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Abstract Open Distributed Processing (ODP) is a viewpoints based ISO framework for 
specifying open distributed systems. This paper considers an application of ODP 
to the specification of an air traffic control (ATC) system. The key issues that 
arise from this are discussed further in the context of the formal specification 
of a simpler model - the Information Viewpoint in Z, and the Computational 
Viewpoint in Object-Z. 
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1. Introduction 
The ODP (Open Distributed Processing) framework (Linington, 1995) is 

a general architecture for open distributed systems, proposed by the Interna­
tional Standards Organisation. The Reference Model (RM-ODP) identifies 
five viewpoints (Finkelstein et al., 1992) for system specification, each pro­
viding a different, partial perspective on the overall system: Enterprise: the 
scope, purpose, and policies of the system, a "community" of "actors" serv­
ing an overall objective; Infonnation: the information involved in the system, 
and how it is processed, without describing the distributed architecture; Com­
putation: a functional decomposition of the system into objects that interact 
via interfaces; Engineering: the mechanisms and functions needed to support 
interaction between the distributed objects; and Technology: the concrete tech­
nological infrastructure, in terms of the particular hardware and software com­
ponents involved, and their connections and relations. 

The viewpoints are connected using correspondences. These are necessary 
to indicate the relations (equality, overlap, decomposition) between elements 
of the viewpoints. Some of these correspondences are pre-defined by RM­
ODP, but most will need to be provided as part of the overall system specifica-
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tion. The use of identical names may provide an elementary level of implicit 
correspondence. 

Since it is intended to provide an architecture for open systems, the RM­
ODP does not prescribe particular specification formalisms, software, or hard­
ware. The viewpoints are defined in natural language, and so are inevitably 
somewhat open to differing interpretations. 

An interesting example of a large-scale application of ODP is Eurocontrol 's 
ECHO study (European Organisation for the Safety of Air Navigation, 1997), 
a specification of a particular ATC system. Consideration of this study raises 
some general issues regarding the interpretation and use of ODP, which we 
discuss here. These include, for example: (1) what the scope and nature of 
the Information Viewpoint should be; (2) how a hierarchical division into sub­
systems can be integrated with a division according to viewpoints ; (3) how 
structure in terms of instances of distributed objects should be specified in the 
Computational Viewpoint; and (4) what kinds of relations there should be be­
tween the viewpoints. 

The remainder of this paper is organised as follows. Section 2 describes how 
ODP is used and interpreted in the ECHO study, and Section 3 lists a number 
of key issues arising from this study. In the light of these issues, Section 4 
presents a simplified model of an ATC system, in which the formal specifi­
cation languages Z and Object-Z are used to represent the Information and 
Computational Viewpoints respectively. In conclusion, Section 5 discusses the 
roles of the viewpoint correspondences and other relations between the view­
points in both models. 

2. ODP in the ECHO Study 

The ECHO study provides specifications from three viewpoints - the En­
terprise, Computational, and Information Viewpoints. 

Enterprise Viewpoint. In the ECHO study, subsystems of the overall sys­
tem are identified with "communities" in the terminology of the Enterprise 
Viewpoint - that is to say, with groups of actors serving a particular overall 
objective. The three top-level communities identified, and their objectives, are: 
(1) Regulation: to provide the rules and a structure of airspace in which oper­
ations can be carried out effectively and safely, and to ensure that operations 
work within this framework; (2) Operations: to provide the appropriate level of 
Air Traffic Service to airspace users; and (3) Support: to supply services nec­
essary for the Operations community to operate. Navigation and Surveillance 
are subcommunities of Operations, specified separately in the Computational 
Viewpoint but having a joint Information Viewpoint specification. Control is 
a subcommunity of Support which is specified from both those viewpoints; a 
further 11 subcommunities are not considered in detail. 
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Apart from the specification of communities and their decompositions, the 
Enterprise Viewpoint is enhanced by UML diagrams indicating responsibilities 
of and relations between the actors. Names of Enterprise "actors" reoccur as 
names of classes in the Computational Viewpoint. 

Information Viewpoint. The two Information Viewpoint specifications 
(jointly for the Navigation and Surveillance subsystems, and for the Control 
subsystem) consist of annotated UML diagrams. No operations are specified 
for this viewpoint, which has been interpreted as a viewpoint for specifying 
data types used by the system. From this perspective, the combination of 
two subsystems into one Information Viewpoint specification indicates a large 
overlap in the kinds of data that the subsystems use, without implying they are 
a single subsystem. 

