
Web-based interaction on feature models

Eelco van den Berg, Rafael Bidarra and Willem F. Bronsvoort

Computer Graphics and CAD/CAM Group
Faculty 0/ Information Technology and Systems
Delft University o/Technology
The Netherlands

http://www.cg.its.tudelft.nl
E.vdBerg/R.Bidarra/W.F.Bronsvoort@its.tudelft.nl

Abstract: During a collaborative modelling session, several users are connected to each
other to perform activities, such as design or manufacturing planning, together.
This paper discusses how interactive modelling facilities can be offered to the
clients of a web-based collaborative feature modelling system. Several
techniques for interaction with feature models, ranging from display of
sophisticated feature model images to interactive selection facilities, have been
implemented in webSPIFF, a new web-based, collaborative modelling system.
In particular, maintenance of model data at the clients, and their effective
utilisation for enhancing user interaction and collaboration are described. The
system has a well-balanced distribution of functionality between the server and
the clients, and a good compromise between interactivity on the clients and
network load has been achieved.

Key words: Feature modelling, Collaborative modelling, Web-based modelling,
Graphical interaction

1. INTRODUCTION

Most current CAD systems are feature modelling systems that run on
workstations or PCs. Such systems have become very large, expensive and
complex, and require considerable computational power for many operations
on models. Interaction with a system is usually only possible if the user is

100 E. van den Berg, R. Bidarra, W. F. Bronsvoort

directly working at the CAD station, although remote interaction is
sometimes possible through a high-bandwidth local area network.

This situation is no longer satisfactory, as nowadays more and more
engineers, often at distinct locations, are getting involved in the development
of products. It would be preferable if a user could remotely browse and
manipulate a model, via Internet, as if he were working directly at a
powerful CAD station; a web-based system would be ideal for this, as it
would facilitate access to all sorts of product information in a uniform,
simple and familiar framework. Even more attractive would be the support
of collaborative modelling sessions, in which several geographically
distributed members of a development team could work together on the
design of a product. Typically, in such collaborative sessions, each
participant would be provided with his own, application-specific view on the
product model, and should be given specific participation privileges.

Only recently modelling systems have been proposed that in some
respects satisfy the above-mentioned requirements. Among them, the
research prototype systems CollIDE (Nam and Wright 1998), CSM (Chan et
al. 1999) and NetFeature (Lee et al. 1999) present some promising solutions
to model synchronisation issues, but leave many concurrency problems
unsolved. To the best of our knowledge, the only commercial system
currently offering some collaborative facilities is OneSpace (Co Create
2000). However, its modelling capabilities are severely constrained by the
use of the native SolidDesigner format at the server, into which all models
are converted.

The above concepts combine very well with the increasingly popular
concept of Application Service Providers (ASP), in which clients remotely
access, via Internet, specialised applications running on a server, being billed
exclusively for the service time they spend logged on at the ASP server.
Such an approach has been pointed out as a very promising and affordable
alternative for distributed CAD teams (Comerford 2000). The first
commercial CAD ASP has recently been launched by CollabWare (2000).

Here a new web-based, collaborative feature modelling system is presented.
A complete description of its architecture and functionality can be found in
(van den Berg 2000), including solutions to the well-known concurrency and
synchronisation problems in collaborative applications. This paper
concentrates on the facilities for interaction with feature models in the
system. In particular, it describes the models that are maintained by the
clients, and how these models' can be effectively used for interaction.

The paper is organised as follows: first, an overview of the web-based,
collaborative modelling system is given (Section 2); second, facilities for
interactive visualisation of the product model, in particular of its features, are
described (Section 3); third, techniques are presented for interactively
selecting and using feature entities in the specification of modelling

Web-based interaction on feature models 101

operations (Section 4); finally, a number of technical implementation issues
are discussed (Section 5), followed by some conclusions (Section 6).

2. WEB-BASED, COLLABORATIVE FEATURE
MODELLING

As a basis for the new collaborative system, the SPIFF system developed at
Delft University of Technology was chosen, which offers several advanced
modelling facilities. First, it offers multiple views on a product model, each
view consisting of a feature model with features specific for the application
corresponding to the view. For example, there may be different views for
design and manufacturing planning of parts. All views on a product model
are kept consistent by feature conversion (Bronsvoort et al. 1997). Second, it
offers feature validity maintenance functionality. This can guarantee that
only valid feature models, i.e. models that satisfy all specified requirements,
are created by a user (Bidarra and Bronsvoort 2000). Third, it offers
advanced feature model visualisation techniques, which visualise much more
specific feature information than other systems do. For example, feature
faces which are not on the boundary of the resulting object, such as closure
faces of a through slot, can be visualised too (Bronsvoort et al. 2001). All
these facilities are computationally expensive, and require an advanced
product model, including a cellular model with information on all features in
all views.

