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Abstract Automatic synthesis of test cases for conformance testing has been principally 
developed with the objective of generating sequential test cases. In the 
distributed system context, it is worth extending the synthesis techniques to the 
generation of multiple testers. We base our work on our experience in using 
model-checking techniques, as successfully implemented in the TGV tool. 
Continuing the works of A. Ulrich and H. Konig, we propose to use a true­
concurrency model based on graph unfolding. The article presents the 
principles of a complete chain of synthesis, starting from the definition of test 
purposes and ending with a projection onto a set of testers. 

Key words: Test, Distributed systems, Synthesis, True-concurrency models, Inter­
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1. INTRODUCTION 

Algorithms for automatic test synthesis have been proposed both in the 
academic world, and in industry. However, the use of these tools reaches a 
limit when testing distributed systems. This is because they are dedicated to 
the synthesis of sequential test cases (represented by event sequences or 
finite automata). Such synthesis is not always well-suited to test systems 
containing parallel activities. It is also known that a state representation of a 
specification with parallelism often suffers from a combinatorial explosion. 
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The interest in generating distributed test cases was recognised a few years 
·ago, as demonstrated by the inclusion of concurrent constructs in the TTCN 
standard. We retain three main motivations to synthesise distributed test 
cases: 

It can be naturally imposed by the test architecture under consideration. 
Let us consider a system geographically scattered on a network. The idea 
is to design a set of testers, each tester being located at the 
communicating entity to be checked, and communicating with the other 
testers to co-ordinate the test activity and the production of diagnosis. 
It allows more compact and clear test cases to be obtained. This is the 
case when the system under test produces concurrent observable events: 
a sequential representation would require all possible interleavings to be 
computed. This rapidly suffers from a combinatorial explosion as the 
concurrency increases. 
In certain cases parallel testing is needed to check particular behaviours. 
For example, one often considers for controllability reasons that the 
testers must wait for the system stabilisation before injecting new 
interactions. Under this assumption, it was shown by [2] that a 
distributed test case can position the system under test into states which 
are not reachable by a sequential test. More generally, the situation will 
also occur in the context of real-time testing. 

One can distinguish two main approaches to synthesising distributed test 
cases: 

The generation of sequential test cases, followed by their automated 
distribution. The idea is to produce a set of communicating testers which 
behave like the sequential test (i.e. in the sense of trace equivalence). 
The advantage of this approach is that it requires no more than the 
current state of the art; it can even be used on hand-written test cases. 
The major drawback is that it does not take into account the intrinsic 
parallelism of the system under test. In general, one does not know how 
to distinguish between parallelism and interleaving; in practice this leads 
to useless synchronisation between the local testers. 
The re-examination of the synthesis, retaining the parallelism 
information contained in the formal specification during the construction 
of the test cases. We discuss this extreme approach in the paper. The 
main difficulty is the use of a true-concurrency model in which causality 
and concurrency are explicitly represented, in place of the usual 
automata or transition system models. This kind of model has been 
mainly developed by theoreticians and has not yet been fully exploited. 
The synthesis of distributed test cases appears to be an interesting 
context to use the explicit parallelism included in the model. 
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The question of the automatic synthesis of distributed testers is relatively 
recent. It has appeared gradually from the notion of multiple, then distributed 
interfaces. For example, in [18], the system under test is modelled by a 
single finite state machine with several distributed interfaces. A test 
generation method is sketched, based on the idea of synchronisable test 
suites. In [19], multiple testers are generated by considering only particular 
synchronous behaviours of the parallel specification. Co-ordination of the 
testers makes the assumption that the communications between entities of 
the system under test are observable. The idea of using true-concurrency 
models in the case of asynchronous systems came from two research groups 
separately (one in Korea, driven by M. Kim, the other in Germany, driven by 
A. Ulrich and H. Konig). In Kim's approach [20,21], they adopt a specific 
model, which consists in computing particular concurrent paths from a 
communicating finite state machines view. The introduction of event 
duration makes the computation easier. It is not clear however to know the 
algorithmic complexity of the method and how it scales up in a real testing 
methodology (abstraction, selection, ... ). We chose to follow the Ulrich and 
Konig's approach [22], mathematically based on theoretical and algorithmic 
results on Petri nets. The partial order semantics of Petri nets and its 
implementation in the "unfolding" algorithmic has been developed for many 
years, but rather confined in the theoretical computer science community. 
We think it is enough sound and advanced to be applied in several 
domains ... like distributed testing. In [22], the unfolding of "behaviour 
machines" is used to propose a "partial order transition cover" as a general 
heuristics to select partial order test cases, which could be later projected on 
parallel testers. In the same vein, [23] has tempted to avoid the use of Petri 
nets and to directly generate the partial orders (event structures) in the 
context of asynchronous communication. 