Computational Viewpoint. The Computational Viewpoint specifications 
(for Surveillance and Control) are expressed using annotated UML class dia­
grams. The attribute types are taken from the Information Viewpoint. Many of 
the Computational Viewpoint classnames correspond to entities which would 
have substantial distributed applications at the implementation level - e.g., 
databases. For some methods, inputs and outputs are given, together with an 
"Offers" statement which describes the method's function, and a "Uses" state­
ment, listing the other methods it invokes. In addition, use case scenarios are 
used to illustrate behaviour associated with individual objects. 

However, the specifications do not describe the (initial) configurations of 
the subsystems in terms of instances of the classes described. This kind of 
information would be especially useful in situations where a particular class 
occurs in multiple subsystems. For example, the Control community and the 
Surveillance community both include the Aircraft and ATSU (Air Traffic Ser­
vice Unit) classes. However, it is not clear whether the subsystems actually 
have some instances of these Computational classes in common. This im­
pacts on the definition of interfaces between the subsystems, and the corre­
spondences between the Computational Viewpoint and other viewpoints. 

3. Issues Arising from the ECHO Study 
The following issues stand out from the ECHO study: 

• Subsystems versus viewpoints. When viewpoint methods such as ODP 
are applied to very large and complex systems, there is a tendency to 
describe the system in terms of components or subsystems as well as in 
terms of viewpoints. It appears these are two orthogonal dimensions, but 
how is their combination achieved in practice? Should each subsystem 
be described from all viewpoints? 
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• Subsystems through the Enterprise Viewpoint. In the ECHO case, there 
is a correlation between major subsystems and the Enterprise Viewpoint 
description: Enterprise "communities" correspond to separate subsys­
tems. Is this sufficient information to impose the same structuring on the 
other viewpoints? 

• Subsystem interaction. In an ODP specification, how should the connec­
tions between major subsystems be described, and how does this relate 
to the viewpoints and correspondences? The Computational Viewpoint 
would seem the most appropriate one for dealing with this, as it is con­
cerned with interfaces and interactions. However, some of its classes in 
the ECHO case do not represent or form part of a subsystem identified 
in the Enterprise Viewpoint. 

• Object instances versus classes. In the ECHO study's detailed Computa­
tional Viewpoint specifications classes of distributed objects are defined, 
but the structure of each subsystem in terms of instances of those classes 
is not stated explicitly. How should this configuration information be 
added? 

4. A Partially Formalised ODP Specification 

This section discusses a simple formalised model of an ATC system, which 
indicates one way of resolving some of the questions above. The formal lan­
guages Z (Spivey, 1992) and Object-Z (Smith, 2000) are used to specify the 
Information and Computational Viewpoints, respectively. The choice of spec­
ification notations here is a pragmatic one: they allow us to give a precise 
formalisation of the aspects we feel to be of relevance in the case study. Other 
specification languages may be equally suitable for this. A realistic model 
of an ATC system would, of course, be far more complex than this one: the 
aim here is to use an idealised model to explore some of the general issues 
involved. In presenting this specification, we give (yet) another interpretation 
of RM-ODP, strongly inspired by the semi-formal interpretation used in the 
ECHO case study. The specification is given in full in (Taylor et al., 2001), the 
presentation here omits many trivial details and simple definitions. 

4.1. Enterprise Viewpoint 

According to RM-ODP, the Enterprise Viewpoint should represent the sys­
tem as a "community" of "actors" of certain types, each serving a role in order 
to satisfy some overall system objective. There are various ways in which a hi­
erarchical division into subsystems could be integrated with such a picture. The 
ECHO study provides one interpretation, by using the Enterprise Viewpoint to 
identify a hierarchy of named subsystems - each of which is then regarded as 
an Enterprise "community" in its own right - as well as introducing classes 
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of distributed objects which are subsequently used in the Computational View­
point. 