webSPIFF, the new web-based, collaborative feature modelling system
introduced here, has a client-server architecture; see (Lewandowski 1998)
for a recent survey on such architectures. All real feature modelling
computations, such as feature conversion, feature validity maintenance and
feature model visualisation, are executed on the product model on a server
that runs the SPIFF system, and their results are exported to the clients.
Interaction with the feature model is possible on the clients, but as soon as
real feature modelling computations, such as the ones mentioned above, are
required, the server is activated. Such a client-server architecture is very
suitable to solve the main problems that occur in collaborative modelling
systems, such as concurrency and synchronisation problems.

webSPIFF consists of several components, as depicted in the global
architecture diagram of Figure 1. On the server side, two main components
can be identified: the SPIFF modelling system, which provides all modelling
functionality; and the Session Manager, which provides functionality to start,
join, leave and close a modelling session, and manages all communication
between SPIFF and the web clients. The webSPIFF portal component provides

102 E. van den Berg, R. Bidarra, W. F. Bronsvoort

Figure 1. Architecture of webSPIFF

the initial access to a web SPIFF session for new clients, and includes a web
server where model data is made available for download by the clients.

The clients of web SPIFF make use of standard web browsers. When a new
client connects to the webSPIFF portal, a Java applet (Sun Microsystems
2000) is loaded, implementing a simple user interface, from which a direct
connection with the Session Manager is set up. Different web clients can
connect from various locations, local through a network or remote via
Internet, in order to start or join a modelling session.

The Session Manager stores information about the ongoing sessions and
their participants. There is a separate SPIFF process for each session. The
Session Manager handles the information streams between web clients and
the corresponding SPIFF process. Since several session participants can send
modelling operations and queries to SPIFF at the same time, concurrency
must be handled at the Session Manager. Practically, this means that parallel
information streams have to be serialised. The Session Manager has also
been implemented using the Java programming language. See (van den Berg
2000) for more details on the architecture of web SPIFF.

Using standard web browsers at the clients increases accessibility, but limits
the complexity of the operations that can be implemented on them.
Nevertheless, the main goal of the work described here was to make
available to the clients, in an interactive way, as much functionality as
possible of the original SPIFF system.

Once connected to the server, the user can join an ongoing collaborative
session, or start a new one, by specifying the product model he wants to
work on. Also the desired working view on the model, e.g. design or
manufacturing planning, has to be specified. Information on the feature
model of that view is retrieved from the server, and used to build the client's
user interface, through which the user can start active participation in the
modelling session.

Web-based interaction on feature models 103

The bottom line is obviously that clients should be able to specify
modelling operations. In web SPIFF, such operations are always specified in
terms of features and their faces, rather than in terms of faces of the
evaluated boundary representation of the product. For example, a feature, to
be added to a model, should be attached to faces of other features already in
the mode1. Among other advantages, this approach avoids the well-known
problem of persistent naming of model entities (Bidarra and Bronsvoort
2000).

After a feature modelling operation, with all its operands, has been fully
specified, the user can confirm the operation. The operation is then sent to
the server, where it is checked for validity and scheduled for execution.
Notice that this can result in an update of the product model on the server,
and thus also of the feature model in the view of each session participant.
Updating each client's model data is performed by the Session Manager.

In addition to the above, the following requirements have been set on the
clients' functionality:

a) the sophisticated feature model images produced by the advanced
feature visualisation facilities of the server should be made available
to the users;

b) interactive visualisation operations, such as changing the viewing
parameters, should be supported;

c) interactive support of modelling operations, such as selection of a
feature or a feature face in an image of the model, should be possible.

Fulfilment of the first two requirements in web SPIFF is dealt with in the
following section; that of the last requirement, in Section 4.

3. VISUALISATION OF THE PRODUCT MODEL

According to the requirements presented above, webSPIFF provides clients
with two ways of visualising a product mode1. Both make use of so-called
camera windows, i.e. separate windows in which a graphical representation
of the product model is shown. Each client may create as many cameras as
desired. First, a sophisticated feature model image can be displayed. Second,
a model can be rendered that supports interactive modification of camera
viewing parameters, e.g. rotation and zoom operations.

