
sample' for the year as a whole. This was in keeping with the procedure used 
by the Environment Agency when deriving GQA quality classes. All sites 
had data on 13 environmental variables, namely: 

a) location (global X and Yeo-ordinates); 
b) altitude (m - above Ordnance datum); 
c) distance of site (km) downstream from its source; 
d) discharge category (on a 1 to 10 log-type scale); 
e) slope of river bed (m/km) between 50-metre contour lines; 
f) average width (m) and average depth (em) of the river; 
g) nature of the river bed expressed as average percentages of the plan 

area covered by boulders, pebbles, sand and silt; and 
h) average alkalinity (mg/l of CaC03). 

4. SITE-SPECIFIC SOM OF RIVER QUALITY 

4.1 Site Types 

Initially, it was felt that the best way of accounting for environmental 
factors would be to divide the data into several subsets based upon the 
environmental characteristics ofthe sites, and to develop a separate SOM for 
each site type. Since each subset needed to contain sufficient sites to make 
the development of separate systems viable, the data was divide into five 
approximately equal subsets based upon the site's predicted 'unpolluted' 
average score per taxon (ASPT). The 'unpolluted' ASPT provides an 
indication of the type of community supported by the site in the absence of 
pollution. The method used to predict 'unpolluted' ASPT was similar to that 
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used by Walley and Fontama (1998). Full details of the method used and the 
geographic distributions of site types are given in Walley et al., (1998). 

The key physical characteristics that determined site type were found to 
be alkalinity, altitude and the percentage of silt in the substrate of the river 
(Walley and Fontama, 1998). The variations of mean alkalinity, altitude and 
percentage silt across the five site types are given in Table 2. 

Table 2. Mean values of alkalinity, altitude and percentage silt by site type. 
Environmental Site Type (i) 
Variable I 2 3 4 5 
Alkalinity 34.3 95.7 167.3 206.7 221.2 
Altitude 121.3 73.6 57.9 45.9 24.6 
Percentage Silt 3.7 7.7 12.5 22.5 56.6 

The five site types represent a transition from upland rivers and streams 
having low alkalinity and a substrate consisting mainly of boulders and 
pebbles (Type 1) to lowland rivers and streams having high alkalinity and a 
substrate consisting mainly of sand and silt, but especially silt (Type 5). The 
former are typically fast flowing 'riffles', whereas the latter are typically 
sluggish main river channels or 'pools' on smaller rivers I streams. 

4.2 SOMIO/i 

Five different networks, one for each site type (i), were trained over 
60,000 cycles using the combined spring and autumn biological data (i.e. 
abundance levels of the 76 BMWP families) as the input vector. A lOx 10 
output array was used in each case, thus giving 100 pattern categories to 
each site type for the classification of the inputs. Once trained, the networks 
were used to allocate each of the 6038 sites to one of the 100 output 
categories of the SOM representing its particular site type. The SOM 
algorithm ensured that sites allocated to neighbouring bins were similar in 
terms of community composition. Thus, attributes closely related to 
community composition (e.g. river quality, alkalinity or the abundance of a 
given family) varied in a relatively smooth and continuous way across each 
10xl0 output array, as illustrated by the two examples of SOM 1 0/2 feature 
maps shown in Figure 2. 

The standard deviations of each attribute within each bin were derived to 
provide a measure of the relative performance of the five site-specific 
SOMs. The average standard deviation of each attribute over the 100 output 
bins was then derived for each site type. This value represented the noise 
between the attribute's feature map and the samples allocated to the bins. 
Thus, the lower the noise the better the fit between the model and the data 
with respect to the particular attribute. Table 3 shows the noise levels on the 
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SOMI0li feature maps for 11 key attributes (i.e. the three key site-type 
variables - alkalinity, altitude and silt - and the top eight indicator families). 
Also given is the average noise level over the output arrays of all five site 
types. 

The large variations in the average noise levels of alkalinity, altitude and 
percentage silt with respect to site type were entirely in keeping with the 
definition of site type. Mean alkalinity and percentage silt increase from site 
type 1 to site type 5, whereas altitude decreases from site type 1 to site type 
5. The variation in noise level simply reflects the fact that the higher means 
were associated with higher standard deviations. 