In our simplified ATC specification, the Enterprise Viewpoint consists of an 
informal statement of the hierarchy of subsystems involved, and of their objec­
tives. These objectives will not be formalised at this level; see (Steen and Der­
rick, 2000) for an approach to formalising policies. Some of these subsystems 
could be thought of as being both "actors" and "communities," i.e. as being 
composed of smaller subcommunities. In the Computational Viewpoint, these 
subsystems will be identified with instances of object classes, and any overlap 
between them, in terms of common components, will be stated explicitly; but 
in the Enterprise Viewpoint, we merely state their functional objectives. 

As in the ECHO case study, our system has "communities" or subsystems at 
more than one level. At the top-level, the overall system has two subsystems: 
a "control" system, whose objective is to allocate flights and resolve conflicts, 
and a "support" system, whose objective is to provide and update flight data. 
The "control" system has two subsystems: a "flight manager", whose objec­
tive is to make the decisions, and a "flight database", whose objective is to keep 
track of flight information. The "support" system has two lower-level compo­
nents: a "surveillance" subsystem for collecting data, and a "flight database" 
for storing the data. In the Computational Viewpoint, the flight databases of 
the "control" and "support" subsystems are identified as being the same en­
tity. The Enterprise Viewpoint is also used to list types of actor other than the 
subsystems themselves- e.g. "radars", "controllers", etc.- that are used as 
classes in the Computational Viewpoint. 

4.2. Information Viewpoint 
In the ECHO study, the Information Viewpoint acts as a "data dictionary". 

Using a design-oriented notation like UML, this is the obvious way of spec­
ifying the Information Viewpoint. However, if we use a fonnal specification 
approach to ODP, the information present in the system can be characterised 
more abstractly. One aspect of this may be not to use objects, as this strongly 
suggests a decomposition of the information which is irrelevant at this point. 
Another aspect is that the emphasis shifts from the actual data representation of 
the system's data types to their interfaces and abstract behaviours- and thus, 
operations are more naturally included. Of course, such operations can give 
an initial indication of the top-level operations required in the Computational 
Viewpoint. However, the relation between the Information and Computational 
Viewpoints need not be a refinement relation: the system may still be a com­
mon refinement of both. 
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For these reasons, we give a specification which does include operations 
below. The operations defined require further refinement, to impose additional 
constraints, and further operations need to be added. 

Coordinates, points, and paths. A "4D point" consists of a latitude, longi­
tude, flight level, and time. 

Pt4v == Lat X Long X FlightLevel X Time 

A "4D path" is a spatio-temporal trajectory -represented by a finite sequence 
of 4D points -that is possible for a specified type of aircraft. The "start time" 
of a (non-empty) path is the time coordinate of the first 4D point in that path. 

Path4D ------------------­
atype : AircraftType; pts : seq Pt4v 

pts possibleFor atype 

startTime : Path4v -t-t Time 

dom startTime = {p : Path4v I p.pts =I ()} 
V p : dom start Time • startTime(p) = time( head (p.pts)) 

Flights and Conflict. The main functions of an ATC system are to as­
sign and monitor flights, and to resolve any conflicts that arise. Our idealised 
model assumes four broad types of conflict, as identified in the ECHO case 
study: (1) Aircraft-aircraft (AA) conflicts- those involving unacceptable 
proximity between two aircraft; (2) Deviation conflicts- when an aircraft's 
actual path deviates too far from its assigned path; (3) Request conflicts- in 
which an aircraft requests an alteration to its assigned path; and (4) Resource 
conflicts- those in which an aircraft's path conflicts with an "environmen­
tal object", such as a mountain or an airspace boundary. The four conflict 
types are formalised differently- (1) as a relation between flights, (2) and (3) 
as properties of flights, and (4) as a relation between flights and environment 
objects. Accordingly, the Flight schema has three 4D paths for a particular 
aircraft type atype, representing the path actually taken so far, the path mostly 
recently assigned by ATC and the path most recently requested by the aircraft. 
The assigned and actual paths are required to have the same start time. 

Flight __________________ _ 

atype : AircraftType 
actualPath4v, assignedPath4v, requestedPath4v : Path4v 

a type = .atype 
= assignedPath4v .atype = requestedPath4v .atype 

= startTime(actualPath4v) 
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Stronger correlations between these three paths as system invariants follow 
indirectly from the available operations. 

The four types of conflict involving flights are defined by assuming three 
relations of conflict between 4D paths. "AA conflict" (aircraft-aircraft conflict) 
is defined as involving two (actual or assigned) paths belonging to different 
flights. 

