
INTERPRETING ODP VIEWPOINT
SPECIFICATION: OBSERVATIONS FROM A
CASE STUDY

Chris Taylor, Eerke Boiten and John Derrick
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK

E.A.Boiten@ ukc.ac.uk

Abstract Open Distributed Processing (ODP) is a viewpoints based ISO framework for
specifying open distributed systems. This paper considers an application of ODP
to the specification of an air traffic control (ATC) system. The key issues that
arise from this are discussed further in the context of the formal specification
of a simpler model - the Information Viewpoint in Z, and the Computational
Viewpoint in Object-Z.

Keywords: ODP, viewpoints, correspondences, air traffic control, Z, Object-Z

1. Introduction
The ODP (Open Distributed Processing) framework (Linington, 1995) is

a general architecture for open distributed systems, proposed by the Interna­
tional Standards Organisation. The Reference Model (RM-ODP) identifies
five viewpoints (Finkelstein et al., 1992) for system specification, each pro­
viding a different, partial perspective on the overall system: Enterprise: the
scope, purpose, and policies of the system, a "community" of "actors" serv­
ing an overall objective; Infonnation: the information involved in the system,
and how it is processed, without describing the distributed architecture; Com­
putation: a functional decomposition of the system into objects that interact
via interfaces; Engineering: the mechanisms and functions needed to support
interaction between the distributed objects; and Technology: the concrete tech­
nological infrastructure, in terms of the particular hardware and software com­
ponents involved, and their connections and relations.

The viewpoints are connected using correspondences. These are necessary
to indicate the relations (equality, overlap, decomposition) between elements
of the viewpoints. Some of these correspondences are pre-defined by RM­
ODP, but most will need to be provided as part of the overall system specifica-

http://dx.doi.org/10.1007/978-0-387-35496-5_19

62 FMOODS2002

tion. The use of identical names may provide an elementary level of implicit
correspondence.

Since it is intended to provide an architecture for open systems, the RM­
ODP does not prescribe particular specification formalisms, software, or hard­
ware. The viewpoints are defined in natural language, and so are inevitably
somewhat open to differing interpretations.

An interesting example of a large-scale application of ODP is Eurocontrol 's
ECHO study (European Organisation for the Safety of Air Navigation, 1997),
a specification of a particular ATC system. Consideration of this study raises
some general issues regarding the interpretation and use of ODP, which we
discuss here. These include, for example: (1) what the scope and nature of
the Information Viewpoint should be; (2) how a hierarchical division into sub­
systems can be integrated with a division according to viewpoints ; (3) how
structure in terms of instances of distributed objects should be specified in the
Computational Viewpoint; and (4) what kinds of relations there should be be­
tween the viewpoints.

The remainder of this paper is organised as follows. Section 2 describes how
ODP is used and interpreted in the ECHO study, and Section 3 lists a number
of key issues arising from this study. In the light of these issues, Section 4
presents a simplified model of an ATC system, in which the formal specifi­
cation languages Z and Object-Z are used to represent the Information and
Computational Viewpoints respectively. In conclusion, Section 5 discusses the
roles of the viewpoint correspondences and other relations between the view­
points in both models.

2. ODP in the ECHO Study

The ECHO study provides specifications from three viewpoints - the En­
terprise, Computational, and Information Viewpoints.

Enterprise Viewpoint. In the ECHO study, subsystems of the overall sys­
tem are identified with "communities" in the terminology of the Enterprise
Viewpoint - that is to say, with groups of actors serving a particular overall
objective. The three top-level communities identified, and their objectives, are:
(1) Regulation: to provide the rules and a structure of airspace in which oper­
ations can be carried out effectively and safely, and to ensure that operations
work within this framework; (2) Operations: to provide the appropriate level of
Air Traffic Service to airspace users; and (3) Support: to supply services nec­
essary for the Operations community to operate. Navigation and Surveillance
are subcommunities of Operations, specified separately in the Computational
Viewpoint but having a joint Information Viewpoint specification. Control is
a subcommunity of Support which is specified from both those viewpoints; a
further 11 subcommunities are not considered in detail.