The rest of the paper is organised as follows: First, we give an overview 
of a test synthesis method based on model-checking and sequential transition 
systems, as implemented in the TGV tool. We then propose to revisit the 
whole test-production chain using partial-order representations of the 
behaviours. This is presented in Section three, following the different steps 
of the methodology: the partial order view of a specification (the notion of 
"tile") and of a test purpose, the construction of an unfolding (the "puzzle 
game"), its partial order abstraction, and its final projection onto several 
testers. Particular attention is paid to the algorithmic complexity and its 
potential to scale up, in the perspective of developing a real prototype. Some 
indications of possible future developments are given in the conclusion. 
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2. SYNTHESIS BASED ON TRANSITION SYSTEMS 

We mainly rely on our experience in conformance testing. The TGV tool 
(Test Generation using the Verification technology) [3,4], jointly developed 
by our group at Irisa and a group at Verimag, is a real-size implementation 
of synthesis techniques based on transition systems. We thus begin by 
recalling the main principles. 

2.1 Our example 

Let us consider the small example depicted in Figure 1. This is a simple 
connection-disconnection protocol, modelled with two interacting finite 
automata communicating through one-bounded channels. The users can use 
the protocol by asking for a new connection (event a), or asking for the 
disconnection of a previously opened connection (event b from one side, 
event c from the other side). Each request is acknowledged by the local 
process after having performed the corresponding action (events!.! • ..!! and£). 
The protocol manages a possible collision of disconnect messages by 
exchanging a disconnect confirmation, named d. The scenario presented in 
Figure 1 illustrates the three possible repeatable behaviours (connection is 
closed by the initiator, connection is closed by the other side, and collision). 
The message exchanges between processes are neither controllable, nor 
observable. 

0 y i( ld 

8 1 

c c £ 

Test purpose : 
check the possibility 
to accept a new connection 
after collision 

Figure 1. A small example of protocol and a possible test purpose. 

The test objective here is to check the possibility to accept a new 
connection after collision (collision management is known to be a fragile 
aspect of this kind of protocol). This can be naturally described by the partial 
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order given in Figure 1: a must precede b and c, which precede .!!,. The 
description by communicating finite automata is just for illustration purpose. 
In the real use of TGV, models are described in higher-level languages like 
SDL, Lotos or UML [5,6,7], the associated compiler providing the state 
representation. 

2.2 The state-graph representation 
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Abstraction (visible behavior ) 
Determlnlzatlon 
Minimization X Llnearisatlon 

of the test purpose 

(product of transition systems) 

Figure 2. Finite automata, trace-equivalent to the communicating automata of Figure 1; its 
visible abstraction, guided by the automaton of the test purpose. Each state of the test purpose 

accepts all the events (the single loops are not represented). The sink state is labelled by 
accept. 

The exhaustive simulation of the protocol, starting in the initial state 
AOBO with empty channels, and keeping track of the global states reached by 
the simulator gives the graph depicted in Figure 2. Notice that cycles are 
built when reaching a previously generated state. This state graph captures 
all the possible traces of the protocol (the interleaving is computed in the 
case of concurrent events). From this graph, one can compute a trace­
equivalent automaton restricted to the alphabet of visible events. A part of 
this graph can be selected using the test purpose in order to keep only the 
traces it accepts (leading to the sink state PASS). 