Table 3. Standard deviations of 11 key attributes averaged over the 100 output nodes of the 
SOM 10li feature maps for each of the five site trEes (i = 1 to 5). 

Site Type (i) SOMIO 
Attribute I 2 3 4 5 Avg 
En vironmental 
Alkalinity 18.58 33.60 39.06 42.47 50.98 36.94 
Altitude 58.48 40.37 31.89 26.71 19.20 35.33 
Percentage Silt 3.78 6.88 10.92 16.89 25.55 12.80 
Biological 
Leptoceridae 0.52 0.50 0.47 0.49 0.46 0.49 
Gammaridae 0.63 0.71 0.65 0.63 0.58 0.64 
Elmidae 0.44 0.46 0.47 0.54 0.48 0.47 
Baetidae 0.49 0.54 0.58 0.60 0.61 0.56 
Caenidae 0.48 0.54 0.48 0.52 0.46 0.49 
Hydrobiidae 0.61 0.74 0.70 0.67 0.60 0.66 
Limnephilidae 0.54 0.53 0.57 0.57 0.54 0.55 
H rdroEsrchidae 0.49 0.56 0.57 0.58 0.47 0.53 

5. A GENERAL 80M OF RIVER QUALITY 

In view of the encouraging results from SOM 1 Oli, an attempt was made 
to develop a general SOM classifier of river quality using an input vector 
consisting of the combined biological and environmental data. It was felt 
that a SOM with a larger output array might be capable of identifying 
patterns in the combined data in a way that would obviate the need for prior 
classification of the sites into site types. Consequently a SOM with a 20x20 
output array (S0M20) was trained over 60,000 cycles using an input vector 
consisting of the abundance levels of the 76 BMWP and numeric values of 
the 13 environmental variables. 

The noise levels on the feature maps produced by SOMIO/i and SOM20 
for the 11 key attributes are compared in Table 4. The overall average ratio 
of noise levels between the two sets of data (i.e. 1.015) indicates that 
SOM20 was only marginally worse than SOMIO/i. Thus it was concluded 
that the single classifier, SOM20, achieved a similar level of performance to 
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the five site-specific classifiers that made up SOMI0Ii. An interesting 
feature of the results shown in Table 4 is the difference in relative 
importance of alkalinity and percentage silt between SOMI0li and SOM20. 
Alkalinity is the most important environmental factor in SOMI0Ii, because 
alkalinity was the primary factor in the prediction of ASPT, and hence the 
site type classifications (Walley et al., 1998; Walley and Fontama, 1998). 
However, in SOM20 the importance of silt was much increased at the 
expense of alkalinity. The ratios of 1.259 for alkalinity and 0.727 for 
percentage silt, indicate that SOM20 fits the silt data much better than 
SOMIO, and vice versa for the alkalinity data. 

Table 4. Average standard deviations across the SOMlO/i and SOM20 feature maps of II key 
attributes. The SOMIO values are the average across the five site types, as per Table 3. 

SOMIO/i SOM20 Ratio 
Attribute Avg.(SI) Avg.(S2) S2/S1 
Environmental 
Alkalinity 36.94 46.52 1.259 
Altitude 35.33 35.45 1.003 
Percentage Silt 12.803 9.307 0.727 
Biological 
Leptoceridae 0.489 0.498 1.018 
Gammaridae 0.640 0.634 0.99\ 
Elmidae 0.474 0.486 1.025 
Baetidae 0.564 0.573 1.016 
Caenidae 0.493 0.5\\ 1.036 
Hydrobiidae 0.663 0.692 1.044 
Lirnnephilidae 0.551 0.562 1.020 
Hydropsychidae 0.535 0.550 1.029 

Average 1.0\5 

The benefit of being able to classify the river quality of a site directly 
from its biological and environmental data, without first having to classifY 
its site type, was seen as a very useful feature of SOM20. 