Interpreting ODP Viewpoint Specifications 63

Apart from the specification of communities and their decompositions, the
Enterprise Viewpoint is enhanced by UML diagrams indicating responsibilities
of and relations between the actors. Names of Enterprise "actors" reoccur as
names of classes in the Computational Viewpoint.

Information Viewpoint. The two Information Viewpoint specifications
(jointly for the Navigation and Surveillance subsystems, and for the Control
subsystem) consist of annotated UML diagrams. No operations are specified
for this viewpoint, which has been interpreted as a viewpoint for specifying
data types used by the system. From this perspective, the combination of
two subsystems into one Information Viewpoint specification indicates a large
overlap in the kinds of data that the subsystems use, without implying they are
a single subsystem.

Computational Viewpoint. The Computational Viewpoint specifications
(for Surveillance and Control) are expressed using annotated UML class dia­
grams. The attribute types are taken from the Information Viewpoint. Many of
the Computational Viewpoint classnames correspond to entities which would
have substantial distributed applications at the implementation level - e.g.,
databases. For some methods, inputs and outputs are given, together with an
"Offers" statement which describes the method's function, and a "Uses" state­
ment, listing the other methods it invokes. In addition, use case scenarios are
used to illustrate behaviour associated with individual objects.

However, the specifications do not describe the (initial) configurations of
the subsystems in terms of instances of the classes described. This kind of
information would be especially useful in situations where a particular class
occurs in multiple subsystems. For example, the Control community and the
Surveillance community both include the Aircraft and ATSU (Air Traffic Ser­
vice Unit) classes. However, it is not clear whether the subsystems actually
have some instances of these Computational classes in common. This im­
pacts on the definition of interfaces between the subsystems, and the corre­
spondences between the Computational Viewpoint and other viewpoints.

3. Issues Arising from the ECHO Study
The following issues stand out from the ECHO study:

• Subsystems versus viewpoints. When viewpoint methods such as ODP
are applied to very large and complex systems, there is a tendency to
describe the system in terms of components or subsystems as well as in
terms of viewpoints. It appears these are two orthogonal dimensions, but
how is their combination achieved in practice? Should each subsystem
be described from all viewpoints?

64 FMOODS2002

• Subsystems through the Enterprise Viewpoint. In the ECHO case, there
is a correlation between major subsystems and the Enterprise Viewpoint
description: Enterprise "communities" correspond to separate subsys­
tems. Is this sufficient information to impose the same structuring on the
other viewpoints?

• Subsystem interaction. In an ODP specification, how should the connec­
tions between major subsystems be described, and how does this relate
to the viewpoints and correspondences? The Computational Viewpoint
would seem the most appropriate one for dealing with this, as it is con­
cerned with interfaces and interactions. However, some of its classes in
the ECHO case do not represent or form part of a subsystem identified
in the Enterprise Viewpoint.

• Object instances versus classes. In the ECHO study's detailed Computa­
tional Viewpoint specifications classes of distributed objects are defined,
but the structure of each subsystem in terms of instances of those classes
is not stated explicitly. How should this configuration information be
added?

4. A Partially Formalised ODP Specification

This section discusses a simple formalised model of an ATC system, which
indicates one way of resolving some of the questions above. The formal lan­
guages Z (Spivey, 1992) and Object-Z (Smith, 2000) are used to specify the
Information and Computational Viewpoints, respectively. The choice of spec­
ification notations here is a pragmatic one: they allow us to give a precise
formalisation of the aspects we feel to be of relevance in the case study. Other
specification languages may be equally suitable for this. A realistic model
of an ATC system would, of course, be far more complex than this one: the
aim here is to use an idealised model to explore some of the general issues
involved. In presenting this specification, we give (yet) another interpretation
of RM-ODP, strongly inspired by the semi-formal interpretation used in the
ECHO case study. The specification is given in full in (Taylor et al., 2001), the
presentation here omits many trivial details and simple definitions.