I inAAConflict, inDevConjlict, inReqConflict : Pathw +-t Path4v 

DevConjlict == {J : Flight I 
(f.actualPath4v ,j.assignedPath4v) E inDevConjlict} 

ReqConjlict == {J : Flight I 
(f.assignedPath4v ,j.requestedPath4v) E inReqConjlict} 

AAConjlict == { if1 Jz) : Flight x Flight I !1 -I- h /\ 
( (f1.actualPath4v Jz .assignedPath4v) E inAAConjlict 
V (f1.assignedPath4v Jz .actualPath4v) E inAAConjlict 
V (f1.actualPath4v Jz .actualPath4v) E inAAConjlict 
V (f1.assignedPath4v Jz .assignedPath4v) E inAAConjlict)} 

A "resource conflict" relation is declared between 4D paths and "environmen­
tal objects" (which are either airspaces or physical objects, such as mountains). 

I ResConflict : Flight +-t EnvObj 

System state schema. The abstract system state has as its main attributes a 
system time, a finite set of environmental objects, a flight index, and a set of 
"current flights" (those in progress or waiting for take-off) which is a subset of 
the flights indexed. 

Sys __________________________________________ _ 

sysTime : Time; envObjs : lF EnvObj 
jlight/ndex : iseq Flight 
currentFlights, allFlights/nConjlict : lF Flight 
aaConflicts : JF(Flight x Flight) 
devConflicts, reqConjlicts : IF Flight 
resConflicts : JF(Flight x EnvObj) 

currentFlights ranjlightlndex 
aaConflicts = AAConflict n ( currentFlights x currentFlights) 
devConflicts = DevConflict n currentFlights 
reqConjlicts = ReqConjlict n currentFlights 
resConjlicts = ResConflict n ( currentFlights x envObjs) 
allFlightslnConjlict = 

devConjlicts U reqConjlicts U dom aaConflicts 
U dom resConjlicts 
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The flight index is an injective sequence of flights (so flights are uniquely 
numbered). Other attributes, whose values are determined by state invariants, 
record the various kinds of conflicts currently present, and the set of all cur­
rent flights which are involved in some kind of conflict. Initially, there are no 
current flights and thus no conflicts. 

SysmJr ______________________________________ ___ 

FSyl 

Operations. The operations defined are: AssignFlight, TakeOff, Landing, 
FlightObs, and ResolveConflict. As all of the operations leave the environ­
mental objects unchanged and increase the system time, we use an auxiliary 
definition: 

SysOp __________________________________ ___ 

D..Sys 

envObjs' = envObj 1\ sysTime' = sysTime + 1 

The AssignFlight operation adds a new flight j! to the set of current flights 
(those already assigned-- either in progress, or awaiting take-off) and to the 
index of all flights. Its outputs are the flight f!, and the start time t! of its 
assigned flightpath, which must be later than the current system time. The 
sequence of points of the actual path of the new flight must be empty (because 
the flight has not taken off yet). The new flight must not result in any new 
conflicts arising. 

AssignFlight __________________ _ 

SysOp; f! : Flight; t! : Time 

startTime(f!.assignedPathw) = t! 1\ t! > sysTime 

flightlnde:i = flightlndex"' if!) 
currentFlights' = currentFlights U {f!} 
j!.actualPath4v .pts = () 
allFlightslnConjlict' = allFlightslnConflict 

The inputs of the TakeOff operation are a current flight's index n? and the 
corresponding flightf?, which must not be in conflict. The output of the oper­
ation is a flight f!, identical to f? except for its actual 4D path now containing 
the first point in its assigned path. 
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TakeOff---------------------------------­
SysOp; n?: N; J?,J! :Flight 

n? E domjiightlndex 1\flightlndex(n?) = f? 
f? E currentFlights 1\f? (j. allFlightslnConjlict 
startTime(J? .assignedPath4v) = sysTime 
jiightlndd = flightlndex E9 {n? f--7 f!} 
f! .actualPath4v .pts = (head f? .assignedPathw .pts) 
[All other fields of f! equal those of f?] 
currentFlightf = ( currentFlights \ {f?}) U {f!} 
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Landing removes a flight from the set of current flights. Implicitly, this may 
also remove it from the flights in conflict. Further conditions might be imposed 
to model regular landing, relating the destination to the actual path. 