3.1. Sophisticated feature model images

The most powerful visualisation technique generates sophisticated feature
model images, which can effectively support the user during modelling
operations. These camera images provide not only a plain visualisation of

104 E. van den Berg, R. Bidarra, W. F. Bronsvoort

the resulting final shape of the product model. Several advanced
visualisation techniques are available that allow the user to customise the
images to a variety of needs (Bronsvoort et al. 2001). Sometimes, a user
wants to have a closer look at a particular feature in a model, e.g. because he
wants to fine-tune its parameters. Using different visualisation techniques for
a selected feature and the rest of the model, extra insight into the selected
feature is offered, e.g. on its shape and location in the model. For example,
the selected feature may be visualised with shaded faces, and the rest of the
model as a wire frame or with visible lines only. As already mentioned in
Section 2, also additional feature information, such as closure faces of
subtractive features, can be visualised. The facilities for rendering such
images make extensive use of the ACIS Modelling Kernel (Spatial 2000),
and are therefore not available on the clients. Instead, the images are
rendered by the SPIFF modelling system, and sent by the Session Manager to
the clients, where they are displayed in a camera.

In addition to the settings for the above-mentioned techniques, several
viewing parameters (such as centre of projection, view reference point,
projection type, etc.) can be set per camera. The camera panels of web SPIFF
offer the clients functionality to specify and modify any camera parameter
by means of menus, controlboxes and checkboxes; see Figure 2 (a) and (b).
Interactive specification of the viewing parameters will be elaborated in
Subsection 3.2.

The sophisticated image displayed in a camera has to be updated
whenever the client modifies any of its camera parameters. Similarly, the
image no longer reflects the current state of the model when any session
participant has modified the model. In both cases, the image is regenerated
on the server and resent to the client(s). Both GIF and JPG image formats
provide satisfactory results; see Figure 2(c) for a sophisticated image
example. Sending an image from the server to a client is therefore very
cheap, both in terms of network load (approximately 10 Kbytes) and display
time at the client.

3.2. Interactive visualisation model

As described in the previous subsection, changing the viewing parameters of
a camera can be done by specifying values for them using the camera panels.
This is convenient, for example, when the user wishes to position the
viewing camera at an exact location. Often, however, it is much more
practical to be able to position and orient the viewing camera in 3D space in
an interactive way, using the mouse, as usual in most CAD systems. As the
mouse moves, the viewing parameters are modified continuously according
to the mouse events generated, creating a smooth animation. Rendering a
sophisticated feature model image at the server, and sending it back to a

Web-based interaction on feature models

(a) model visualisation parameters

(b) viewing parameters

(c) camera window displaying a
sophisticatedfeature model image

Figure 2. webSPIFF camera panels

105

client, takes quite some time, which makes it impossible to update the
sophisticated image in real time: the time elapsed between arrival of two
successive images at the client would simply be too long, hindering smooth
interaction.

The requirement for graphical interaction led to the introduction of a
visualisation model, which is a polygon mesh, generated at the server in
VRML format (Ames et al. 1997), and sent to the client, where it is loaded

106 E. van den Berg, R. Bidarra, W. F. Bronsvoort

Figure 3. Camera window displaying the visualisation model of the part used in Figure 2

into a lava3D scene. Unlike the cellular model on the server, it contains no
information about features, except possibly different colour attributes for
faces originating from different features. Figure 3 shows a camera window
displaying a visualisation model.

By maintaining the visualisation model at the clients, viewing cameras
can be interactively oriented and positioned in virtual space as follows. As
default, a sophisticated feature model image is shown in a camera window,
while the visualisation model is hidden. When a mouse button is pressed on
the camera, the sophisticated feature model image disappears, and the
visualisation model is displayed instead. The user can then interactively
adjust the viewing parameters, until the camera has the desired position and
orientation. After being confirmed by the user, the new camera parameters
are sent to the server, which in turn generates a new sophisticated feature
model image according to the new parameters. This is then delivered back to
the client, where it is displayed in the camera window, hiding the
visualisation model again.

The visualisation model only needs to be regenerated by the server and
updated at the clients whenever any user modifies the product model.
Sending the VRML file to the clients is reasonably cheap in terms of
network load (in the order of 100 Kbytes for a moderately complex feature
model).

4. INTERACTIVE SELECTION OF FEATURE ENTITIES

As explained in Section 2, an essential characteristic of the SPIFF system is
that its modelling operations are specified in terms of features and feature
faces. The interface of web SPIFF clients provides a panel for the specification

Web-based interaction on feature models 107

(a) (b) (c)

Figure 4. Selection of the step bottom face using the selection model

of feature modelling operations, presenting the required menus filled with
appropriate names (e.g. of all features, or of all faces of a particular feature).
The user can then browse through these names to specify the operands of
modelling operations, as he might do when working directly at a CAD
station running the SPIFF system.