2.3 Test synthesis 

The resulting graph representing all the visible traces of the specification, 
consistent with the test purpose, defines a set of possible test cases (up to the 
inversion of interactions). In general, to reduce the complexity, one extracts 
only one test case using some heuristics. For example, we consider that a test 
case must be (globally) controllable, which means that there is no choice 
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between an errusswn from the tester and another interaction. In our 
example, the resulting test case is given in Figure 3. To be complete, we 
must mention that the test case is augmented with verdicts (PASS in the final 
state, FAIL for possible receptions that are not in the graph, 
INCONCLUSIVE when the reception is not on a path selected by the test 
purpose) and timers (to prevent the test from dead-, live- and output-locks). 
The generated test cases are guaranteed to be safe (they cannot reject a 
conformant implementation in the sense of ioco conformance [8]). The 
method is also complete in the sense that it is able to reject any non­
conformant implementation (assuming the provision of a corresponding test 
purpose, and some fairness assumptions about the implementation). 

b 

a 

PASS 

Controlability (centralized) 

Tester 

System 
under 
test 

Figure 3. Resulting test case under controllability assumption. 

In the complete version of TGV, these different graphs are not built in 
sequence. Their construction is performed on-the-fly during the synthesis of 
the test case through the use of APis at different levels [10], as depicted in 
Figure 4. The algorithms are mainly based on adaptations of Tarjan's 
algorithm [9], computing the strongly connected components of a graph via 
a depth-first search. The complexity is linear in the size of the state graph 
(though the graph itself may be exponential in the size of the model, notably 
when the concurrency is significant). Determinisation remains exponential, 
but is applied to the graph of visible behaviours, which is much smaller than 
the state graph. 
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Figure 4. The on-the-fly organisation ofTGV. 

3. PARTIAL ORDER VIEW OF THE SYSTEM 

3.1 Tile systems 

In this section we introduce our mathematical framework. Tiles 
correspond to partial transitions and a system is defined as a collection of 
tiles. 

Let V be a finite set of variables. Each variable v E V takes its values in 

some finite domain Dv . For V c V , we set X v = TI Dv. Elements 
- VEV 

of Xv are denoted by Xv and are called V-states, or local states. For v E V, 
we denote by v(xv) the value of the variable v in state Xv . We shall consider 

local transitions relating local states, very much in the same way as 
transitions relate states in standard automata. These local transitions will be 
referred to as tiles in the sequel. Formally, a tile is a 4-tuple 
T' =< V, Xv, a, Xv >, where V c Vis a subset of variables, and (.Xv, a, Xv) 

is a local transition, relating the previous V-state Xv E Dv, and performing 
event a where a ranges over some set A of possible event labels. For T' a 
tile, we shall sometimes denote by V, its set of variables. A system is a triple 
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L =< V, X o, T >, where V C V is a finite set of variables, X o is a set of 

initial states, and Tis a finite set of tiles and v = u1ET v T • 

Figure 5 shows the tile system of our example, as it is entered in our 
prototype. 

% Variables 

var A 0 .. 6 init 0; 

B : 0 .. 4 ini t 0; 

M : (O,a,b) init 0; 

N : (O,c,d) init 0; 

% Tiles 

?A pre A(O) label ?A post A(l); 

?b pre B(O) M(b) label ?b post B(O) 

!a pre A(l) M(O) label !a post A(2) 

?a pre B(O) M(a) label ?a post B(l) 

!A pre A(2) label !A post A(3); 

?C pre B(l) label ?C post B(2); 

?B pre A(3) label ?B post A(4); 

!c pre B(2) N(O) label !c post B(3) 

?c pre A(3) N(c) label ?c post A(O) 
""' I"\\ 

., _,_-, 
I rt ·-- -'- ..-.I 1"\ \ 

M(O); 

M(a); 

M(O); 

N(c); 

N(O); 

Figure 5. The tile system of the example of Figure 1 in textual form. 