4.1. Enterprise Viewpoint

According to RM-ODP, the Enterprise Viewpoint should represent the sys­
tem as a "community" of "actors" of certain types, each serving a role in order
to satisfy some overall system objective. There are various ways in which a hi­
erarchical division into subsystems could be integrated with such a picture. The
ECHO study provides one interpretation, by using the Enterprise Viewpoint to
identify a hierarchy of named subsystems - each of which is then regarded as
an Enterprise "community" in its own right - as well as introducing classes

Interpreting ODP Viewpoint Specifications 65

of distributed objects which are subsequently used in the Computational View­
point.

In our simplified ATC specification, the Enterprise Viewpoint consists of an
informal statement of the hierarchy of subsystems involved, and of their objec­
tives. These objectives will not be formalised at this level; see (Steen and Der­
rick, 2000) for an approach to formalising policies. Some of these subsystems
could be thought of as being both "actors" and "communities," i.e. as being
composed of smaller subcommunities. In the Computational Viewpoint, these
subsystems will be identified with instances of object classes, and any overlap
between them, in terms of common components, will be stated explicitly; but
in the Enterprise Viewpoint, we merely state their functional objectives.

As in the ECHO case study, our system has "communities" or subsystems at
more than one level. At the top-level, the overall system has two subsystems:
a "control" system, whose objective is to allocate flights and resolve conflicts,
and a "support" system, whose objective is to provide and update flight data.
The "control" system has two subsystems: a "flight manager", whose objec­
tive is to make the decisions, and a "flight database", whose objective is to keep
track of flight information. The "support" system has two lower-level compo­
nents: a "surveillance" subsystem for collecting data, and a "flight database"
for storing the data. In the Computational Viewpoint, the flight databases of
the "control" and "support" subsystems are identified as being the same en­
tity. The Enterprise Viewpoint is also used to list types of actor other than the
subsystems themselves- e.g. "radars", "controllers", etc.- that are used as
classes in the Computational Viewpoint.

4.2. Information Viewpoint
In the ECHO study, the Information Viewpoint acts as a "data dictionary".

Using a design-oriented notation like UML, this is the obvious way of spec­
ifying the Information Viewpoint. However, if we use a fonnal specification
approach to ODP, the information present in the system can be characterised
more abstractly. One aspect of this may be not to use objects, as this strongly
suggests a decomposition of the information which is irrelevant at this point.
Another aspect is that the emphasis shifts from the actual data representation of
the system's data types to their interfaces and abstract behaviours- and thus,
operations are more naturally included. Of course, such operations can give
an initial indication of the top-level operations required in the Computational
Viewpoint. However, the relation between the Information and Computational
Viewpoints need not be a refinement relation: the system may still be a com­
mon refinement of both.

66 FMOODS2002

For these reasons, we give a specification which does include operations
below. The operations defined require further refinement, to impose additional
constraints, and further operations need to be added.

Coordinates, points, and paths. A "4D point" consists of a latitude, longi­
tude, flight level, and time.

Pt4v == Lat X Long X FlightLevel X Time

A "4D path" is a spatio-temporal trajectory -represented by a finite sequence
of 4D points -that is possible for a specified type of aircraft. The "start time"
of a (non-empty) path is the time coordinate of the first 4D point in that path.

Path4D ------------------­
atype : AircraftType; pts : seq Pt4v

pts possibleFor atype

startTime : Path4v -t-t Time

dom startTime = {p : Path4v I p.pts =I ()}
V p : dom start Time • startTime(p) = time(head (p.pts))

Flights and Conflict. The main functions of an ATC system are to as­
sign and monitor flights, and to resolve any conflicts that arise. Our idealised
model assumes four broad types of conflict, as identified in the ECHO case
study: (1) Aircraft-aircraft (AA) conflicts- those involving unacceptable
proximity between two aircraft; (2) Deviation conflicts- when an aircraft's
actual path deviates too far from its assigned path; (3) Request conflicts- in
which an aircraft requests an alteration to its assigned path; and (4) Resource
conflicts- those in which an aircraft's path conflicts with an "environmen­
tal object", such as a mountain or an airspace boundary. The four conflict
types are formalised differently- (1) as a relation between flights, (2) and (3)
as properties of flights, and (4) as a relation between flights and environment
objects. Accordingly, the Flight schema has three 4D paths for a particular
aircraft type atype, representing the path actually taken so far, the path mostly
recently assigned by ATC and the path most recently requested by the aircraft.
The assigned and actual paths are required to have the same start time.