Landing ____________________________________ __ 

SysOp; J? : Flight 

f? E currentFlights 1\ currentFlightS = currentFlights \ {f?} 
jiightlndd = jiightlndex 

FlightObs represents the receipt of an observation of an aircraft's position 
at a particular time (in the form of a 4D point). f? is the input flight, and 
f! the modified output flight, incorporating the new observation. Due to the 
invariants in Flight, the observation must be possible for the aircraft involved, 
given its trajectory so far. 

FlightObs _________________ _ 

SysOp; n?: N; pt? : Pt4v; f?,J! :Flight 

n? E domjiightlndex 1\flightlndex(n?) = f? 
J? E currentFlights l\f?.actualPatl14v.pts =/= () 
time(last(f?.actualPath4D·Pts)) < time(pt?) < sysTime 

j!.actualPath4v .pts = J? .actualPath4v .pts "" (pt?) 
[All other fields of f! equal those of f?] 

jiightlndd = jiightlndex E9 {n? f--7 f!} 
currentFlightf = (currentFlights \ {f?}) \J {f!} 

ResolveConflict, omitted here, represents in a very abstract way the resolution 
of a "self-contained" conflicting set of flights, in the sense that its members 
may only be in "AA conflict". 
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4.3. Computational Viewpoint Specification 

The Computational Viewpoint specification is expressed in the object ori­
ented specification language Object-Z (Smith, 2000) An Object-Z specifica­
tion includes several class schemas, of which one (here: Main) represents the 
system being modelled. An attribute declaration x : ClassName denotes a ref­
erence to an object of the class ClassName. If Op is an operation of class 
ClassName, the notation x.Op represents the execution of Op on the object to 
which x refers, inheriting its inputs and outputs if any. For example, in the 
specification below, the Main class has an attribute support of class Support, 
and the expression support.TakeOff represents the execution on that object of 
its own (lower-level) TakeOff operation. 

Each operation has an optional A-list, showing attributes that it allows to 
change. Object-Z provides several operators for combining operations - in­
cluding 1\ (schema conjunction), and II which equates the output variables of 
one operation with matching input variables of another, and hides both. 

The "communities" identified in the Enterprise Viewpoint are equated with 
instances of classes specified in the Computational Viewpoint. Instances of 
Object-Z classes may share component objects, thus communities can overlap 
in terms of the objects involved. 

The main focus in this initial Computational Viewpoint specification is to 
give a broad indication of system structure, in terms of identifiable subsystems, 
and the objects of which they are composed. The aim is to specify operations 
in outline only, in terms of the objects that they involve, whether they involve 
synchronisations of lower-level operations, and so forth. Operations are thus 
associated with particular distributed objects, rather than being defined in a 
purely abstract way, as they were in the Information Viewpoint specification. 

Main system. The overall system is viewed as an instance of the Main 
class. An object of this class has a subsystem control of type Control, for al­
locating flights and detecting and resolving conflicts, and a subsystem support 
of type Support, which provides and updates the data required by control. The 
two subsystems share a database flightDbase, which holds information about 
flights. (The subscript © is an abbreviated notation in Object-Z for "object 
containment" - for example, the attribute declaration control : Contra@ im­
plies a global invariant stating that each instance of the Main class "uniquely 
contains" its own object instance which cannot be directly contained in any 
other object.) The AssignFlight operation involves a synchronisation of are­
quest for a flight from the support subsystem, with the actual assignment of a 
flight by the control subsystem. The operations FlightObs, Landing, TakeOff, 
and ResolveConflict are promoted from the subsystems. 
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A1ain ________________________________________ __ 

control : Control@; support : Support@ 

control.jlightDbase = support.jlightDbase 

!NIT ::2: control.INIT 1\ support.INIT 
AssignFlight ::2: (support .RequestFlightii control.AssignFlight) 
TakeOff ::2: support.TakeOff 
Landing ::2: support.Landing 
FlightObs ::2: support.FlightObs 
ResolveConjlict ::2: control.ResolveConjlict 
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The full specification in (Taylor et al., 2001) refers to time on the data level 
through the use of a clock attribute (corresponding to sysTime in the Infor­
mation Viewpoint), which is shared (ensured by predicates) by all object in­
stances. The details of this have been omitted below- references to clock.time 
below are to this global (shared) clock. 