The interleaved sequence of states and 
xo, a1, XI, a2, x2, ... , Gk, Xk, ... is a run of system L if xo E X o and, 

events 

1. for each k > 0, there exists T =< Vr, :Xv,, a, Xv, >E T such that, 

VvE Vr: v(Xk -1) = v(xw),Gk =a, v(xk) = v(xv,), and, 

2. Vv Vr: v(Xk- 1) = v(xk). 

Since tiles define local transitions, it may be the case that two successive 
tiles of a given run involve disjoint sets of variables, i.e. modify different 
local states. In this case, exchanging the order of the tiles yields to an 
equivalent run. This is why we will adopt a partial ordering of tiles instead of 
considering the different runs. 
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3.2 Construction of the unfolding 

Given a run, the sequence of successive tiles forms a graph, by 
superimposing the pre-condition of a tile v(.Xvr) onto an equivalent 
condition in the existing graph (like a puzzle game). This graph contains two 
types of nodes: the conditions (the different values of the variables used in 
pre and post conditions of the tiles), and the events of the tiles. Given two 
nodes nand n' (condition or event), we say that n causes n', written n n', 
if either n = n' or there is a path of arrows from n to n '. We say that n and n' 
are in conflict, written n# n', if there is a condition m, different from n and 
n ', from which one can reach n and n ', exiting m by different arrows. Finally 
we say that nand n' are concurrent if neither n n', nor n, nor n#n' 
hold. A co-set is a set of concurrent nodes. From a tile system 
L. =< V, X o, T > , the basic algorithm for the construction of the graph is the 
following: 

Puzzle := X o; 
repeat 

if there exists a tile T E T such that Xvr is a co-set of Puzzle then append T to Puzzle 

forever 

Figure 6 shows the graph obtained after 8 steps of the above algorithm. 

(1) Ao- 8 -A·l 

(2) A1- !a- A2 
MD/ -.........Ma 

so- ?a- 81 (3) -a- Al- ·- AO Ma/ -.........MO 

81- c- 82 (4) Ma Moconfllct ?I 
(5) A2-!-A3 

N Nc/\ 
B2- !c- 83 (6) 
NO/ -.........Nc !. NO BO Bo-+ ?a- B 1-+ c-+ 82-" ! 83 

(7) A3- ?c- AO 
Nc/ -.........NO 

(8) A3-b-A4 

Figure 6. Result of the application of these 8 tiles in sequence. Conflict between tiles 7 and 8 
is pointed out by the branching from condition A3. 

This graph is generally infinite (in the case of infinite behaviour), it has 
no circuits, every condition has at most one input node, every node has a 
finite number of predecessors in the graph, and no node is in self-conflict. It 
is in fact an occurrence net in the framework of Petri nets. We can use the 
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corresponding terminology. A cut is a set of conditions c satisfying the 
following two properties: c is a co-set, and c is maximal (it is not properly 
included in any other co-set). A configuration is a set of nodes K satisfying 
the two following properties: K is causally closed (if n E K and n' < n, then 
n'E K) and conflict-free (no two nodes of K are in conflict). Furthermore, 
we require for convenience that all maximal nodes (if any) of configurations 
shall be conditions. Finite configurations and cuts are closely related. In 
particular, given a finite configuration K the set of conditions Cut( K) is a 
reachable global state, which we denote GS( K). The basic algorithm will 
eventually produce any reachable global state under only the fairness 
assumption that every tile candidate to be added is eventually chosen to 
extend the puzzle (the correctness proof follows from the definitions and 
from the results of [11]). 

It appears that the unfolding is of fractal nature, and can be reduced to a 
finite generator part, called a finite complete prefix. A prefix U of the 
unfolding is complete if for every reachable global state S there exists a 
configuration C in U such that GS (C) = S and for every tile r enabled by S 
there exists a configuration C u {e }such that e C and e is the event of t: 
A complete prefix contains as much information as the unfolding, in the 
sense that we can construct the unfolding from it as the least fix-point of a 
concatenation operation on patterns defined by maximal configurations of 
the prefix . In order to construct such a prefix, the question is to locate the 
events (called the cut-off events) from which the extension in the unfolding 
can be stopped. We will denote [ e] the set of predecessors of e (the set of 
events e' such that e'::; e). An event e of the prefix is a cut-off event (with 
respect to a particular order -< ) if the prefix contains an event e' such that 
GS([e]) = GS([e']), and [e']-< [e]. The algorithm to construct a finite 
complete prefix is the following: 