Flight __________________ _

atype : AircraftType
actualPath4v, assignedPath4v, requestedPath4v : Path4v

a type = .atype
= assignedPath4v .atype = requestedPath4v .atype

= startTime(actualPath4v)

Interpreting ODP Viewpoint Specifications 67

Stronger correlations between these three paths as system invariants follow
indirectly from the available operations.

The four types of conflict involving flights are defined by assuming three
relations of conflict between 4D paths. "AA conflict" (aircraft-aircraft conflict)
is defined as involving two (actual or assigned) paths belonging to different
flights.

I inAAConflict, inDevConjlict, inReqConflict : Pathw +-t Path4v

DevConjlict == {J : Flight I
(f.actualPath4v ,j.assignedPath4v) E inDevConjlict}

ReqConjlict == {J : Flight I
(f.assignedPath4v ,j.requestedPath4v) E inReqConjlict}

AAConjlict == { if1 Jz) : Flight x Flight I !1 -I- h /\
((f1.actualPath4v Jz .assignedPath4v) E inAAConjlict
V (f1.assignedPath4v Jz .actualPath4v) E inAAConjlict
V (f1.actualPath4v Jz .actualPath4v) E inAAConjlict
V (f1.assignedPath4v Jz .assignedPath4v) E inAAConjlict)}

A "resource conflict" relation is declared between 4D paths and "environmen­
tal objects" (which are either airspaces or physical objects, such as mountains).

I ResConflict : Flight +-t EnvObj

System state schema. The abstract system state has as its main attributes a
system time, a finite set of environmental objects, a flight index, and a set of
"current flights" (those in progress or waiting for take-off) which is a subset of
the flights indexed.

Sys __ _

sysTime : Time; envObjs : lF EnvObj
jlight/ndex : iseq Flight
currentFlights, allFlights/nConjlict : lF Flight
aaConflicts : JF(Flight x Flight)
devConflicts, reqConjlicts : IF Flight
resConflicts : JF(Flight x EnvObj)

currentFlights ranjlightlndex
aaConflicts = AAConflict n (currentFlights x currentFlights)
devConflicts = DevConflict n currentFlights
reqConjlicts = ReqConjlict n currentFlights
resConjlicts = ResConflict n (currentFlights x envObjs)
allFlightslnConjlict =

devConjlicts U reqConjlicts U dom aaConflicts
U dom resConjlicts

68 FMOODS2002

The flight index is an injective sequence of flights (so flights are uniquely
numbered). Other attributes, whose values are determined by state invariants,
record the various kinds of conflicts currently present, and the set of all cur­
rent flights which are involved in some kind of conflict. Initially, there are no
current flights and thus no conflicts.

SysmJr ______________________________________ ___

FSyl

Operations. The operations defined are: AssignFlight, TakeOff, Landing,
FlightObs, and ResolveConflict. As all of the operations leave the environ­
mental objects unchanged and increase the system time, we use an auxiliary
definition:

SysOp __________________________________ ___

D..Sys

envObjs' = envObj 1\ sysTime' = sysTime + 1

The AssignFlight operation adds a new flight j! to the set of current flights
(those already assigned-- either in progress, or awaiting take-off) and to the
index of all flights. Its outputs are the flight f!, and the start time t! of its
assigned flightpath, which must be later than the current system time. The
sequence of points of the actual path of the new flight must be empty (because
the flight has not taken off yet). The new flight must not result in any new
conflicts arising.

AssignFlight __________________ _

SysOp; f! : Flight; t! : Time

startTime(f!.assignedPathw) = t! 1\ t! > sysTime

flightlnde:i = flightlndex"' if!)
currentFlights' = currentFlights U {f!}
j!.actualPath4v .pts = ()
allFlightslnConjlict' = allFlightslnConflict

The inputs of the TakeOff operation are a current flight's index n? and the
corresponding flightf?, which must not be in conflict. The output of the oper­
ation is a flight f!, identical to f? except for its actual 4D path now containing
the first point in its assigned path.