Control subsystem. A Control object has a subsystemjlightkfanager, which 
executes control functions, and a subsystem jlightDbase, containing informa­
tion about current flights. The AssignFlight operation, involving the assign­
ment of a new flight, is represented as the synchronisation of a flight selec­
tion operation by the flight manager subsystem, and an operation on the flight 
database subsystem which records that selection. The ResolveConjlict opera­
tion also involves a similar synchronisation between the flight database and the 
flight manager. 

Control _____________________________________ __ 

jlightkfanager : Flightkianager@ 
jlightDbase : FlightDbase 

INIT ::2: jlightkianager.INIT 1\jlightDbase.INIT 
AssignFlight ::2: (jlightA1anager.SelectFlight 

ilflightDbase .AssignFlight) 
ResolveConjlict ::2: (jlightDbase.ResolveConjlictSet 

ilflightkfanager .ResolveConjlict) 

An object of the class Flightkianager has as its attribute a set of "controllers". 
The SelectFlight and ResolveConjlict operations represent the selection of a 
flight and the resolution of a conflict set, respectively, by a particular controller, 
promoted from operations of the class Controller. 

For the Controller operations, only the signatures are given. The SelectFlight 
operation represents the selection of a flight by a controller. Its input is an air-
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craft type, and its outputs are a flight and a take-off time. The ResolveConflict 
operation represents the resolution of a particular set of conflicting flights by 
an individual controller. 

FlightManager _______________ _ 

I controllers : JF1 Controller 

INIT = (/\ c : controllers • c./NIT) 
SelectFlight :2: [cl : controllers] • cl.SelectFlight 
ResolveConflict = [cl : controllers] • cl.ResolveConflict 

Controller _________________ _ 

SelectFlight :2: [ atype? : AircraftType; f! : Flight; t! : Time J 
ResolveConflict :2: 

[flights? : lF 1 Flight; oldlndex?, new Index! : N1 >-+--+ Flight] 

The FlightDbase class has a state schema very similar to the global state 
schema Sys in the Z specification for the Information Viewpoint. As in the 
ECHO study, it assumes data types (such as Flight) and global definitions of 
sets, functions, etc., that are already defined in the previously given Informa­
tion Viewpoint specification. 

FlightDbase ________________ _ 

envObjs : lF EnvObj 
flightlndex : iseq Flight; currentFlights : IF Flight 

allFlightslnConflict, reqConflicts, devConflicts :IF Flight 
aaConflicts : IF(Flight x Flight) 
resConflicts : IF(Flight x EnvObj) 

allFlightslnConflict currentFlights ranflightlndex 
aaConflicts = AAConflict n (currentFlights x currentFlights) 
devConflicts = DevConflict n currentFlights 
reqConflicts = ReqConflict n currentFlights 
res Conflicts = ResConflict n ( currentFlights x envObjs) 
allFlightslnConflict = devConflicts U reqConflicts 

U ( dom aaConflicts) U ( dom resConflicts) 
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!NIT ::=:: flightlndex = () 
AssignFlight ::=:: [ t3.(flightlndex, currentFlights) 

atype? : AircraftType; j? :Flight; t! : Time J 
TakeOff::=:: [ t3.(flightlndex, currentFlights); fNo? : J 
Landing ::=:: [ t3. ( currentFlights); jNo? : J''::h J 
FlightObs ::=:: [ t3.(flightlndex, currentFlights) 

jNo? : pt? : Pt4v] 
ResolveConflict ::=:: [ t3.(flightlndex, currentFlights) 

new Index? : N1 >+--+ Flight J 

73 

The operations are given in signature form here, to be refined to implementa­
tions of the constraints defined on them in the Information Viewpoint specifi­
cation. The attributes listed below the t3. symbol are secondary, i.e. they can 
change in any operation without appearing in its delta-Jist. 

Support subsystem. An object of the class Support consists of a surveil­
lance subsystem and a flight database subsystem. The operation FlightObs 
represents the receipt of a mid-flight observation, and the operations Landing 
and TakeOff represent the registering of a landing and a take-off, respectively. 
These three operations are analysed as synchronisations of a surveillance oper­
ation with a corresponding update operation affecting the flight database. The 
operation RequestFlight represents the receipt by the surveillance system of a 
request for a flight to be assigned. 