Finite_Puzzle := X0; 

cut_off:= {}; 
repeat 

Select a tile rsuch that Xvr is a co-set of Finite_Puzzle; 
live:= r exists and Xvr n cut_off={}; 
fi.'live then append r to Finite_Puzzle; 

if 3 u -< t: GS(u)=GS(t) then cut_off:= cut_off u Xvr 

until not live 

The correctness of the algorithm requires that the partial order -< be 
correctly chosen. In [12], it is proved that -< must be adequate, that is 
defined as an order that is well-founded, which refines the set inclusion and 
which is preserved by finite extensions. The size of the prefix also depends 
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on this order, but it is possible to guarantee that the prefix is never larger 
than the global reachability graph (states+ transitions). 

The running time of the algorithm is ), where Cis the set of 

conditions of the prefix, and tp denotes the maximal size of the pre­
conditions of the tiles in the original system. 

Figure 7 shows the complete prefix of our example as computed by the 
Esparza-Romer-Vogler's unfolding algorithm (available through the 
"Model-Checking Kit" of the Technical University of MUnich [26]). The 
slowest part of the algorithm is locating the possible conditions that can be 
covered by a new tile. This is implemented by coding the concurrency 
relation and providing a method of maintaining it. This deteriorates as the 
size of the prefix increases, since the amount of memory needed to store the 
concurrency relation may be quadratic in the number of conditions in the 
already built part of the prefix. A recent improvement proposed in [ 13] 
structures the set of events in order to speed up the search in practice, not by 
trying the events one by one, but several at once, merging the common parts 
of the work. 

The unfolding can be generated from this prefix by considering three 
maximal configurations ended by the sets { AO,MO,NO,BO}, { A4,MO,NO,B 1 } 
and {A2,Ma,NO,BO} respectively, shown as dashed lines in Figure 7. From 
these maximal nodes in the prefix, the unfolding can be continued by gluing 
the pattern starting from a similar cut in the prefix. 

Figure 7. Complete finite prefix of our example. 
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3.3 Guiding by test purposes 

Test purposes are a very interesting feature when dealing with large 
specifications. Their role is to mark out a relevant part of the specification in 
which a test must be found. This concept, present since the beginning in the 
ISO methodology, is rich enough to continue to arouse discussions in a 
broader community [14,15]. In TGV, a test purpose is given by a finite 
automaton with sink states labelled by accept or refuse. A transition of the 
specification is triggered if there exists a similar transition in the test 
purpose. It thus allows some transitions to be cut in the state graph 
representation. The accept state will become the PASS state in the final test 
case. 

This point of view can be easily ported to partial order models, by 
considering that test purposes are particular tile systems, with two terminal 
specific tiles having accept or refuse as post-conditions. From the two tile 
systems (the specification and the test purpose), one can derive a new tile 
system, coding the product. The principle is as follows: for each tile of the 
test purpose, let us consider a tile of the specification with a similar event 
label and build a new tile by making the conjunction of pre-conditions and 
the conjunction of post-conditions. This can increase the number of tiles. 
The unfolding is then carried out on this new tile system. An alternative 
could be to perform the product on-the-fly during the construction of the 
unfolding, instead of pre-computing the new tiles. This would imply to keep 
the maximal configurations in the prefix in order to be able to continue the 
unfolding if required by the test purpose. Placing a tile containing an accept 
or refuse condition is considered as a cut event in the algorithm. Figure 8 
shows the tile system of the test purpose chosen in our example. 

* 

\7 <T1 --+b -T4 > 
TO --+a ! 

T2 --+c --+T3 
-Accept 

/.. \,. /.. \,. 

Figure 8. A partial ordered test purpose. "*" means any event label of the specification, 
except the outgoing events. 