Interpreting ODP Viewpoint Specifications

TakeOff---------------------------------­
SysOp; n?: N; J?,J! :Flight

n? E domjiightlndex 1\flightlndex(n?) = f?
f? E currentFlights 1\f? (j. allFlightslnConjlict
startTime(J? .assignedPath4v) = sysTime
jiightlndd = flightlndex E9 {n? f--7 f!}
f! .actualPath4v .pts = (head f? .assignedPathw .pts)
[All other fields of f! equal those of f?]
currentFlightf = (currentFlights \ {f?}) U {f!}

69

Landing removes a flight from the set of current flights. Implicitly, this may
also remove it from the flights in conflict. Further conditions might be imposed
to model regular landing, relating the destination to the actual path.

Landing ____________________________________ __

SysOp; J? : Flight

f? E currentFlights 1\ currentFlightS = currentFlights \ {f?}
jiightlndd = jiightlndex

FlightObs represents the receipt of an observation of an aircraft's position
at a particular time (in the form of a 4D point). f? is the input flight, and
f! the modified output flight, incorporating the new observation. Due to the
invariants in Flight, the observation must be possible for the aircraft involved,
given its trajectory so far.

FlightObs _________________ _

SysOp; n?: N; pt? : Pt4v; f?,J! :Flight

n? E domjiightlndex 1\flightlndex(n?) = f?
J? E currentFlights l\f?.actualPatl14v.pts =/= ()
time(last(f?.actualPath4D·Pts)) < time(pt?) < sysTime

j!.actualPath4v .pts = J? .actualPath4v .pts "" (pt?)
[All other fields of f! equal those of f?]

jiightlndd = jiightlndex E9 {n? f--7 f!}
currentFlightf = (currentFlights \ {f?}) \J {f!}

ResolveConflict, omitted here, represents in a very abstract way the resolution
of a "self-contained" conflicting set of flights, in the sense that its members
may only be in "AA conflict".

70 FMOODS 2002

4.3. Computational Viewpoint Specification

The Computational Viewpoint specification is expressed in the object ori­
ented specification language Object-Z (Smith, 2000) An Object-Z specifica­
tion includes several class schemas, of which one (here: Main) represents the
system being modelled. An attribute declaration x : ClassName denotes a ref­
erence to an object of the class ClassName. If Op is an operation of class
ClassName, the notation x.Op represents the execution of Op on the object to
which x refers, inheriting its inputs and outputs if any. For example, in the
specification below, the Main class has an attribute support of class Support,
and the expression support.TakeOff represents the execution on that object of
its own (lower-level) TakeOff operation.

Each operation has an optional A-list, showing attributes that it allows to
change. Object-Z provides several operators for combining operations - in­
cluding 1\ (schema conjunction), and II which equates the output variables of
one operation with matching input variables of another, and hides both.

The "communities" identified in the Enterprise Viewpoint are equated with
instances of classes specified in the Computational Viewpoint. Instances of
Object-Z classes may share component objects, thus communities can overlap
in terms of the objects involved.

The main focus in this initial Computational Viewpoint specification is to
give a broad indication of system structure, in terms of identifiable subsystems,
and the objects of which they are composed. The aim is to specify operations
in outline only, in terms of the objects that they involve, whether they involve
synchronisations of lower-level operations, and so forth. Operations are thus
associated with particular distributed objects, rather than being defined in a
purely abstract way, as they were in the Information Viewpoint specification.

Main system. The overall system is viewed as an instance of the Main
class. An object of this class has a subsystem control of type Control, for al­
locating flights and detecting and resolving conflicts, and a subsystem support
of type Support, which provides and updates the data required by control. The
two subsystems share a database flightDbase, which holds information about
flights. (The subscript © is an abbreviated notation in Object-Z for "object
containment" - for example, the attribute declaration control : Contra@ im­
plies a global invariant stating that each instance of the Main class "uniquely
contains" its own object instance which cannot be directly contained in any
other object.) The AssignFlight operation involves a synchronisation of are­
quest for a flight from the support subsystem, with the actual assignment of a
flight by the control subsystem. The operations FlightObs, Landing, TakeOff,
and ResolveConflict are promoted from the subsystems.