6. INTERPRETING THE OUTPUT 

The output array of a SOM not only classifies input patterns to one of n 
bins, each representing different characteristic patterns in the data, but also 
arranges them so that neighbouring bins represent very similar patterns. The 
former is an essential part of classification and diagnosis, whereas the latter 
is an added benefit that permits effective visualisation of the data and 
possibly a better understanding of 'the underlying system. In fact, this 
produced an unexpected spin-off benefit in this study, since it was found that 
by comparing the feature maps of different attributes much could be learned 
about the envitonmental requirements of the different families. Thus the 
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feature maps were found to provide a valuable tool for use in basic 
biological research. Software (called SaM Viewer) was developed to 
facilitate the comparison of feature maps. This is now available on our home 
page (http://www.soc.staffs.ac.uklresearch/groups/cies/). 

However, classification and diagnosis can only be performed once the 
output bins have been labelled in terms of the conditions they represent. For 
a SaM with a large output array, like those in this study, the task oflabelling 
the bins is substantial and may require considerable input from experts in the 
particular domain. In the case of river quality, the pattern associated with 
each bin (i.e. its biological community and site characteristics) has to be 
interpreted into water quality terms. If the SaM is to be used for diagnosis, 
the specific pollutants or types of pollutant, if any, that are responsible for a 
particular pattern have to be identified and its bin labelled accordingly. The 
labelling of a SaM for classification purposes alone is far less demanding, 
since it only requires that the patterns are allocated to one of a relatively 
small number of quality classes (e.g. the UK uses six GQA quality classes). 

6.1 Use of feature maps and class templates 

The task of labelling the bins is made easier by the use of feature maps 
and class templates. Feature maps enable us to examine how each attribute 
(e.g. the occurrence of a given taxon) varies across the output array, whereas 
class templates provide a visual image of the pattern represented by each 
bin. Figure 3 shows partial class templates for three of the bins in the output 
array of SOMIO/2. The templates represent three very different river 
qualities. Template (a) indicates the presence of pollution sensitive creatures 
like Ephemeridae, Caenidae and Perlodidae and relatively few Asellidae, 
which tend to thrive in organically polluted waters. It represents bin (3, 5) 
and can be labelled "GQA class a - Unpolluted". Template (c) indicates an 
abundance of the families that are highly tolerant of organic pollution 
(Oligochaeta, Asellidae and Chironomidae), relatively few of the fairly 
tolerant families (Hydrobiidae, Glossiphoniidae, Gammaridae and Baetidae) 
and a total absence of the pollution sensitive families. It represents bin (10, 
3) and can be labelled "GQA class e - severe pollution, probably organic". 
Template (b) indicates a community that lies somewhere between those of 
templates (a) and (c). It represents bin (7, 4) which lies almost midway 
between bins (3, 5) and (10, 3), and may be labelled "GQA class c -
moderate pollution, probably organic". 
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Figure 3. Pattern templates for three of the bins in the output array of SOM I 0/2. In the 
interest of brevity only 16 of the 76 families are shown. The bins represented are: a) node 

(3,5); b) node (7,4) and c) node (10,3) in the output array shown in Figure 2. 

Although this level of pattern identification is adequate for the 
classification of river quality, much more detail is required if the system is to 
be used to diagnose the cause of any degradation of river quality. For this 
we need to identify patterns in the biological community that are 
characteristic of specific pollutants. This is clearly possible for moderately 
polluted conditions, because expert river ecologists are able to do so. 
However, there is little prospect of identifying the specific cause of severe 
pollution from biological data, because under these conditions, whatever the 
cause, little life remains on which to base a diagnosis. On the other hand, 
the diagnosis of severe pollution is not our prime objective. The majority of 
rivers are of good or moderate quality and the diagnosis of problems arising 
in these rivers is a major concern of river managers, and hence the prime 
objective of this work. 