3.4 Abstraction 

At this step, the complete prefix contains all the information needed to 
generate a test case (no further unfolding is needed, since all the realisation 
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of the test purpose has been considered in the new tile system, resulting from 
the product of the specification with the test purpose). We consider that the 
relevant semantics for a test case is the partial order of its events. It can be 
extracted from the prefix by considering the observable events only and the 
paths in the graph linking them. The graph of the test case is the partial order 
defined as follows: the nodes are the events of the observable tiles, and a 
node n precedes a node n' if and only if there exists a path of arrows from n 
to n '. This operation is linear in the size of the prefix (computation of a sub­
order). To be rigorous, we must distinguish the situation in which two nodes 
labelled with concurrent events have a common predecessor, from the case 
where the events are in conflict. The latter situation will be resolved in the 
projection phase, while the first will generate a local choice. 

Some more pruning can be done on the graph. First, the only interesting 
paths are those leading to Accept. The others can be deleted, while keeping 
the branching information on the relevant paths in order to be able to set 
possible INCONCLUSIVE verdicts. Second, we generally require that test 
cases are controllable. In our framework, we consider local controllability 
only, which means that a reception in the tile system, occurring on a local 
process cannot have the same direct predecessor as another event of this 
process. Figure 9 shows the partial order of the abstraction in our example 
and the extracted sub-graph. 

Figure 9. Abstraction and selection of a test graph. 

3.5 Projection 

The last step is the projection of the test graph onto the different testers. 
The principle is the following: 

the events of the testers are the mirror images of the events of the test 
graph (receptions from the point of view of the specification are the 
emissions of the testers, and vice versa), 
the graph of events of a tester is the projection of the test graph, keeping 
only the local events (another sub-order construction). At this step, it is 
advisable to build the transitive reduction of the local graph, in order to 
avoid redundant synchronisation (this is of cubic complexity, but the 
algorithm is applied generally on small graphs), 
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a direct link between two events located on different testers is 
implemented by exchanging a synchronisation message (this particular 
message is emitted after the occurrence of the first event, and received 
by the other tester before performing the second event). 

This is standard way to distribute the behaviour of an automaton. By 
construction, the partial order defined by the test graph is preserved by 
projection. Thus, all the traces are preserved too [16,17]. The result of the 
projection for our example is shown on Figure 10. 

li! 1 Tester 1 

!s11 
?al 

?b1 
?s1 

Tester 2 

!s21 
PASS 

li! 1 Insertion of 
message synchro 

1 to implement ?a the causal relation 

PASS 

T1 

A 

System under test 
B 

Figure 10. The resulting testers in our example. 

It is interesting to compare this distributed test case with the sequential 
one of Figure 3. The automatic distribution of the test case of Figure 3 would 
produce much more synchronisation. Of course, the diamond UJ:,£) in the 
centralised test case is represented by real parallelism in the distributed test 
case. Furthermore, we can see that interaction !b (and ?b) is concurrent with 
!c in the distributed case. This situation seems impossible to infer from the 
sequential test case. 

4. CONCLUSIONS AND PERSPECTIVES 

Pursuing the approach initiated by Ulrich and Konig, we propose a 
complete chain of test synthesis based on a true-concurrency model. This is 
done by revisiting the TGV methodology based on test purposes and of 
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graph manipulation (product, abstraction, projection, controllability). The 
theoretical basis of our propos'al relies on sound and scalable algorithmic, 
based on the construction of prefixes of unfoldings. The main perspective is 
to continue the implementation of these ideas. We have also several research 
directions to explore: 

The use of UML as modelling language. Beyond its popularity, there is a 
real challenge to deal with the partial order semantics of UML, as given 
in the action semantics currently specified. 
The required algorithms seem to be implementable on-the-fly, like in 
TGV. But the situation is much more complex on unfoldings than in 
simple transition systems. 
There are specific questions of controllability in a distributed context 
[24], which deserve further study. 
Finally, it is tempting to refine the standard conformance relation based 
on sequential traces to a kind of partial order inclusion. This could be 
achieved by considering a distributed observation of the communication 
between the entities under test [25], i.e. by instrumenting the 
implementation by a vector clock mechanism. 
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