However, graphical interaction is very useful, not only for visualisation
of the product model, as described in Section 3, but also for assisting the
user in selecting model entities, specifically for modelling operations. In
fact, it is often much more convenient to graphically select those entities
directly on an image of the visualised product model than from a menu.

For this, the selection model was introduced at the web clients. It consists
of a set of feature canonical shapes, each of which comprises a number of
uniquely named entities, in particular the feature faces. Each canonical shape
is generated at the server into a separate file in VRML format, and loaded
into the Java3D scene at the client.

The canonical shapes in the selection model are never fully displayed
simultaneously. Instead, they are kept invisible, until the user points to a
position in the camera window with the mouse. At that moment, a
conceptual ray is determined from that position and the viewing parameters
used to generate the image. The feature faces intersected by the ray are
subsequently highlighted for possible selection, until the user confirms the
selection of one of them; see Figure 4 for an example. Notice that in this way
also feature faces can be selected that are (partly) not on the boundary of the
resulting object, as shown in Figure 4.(b).1n Section 5, some implementation
details of the selection process are discussed.

When the camera viewing parameters have been modified, the canonical
shapes of the selection model do not need to be updated at the client: the
only thing needed is to visualise them according to the new viewing
transformation, similarly to what is done with the visualisation model. A
canonical shape only needs to be regenerated by the server, and reloaded by

108 E. van den Berg, R. Bidarra, W. F. Bronsvoort

the client, when the parameters or the position of the corresponding feature
are modified, as a result of some modelling operation. Sending VRML files
of the canonical shapes to the clients is again cheap in terms of network load
(in the order of 5 Kbytes per canonical shape).

5. IMPLEMENTATION AND POSSIBLE EXTENSIONS

In this section, implementation of the techniques presented so far is
described in some detail. In addition, some possible extensions are briefly
discussed.

5.1. Using Java3D

Basically, two main alternatives were available for visualisation of and
interaction with 3D models at the clients: the Java3D API (Sun
Microsystems 2000), and VRML in combination with the External
Authoring Interface, VRMLlEAI.

With VRMLIEAI, a Java program creates VRML code that is sent to a
conventional VRML viewer. The interactive functionality of the VRML
viewer is then used to position, orient and make selections in the model. The
model and the Java code are not closely connected to each other, and the
interactive functionality is limited to the functionality the VRML viewer
offers. Although the VRML standard defines selection on objects, it does not
prescribe selection on objects occluded by others. Therefore, it cannot be
guaranteed that the VRML viewer available to a user is capable of selecting
occluded objects. However, this functionality is very useful, especially for
reasonably complex feature models, where many faces are fully or partly
occluded by other faces.

The Java3D API is obviously very closely connected to Java, since it is
an extension to the Java programming language. Interactive functionality can
be implemented by the programmer, and many standard functions are even
already available. Selection is possible, also of faces occluded by other
faces.

For these reasons, the cameras were built using the lava3D API.
Nevertheless, VRML format is used in web SPIFF for transmitting models
from the server to the web clients. Java3D has built-in VRML loaders at its
disposal, so models defined in VRML code can be imported, converted to
Java3D objects, and eventually rendered, without the restrictions
VRMLlEAI suffers from.

lava3D scenes are set up by defining all its components and connecting
them to each other in a scene graph. Figure 5 shows the scene graph used on
the clients of web SPIFF. The root of every Java3D scene graph is its virtual

Web-based interaction on feature models 109

Figure 5. The Java3D scene graph on the web clients

@' ",1,"""'''''""

@) '1i ...

universe. Every scene has exactly one virtual universe. The Locale class
defines the origin of the scene, usually chosen at (0,0,0). The left branch of
the scene graph defmes the geometry of the objects in a scene, whereas the
right branch of the scene graph defines the viewing transformations.

Two types of groups can be identified in the scene graph. First,
BranchGroups serve as the roots of a scene graph branch. They are the only
components that can be attached to a Locale object. TransformGroups are
groups containing a transformation that is applied to all its children.

5.2. Mouse events

Besides scene objects, the geometry-defining branch also contains mouse
behaviours. These behaviours define which mouse actions will be interpreted
as rotations, translations or zoom operations. When one of these actions is
performed, the corresponding transformation is computed accordingly.