Interpreting ODP Viewpoint Specifications

A1ain __ __

control : Control@; support : Support@

control.jlightDbase = support.jlightDbase

!NIT ::2: control.INIT 1\ support.INIT
AssignFlight ::2: (support .RequestFlightii control.AssignFlight)
TakeOff ::2: support.TakeOff
Landing ::2: support.Landing
FlightObs ::2: support.FlightObs
ResolveConjlict ::2: control.ResolveConjlict

71

The full specification in (Taylor et al., 2001) refers to time on the data level
through the use of a clock attribute (corresponding to sysTime in the Infor­
mation Viewpoint), which is shared (ensured by predicates) by all object in­
stances. The details of this have been omitted below- references to clock.time
below are to this global (shared) clock.

Control subsystem. A Control object has a subsystemjlightkfanager, which
executes control functions, and a subsystem jlightDbase, containing informa­
tion about current flights. The AssignFlight operation, involving the assign­
ment of a new flight, is represented as the synchronisation of a flight selec­
tion operation by the flight manager subsystem, and an operation on the flight
database subsystem which records that selection. The ResolveConjlict opera­
tion also involves a similar synchronisation between the flight database and the
flight manager.

Control _____________________________________ __

jlightkfanager : Flightkianager@
jlightDbase : FlightDbase

INIT ::2: jlightkianager.INIT 1\jlightDbase.INIT
AssignFlight ::2: (jlightA1anager.SelectFlight

ilflightDbase .AssignFlight)
ResolveConjlict ::2: (jlightDbase.ResolveConjlictSet

ilflightkfanager .ResolveConjlict)

An object of the class Flightkianager has as its attribute a set of "controllers".
The SelectFlight and ResolveConjlict operations represent the selection of a
flight and the resolution of a conflict set, respectively, by a particular controller,
promoted from operations of the class Controller.

For the Controller operations, only the signatures are given. The SelectFlight
operation represents the selection of a flight by a controller. Its input is an air-

72 FMOODS2002

craft type, and its outputs are a flight and a take-off time. The ResolveConflict
operation represents the resolution of a particular set of conflicting flights by
an individual controller.

FlightManager _______________ _

I controllers : JF1 Controller

INIT = (/\ c : controllers • c./NIT)
SelectFlight :2: [cl : controllers] • cl.SelectFlight
ResolveConflict = [cl : controllers] • cl.ResolveConflict

Controller _________________ _

SelectFlight :2: [atype? : AircraftType; f! : Flight; t! : Time J
ResolveConflict :2:

[flights? : lF 1 Flight; oldlndex?, new Index! : N1 >-+--+ Flight]

The FlightDbase class has a state schema very similar to the global state
schema Sys in the Z specification for the Information Viewpoint. As in the
ECHO study, it assumes data types (such as Flight) and global definitions of
sets, functions, etc., that are already defined in the previously given Informa­
tion Viewpoint specification.

FlightDbase ________________ _

envObjs : lF EnvObj
flightlndex : iseq Flight; currentFlights : IF Flight

allFlightslnConflict, reqConflicts, devConflicts :IF Flight
aaConflicts : IF(Flight x Flight)
resConflicts : IF(Flight x EnvObj)

allFlightslnConflict currentFlights ranflightlndex
aaConflicts = AAConflict n (currentFlights x currentFlights)
devConflicts = DevConflict n currentFlights
reqConflicts = ReqConflict n currentFlights
res Conflicts = ResConflict n (currentFlights x envObjs)
allFlightslnConflict = devConflicts U reqConflicts

U (dom aaConflicts) U (dom resConflicts)