Support ______________________________________ __ 

I surv : Surv@; flightDbase : FlightDbase 

INIT :C::: surv.INIT 1\flightDbase.INIT 
FlightObs ::=:: (surv.FlightObsllfiightDbase.FlightObs) 
Landing ::=:: (surv.LandingjlfiightDbase.Landing) 
TakeOff::=:: (surv.TakeOffllfiightDbase.TakeOff) 
RequestFlight ::=:: surv.RequestFlight 

An object of the Surv (surveillance system) class consists of a set of radar sta­
tions. The FlightObs models the receipt of an observation from one of the 
radars. The Landing and TakeOff operations are assumed to be observed di­
rectly, and so do not involve a radar station. The operation RequestFlight rep­
resents very abstractly the receipt of a request for a flight to be assigned for an 
aircraft of a specific type atype!. 
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Surv ________________________________________ __ 

I radars : IB\ Radar 

!NIT 2 (/\ r : radars • r.!NIT) 

FlightObs 2 [rl :radars] • rl.FlightObs 
Landing :2 [JNo! : l 
TakeOff 2 [JNo! : ] 
RequestFlight 2 [ atype! : AircraftType] 

The Radar class is where the clock is actually used (rather than just shared 
with component objects), and so we include it explicitly here. The opera­
tion FlightObs represents a 4D point observation for a particular flight number 
(with the time coordinate being the current clock time). 

Radar ______________________________________ ___ 

I clock : Clock 

!NIT 2 clock.fNIT 
FlightObs :2 [JNo!: pt!: Pt4D I time(Pt4D) = clock.time l 

5. Correspondences and Conclusions 
Previous work (Boiten et al., 2000; Bowman et al., 1996) has developed a 

general approach to viewpoint specification that is independent of particular 
formal specification languages, and that is applicable to, but not restricted to, 
ODP viewpoints. The central idea of this approach is that multiple viewpoints 
can be shown to be mutually consistent by developing a specification that is 
a common refinement of all the viewpoints, a process described as "unifica­
tion". To apply this general approach to a particular formalism requires a well­
defined notion of refinement for that formalism. When several formalisms are 
used, methods for translating from one formalism to another are also needed 
(the translations already considered include, for example, that from LOTOS to 
Object-Z (Derrick et al., 1999)). For techniques for refinement and viewpoint 
unification in Z and Object-Z, see (Boiten et al., 1999; Derrick and Boiten, 
2001b). 

In order to combine the viewpoints, correspondences relating their elements 
and possibly other structuring information is necessary. The ECHO study con­
tains a large amount of implicit information about the correspondences, fol­
lowing from the relations between the viewpoints observed in Section 3. In 
addition, the ECHO study observes that the Enterprise Viewpoint needs to 
obey constraints imposed by the Technology Viewpoint. In the formalisation, 
the structuring and correspondence was largely given by the informal text in 
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the Enterprise Viewpoint. For consistency checking between the viewpoints 
and other formal checks, further information would be necessary, for example 
the refinement relation relating each viewpoint to acceptable implementations 
would have to be specified. 

One crucial point from the ECHO case study is that there is a need to in­
terpret RM-ODP in a way which allows hierarchical structure to be specified 
and subsystems to be identified. The Enterprise Viewpoint may have a central 
role in this, for example by providing a starting point for the Computational 
Viewpoint (and others) by identifying functional subsystems and their objec­
tives, without specifying the concrete objects used to implement them, or the 
extent to which the subsystems overlap in terms of objects. For the specifica­
tion of the subsystems in the Information and Computational Viewpoints, this 
informal decomposition appeared both useful and sufficient. Apart from a sub­
system decomposition, the Enterprise Viewpoint should also provide policies. 
(Steen and Derrick, 2000) addresses the specification of such policies and how 
these could be checked with the other viewpoints' requirements. 

The issue of classes vs. instances, i.e. the configurations of the various view­
points and their subsystems, was adequately addressed by the common Object­
Z practice of introducing of a Main class. By the use of object containment 
(@symbol), Object-Z can also specify that various instances of the same class 
must be different. 

A further analysis of the viewpoints and correspondences in the ECHO 
study may be found in (Derrick and Boiten, 2001a). 
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