The systems described above are capable of classifying river quality, but 
are not yet capable of diagnosing the causes of pollution. This aspect of the 
project, being a substantial task, has been postponed until after planned 
improvements to the function and architecture of the SOM have been made. 
These developments fonn the basis of National R&D Project E 1-056 of the 
Environment Agency, which is currently in progress. 
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7. CURRENT AND FUTURE DEVELOPMENTS 

7.1 Improvements to the SOM 

Two improvements to the SaM's architecture and functionality are 
planned. Firstly, the form of the output array is being extended to permit the 
use of a triangular grid in addition to the current rectangular one. This will 
permit much greater flexibility in the choice of output topology, allowing the 
use of triangles, hexagons, diamonds, stars as well as squares and rectangles. 
Thus an output topology which best suits the data will be more easily 
achieved with the new architecture, and in addition the triangular grid will 
allow neighbourhoods to be defined on a purely radial basis during the 
training phase. Secondly, a new similarity metric is being developed which 
permits greater emphasis to be placed upon the most discriminating variables 
and less on the least discriminating ones. The new similarity metric is based 
upon the Euclidean distance but the scale of each axis is modified to match 
the relative importance of the variable it represents, thus increasing the 
influence of important variables and reducing that of weak variables. Once 
these improvements have been implemented and tested, a new set of SOMs 
with improved output topologies will be trained. 

7.2 Adding The Diagnostic Capability 

In order to facilitate the labelling of the output bins in sufficient detail to 
make the SOMs useful diagnostic tools, additional data is being gathered on 
the pollutants and perceived environmental stresses that affected the 6038 
sites during the 1995 survey period. Firstly, the regional biologists who 
surveyed the rivers in 1995 are giving their subjective assessments of the 
pollutional and / or environmental stresses that affected the sites. These 
cover a wide range of stresses from sewage effluent to various agricultural 
and industrial pollutants, motorway run-off, engineering works, weed 
control and the effects of drought. Secondly, the chemical data held by the 
Environment Agency are being matched as closely as possible, on a site to 
site basis, so as to provide as much data as possible on the chemical nature 
of the sites prior to the taking of biological samples in 1995. With these data 
at hand, it will be possible to produce feature maps and class templates for 
the chemical and stresses data in addition to the biological and 
environmental input variables. This should enable a more precise 
identification to be made of the water quality condition represented by each 
output bin. Once this has been achieved the system will be tested under 
operational conditions by regional biologists. Final refinement of the labels 
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by experts, with the benefit of feedback from the field test, should then be a 
far less onerous task than was originally thought. 

7.3 Use of Information Theory 

Assessing the performance of systems based on supervised learning is 
fairly straightforward because the system's outputs can be compared directly 
with a set of target outputs (i.e. 'correct' answers), but in unsupervised 
learning this is not possible since there are no target outputs. The method 
based on noise levels that was used to assess the relative performance of the 
SOMs, although adequate for its purpose in this study, is not suitable for the 
more demanding tasks that lie ahead. Information theory offers a more 
theoretically sound approach to questions like "Which output topology is 
best suited to the data?" and "Which system gives the best overall 
performance?". Thus such assessment will in future be based upon the 
mutual information between the output categories and the data. In addition 
information theory is being used as the basis of the rescaling of the 
Euclidean axes in the modified similarity metric. Readers seeking an 
introduction to information theory are referred to the text by Cover and 
Thomas (1991). Hakin (1994) discusses the use of information theory in the 
context of neural networks. 

8. CONCLUSION 

Pattern classification based upon Self Organising Maps, a type of 
unsupervised-learning neural network, have been shown to provide a means 
of classifying and diagnosing the state of health of rivers from biological and 
environmental data. A useful benefit of SOMs is that they do not require 
target outputs for their training. However, their classifications are 
meaningless until their output arrays have been labelled, a task that can 
prove substantial. The use of a large output array (i.e. many classification 
bins) enables the complex relationships that exist between the composition 
of the aquatic community and the quality of the river to be modelled more 
closely. This permits finer classifications to be made and thereby gives a 
diagnostic capability to the SOM, but the large size of the array makes the 
task of labelling the bins more onerous. A method of minimising the 
involvement of experts in this labelling task, based upon the use of feature 
maps and class templates, has been outlined. Feature maps have also been 
shown to provide a powerful means of visualising the multi-variate data, and 
of facilitating a greater understanding of the domain. 
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Although the methods presented are designed for use in the monitoring 
and control of river pollution, they offer considerable potential for use in 
other environmental fields. 
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