Interpreting ODP Viewpoint Specifications

!NIT ::=:: flightlndex = ()
AssignFlight ::=:: [t3.(flightlndex, currentFlights)

atype? : AircraftType; j? :Flight; t! : Time J
TakeOff::=:: [t3.(flightlndex, currentFlights); fNo? : J
Landing ::=:: [t3. (currentFlights); jNo? : J''::h J
FlightObs ::=:: [t3.(flightlndex, currentFlights)

jNo? : pt? : Pt4v]
ResolveConflict ::=:: [t3.(flightlndex, currentFlights)

new Index? : N1 >+--+ Flight J

73

The operations are given in signature form here, to be refined to implementa­
tions of the constraints defined on them in the Information Viewpoint specifi­
cation. The attributes listed below the t3. symbol are secondary, i.e. they can
change in any operation without appearing in its delta-Jist.

Support subsystem. An object of the class Support consists of a surveil­
lance subsystem and a flight database subsystem. The operation FlightObs
represents the receipt of a mid-flight observation, and the operations Landing
and TakeOff represent the registering of a landing and a take-off, respectively.
These three operations are analysed as synchronisations of a surveillance oper­
ation with a corresponding update operation affecting the flight database. The
operation RequestFlight represents the receipt by the surveillance system of a
request for a flight to be assigned.

Support ______________________________________ __

I surv : Surv@; flightDbase : FlightDbase

INIT :C::: surv.INIT 1\flightDbase.INIT
FlightObs ::=:: (surv.FlightObsllfiightDbase.FlightObs)
Landing ::=:: (surv.LandingjlfiightDbase.Landing)
TakeOff::=:: (surv.TakeOffllfiightDbase.TakeOff)
RequestFlight ::=:: surv.RequestFlight

An object of the Surv (surveillance system) class consists of a set of radar sta­
tions. The FlightObs models the receipt of an observation from one of the
radars. The Landing and TakeOff operations are assumed to be observed di­
rectly, and so do not involve a radar station. The operation RequestFlight rep­
resents very abstractly the receipt of a request for a flight to be assigned for an
aircraft of a specific type atype!.

74 FMOODS2002

Surv __ __

I radars : IB\ Radar

!NIT 2 (/\ r : radars • r.!NIT)

FlightObs 2 [rl :radars] • rl.FlightObs
Landing :2 [JNo! : l
TakeOff 2 [JNo! :]
RequestFlight 2 [atype! : AircraftType]

The Radar class is where the clock is actually used (rather than just shared
with component objects), and so we include it explicitly here. The opera­
tion FlightObs represents a 4D point observation for a particular flight number
(with the time coordinate being the current clock time).

Radar ______________________________________ ___

I clock : Clock

!NIT 2 clock.fNIT
FlightObs :2 [JNo!: pt!: Pt4D I time(Pt4D) = clock.time l

5. Correspondences and Conclusions
Previous work (Boiten et al., 2000; Bowman et al., 1996) has developed a

general approach to viewpoint specification that is independent of particular
formal specification languages, and that is applicable to, but not restricted to,
ODP viewpoints. The central idea of this approach is that multiple viewpoints
can be shown to be mutually consistent by developing a specification that is
a common refinement of all the viewpoints, a process described as "unifica­
tion". To apply this general approach to a particular formalism requires a well­
defined notion of refinement for that formalism. When several formalisms are
used, methods for translating from one formalism to another are also needed
(the translations already considered include, for example, that from LOTOS to
Object-Z (Derrick et al., 1999)). For techniques for refinement and viewpoint
unification in Z and Object-Z, see (Boiten et al., 1999; Derrick and Boiten,
2001b).

In order to combine the viewpoints, correspondences relating their elements
and possibly other structuring information is necessary. The ECHO study con­
tains a large amount of implicit information about the correspondences, fol­
lowing from the relations between the viewpoints observed in Section 3. In
addition, the ECHO study observes that the Enterprise Viewpoint needs to
obey constraints imposed by the Technology Viewpoint. In the formalisation,
the structuring and correspondence was largely given by the informal text in

Interpreting ODP Viewpoint Specifications 75

the Enterprise Viewpoint. For consistency checking between the viewpoints
and other formal checks, further information would be necessary, for example
the refinement relation relating each viewpoint to acceptable implementations
would have to be specified.

One crucial point from the ECHO case study is that there is a need to in­
terpret RM-ODP in a way which allows hierarchical structure to be specified
and subsystems to be identified. The Enterprise Viewpoint may have a central
role in this, for example by providing a starting point for the Computational
Viewpoint (and others) by identifying functional subsystems and their objec­
tives, without specifying the concrete objects used to implement them, or the
extent to which the subsystems overlap in terms of objects. For the specifica­
tion of the subsystems in the Information and Computational Viewpoints, this
informal decomposition appeared both useful and sufficient. Apart from a sub­
system decomposition, the Enterprise Viewpoint should also provide policies.
(Steen and Derrick, 2000) addresses the specification of such policies and how
these could be checked with the other viewpoints' requirements.

The issue of classes vs. instances, i.e. the configurations of the various view­
points and their subsystems, was adequately addressed by the common Object­
Z practice of introducing of a Main class. By the use of object containment
(@symbol), Object-Z can also specify that various instances of the same class
must be different.

A further analysis of the viewpoints and correspondences in the ECHO
study may be found in (Derrick and Boiten, 2001a).

Acknowledgment This work was partially sponsored by the EPSRC grant
"ODP Viewpoints in a Development Framework".

References
Boiten, E., Bowman, H., Derrick, J., Linington, P., and Steen, M. (2000). Viewpoint consistency

in ODP. Computer Networks, 34(3):503-537.
Boiten, E., Derrick, J., Bowman, H., and Steen, M. (1999). Constructive consistency checking

for partial specification in z. Science of Computer Programming, 35(1):29-75.
Bowman, H., Boiten, E., Derrick, J., and Steen, M. (1996). Viewpoint consistency in ODP,

a general interpretation. In Najm, E. and Stefani, J.-B., editors, First IFIP International
workshop on Formal Methods for Open Object-based Distributed Systems, pages 189-204,
Paris. Chapman & Hall.

Derrick, J. and Boiten, E. (200la). Applying ODP to an air traffic management system: view­
points and correspondences. Submitted for publication.

Derrick, J. and Boiten, E. (200lb). Refinement in Z and Object-Z: Foundations and Advanced
Applications. Springer-Verlag.

Derrick, J., Boiten, E., Bowman, H., and Steen, M. (1999). Viewpoints and consistency: trans­
lating LOTOS to Object-Z. Computer Standards and Interfaces, 21:251-272.

European Organisation for the Safety of Air Navigation (1997). ECHO final report, 1.0 edition.

76 FMOODS2002

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and Goedicke, M. (1992). Viewpoints:
a framework for integrating multiple perspectives in system development. International
Journal on Software Engineering and Knowledge Engineering, Special issue on Trends and
Research Directions in Software Engineering Environments, 2(1):31-58.

Linington, P. F. (1995). RM-ODPThe Architecture. In Raymond, K. and Armstrong, L., editors,
IFIP TC6International Conference on Open Distributed Processing, pages 15-33, Brisbane,
Australia. Chapman and Hall.

Smith, G. (2000). The Object-Z Specification Language. Kluwer Academic Publishers.
Spivey, J. M. (1992). The Z notation: A reference manual. Prentice Hall, 2nd edition.
Steen, M. and Derrick, J. (2000). ODP Enterprise Viewpoint Specification. Computer Standards

and Interfaces, 22:165-189.
Taylor, C., Boiten, E., and Derrick, J. (2001). Interpreting ODP viewpoint specification. Tech­

nical Report 9-01, Computing Laboratory, University of Kent at Canterbury.

	INTERPRETING ODP VIEWPOINTSPECIFICATION: OBSERVATIONS FROM ACASE STUDY
	1. Introduction
	2. ODP in the ECHO Study
	3. Issues Arising from the ECHO Study
	4. A Partially Formalised ODP Specification
	4.1. Enterprise Viewpoint
	4.2. Information Viewpoint
	4.3. Computational Viewpoint Specification

	5. Correspondences and Conclusions
	References