A synchronisation problem arises here between the web SPIFF server and
the clients: in the SPIFF modelling system, the user moves the camera
through the scene, thus directly changing its viewing parameters, and leaving
the model co-ordinates unchanged; in a Java3D scene root, on the other
hand, the attached mouse behaviours do not affect the viewing
transformation, but in fact transform the geometry-defining branch instead.
These two approaches have to be synchronised, otherwise the web SPIFF
server will not be able to generate a new sophisticated image with the
viewing parameters specified by the client. The solution consists of first

110 E. van den Berg, R. Bidarra, W. F. Bronsvoort

taking the transformation matrix from the TransformGroup parenting the
selection model and visualisation model, and applying its inverse
transformation to the position of the viewing camera, the view reference
point and the view-up vector. The same inverse transformation is then
applied to the transformation matrix in the TransformGroup, effectively
resetting it to the identity matrix. This causes the whole scene, including the
viewing parameters and the geometry, to be transformed as if the viewing
camera has been moved around a stationary model, resulting in the correct
viewing parameters for the SPIFF server.

In Java3D, specific capabilities have to be set in order to allow certain
functionality to be applied to objects in a scene. For selection, every
canonical shape object must be explicitly set to allow intersection
computations being applied to it.

The selection model has several branches, each representing a canonical
shape. A canonical shape branch, in tum, consists of several face objects,
each with a unique name within the canonical shape. When the VRML data
is read at the client, a face table is created, matching the name of a feature
face with a reference to the respective face object in the selection model.

The selection functions are called when a user clicks the left mouse
button on a camera. A ray is then computed through the camera co-ordinates
of the mouse event and perpendicular to the viewing plane, and sent into the
scene. As result, a list of references to intersected face objects is returned,
sorted by distance to the viewing camera. Only the branch in the scene graph
containing the selection model is searched for intersections.

Initially, the first element in the list of intersected face objects is selected,
i.e. its polygon mesh is highlighted on top of the sophisticated feature model
image. This is done by changing its transparency attribute from fully
transparent to fully opaque, as depicted in the example of Figure 4. Each
subsequent left mouse button event at the same position hides the displayed
face object and highlights the next one in the list. When the desired face is
highlighted, the user can confirm its selection with the right mouse button.
The reference to the chosen face object is then looked up in the face table,
and its name retrieved and inserted into the entry widget for an operand of
the modelling operation being specified.

5.3. Extensions

Several possible extensions can be devised to be implemented within
webSPIFF. One of them regards the use of shared cameras among several
participants in a modelling session. In a shared camera, the viewing
parameters are permanently synchronised at all participant clients, e.g.
allowing them to discuss some detail of the product model as if they were
together, looking at the same camera. This facility, easily practicable on a

Web-based interaction on feature models 111

local network, would have to be carefully optimised for general Internet
usage, so that delays due to low camera refresh rates do not hinder effective
collaboration among users. This task may be even more complicated if
telepointers, one for each session participant, have to be implemented on a
shared camera, allowing each user's mouse cursor to be displayed at the
shared camera windows of all other participants.

Additional interactive facilities, although not directly aimed at improving
collaboration, could be useful at the clients, e.g. for positioning or
dimensioning a feature by dragging handles on its canonical shape.

Although one of the main concerns during the development of webSPIFF
was to keep the network load as low as possible, one of the most obvious
ways of reducing this has so far not been investigated: compression of model
files. However, taking into account the relatively small sizes of the different
models in web SPIFF, it is questionable whether compressing and
decompressing a model will reduce the overall time needed to distribute
model data across a network. For slow connections between fast computers,
compressing data will be always profitable; for fast connections between
slow computers compression will not pay, due to the overhead introduced. It
would probably be more effective to use techniques for incremental or
progressive transmission of the VRML data (Gueziec et al. 1999).

6. CONCLUSIONS

This paper discussed a number of user interaction facilities suitable for web­
based, collaborative feature modelling. These have been implemented in the
new collaborative modelling system webSPIFF, which has a client-server
architecture. The web SPIFF server runs on a HP B180L Visualize
workstation. So far, web SPIFF clients running on Unix, Windows and Linux
platforms have successfully participated in collaborative sessions. The only
requirement at the client side is a Java/Java3D-enabled web browser. The
web SPIFF portal has a demo version available on Internet for users to
experiment with, at www.webSPIFF.org.

web SPIFF provides a powerful framework for investigating many issues
involved in collaborative feature modelling systems, including
synchronisation, concurrency and user interaction aspects. The proposed
distribution of functionality between the server and the clients has resulted in
a well-balanced system. On the one hand, the full functionality of an
advanced feature modelling system is offered by the server. On the other
hand, all desirable interactive modelling functionality is offered by the
clients, ranging from display of sophisticated images of feature models to
interactive selection facilities. The Java-based client application is quite
simple, and a good compromise between interactivity on the clients and
network load has been achieved.

112 E. van den Berg, R. Bidarra, W F. Bronsvoort

As Internet technology rapidly improves, faster and better collaboration
becomes possible. It can therefore be expected that, although the
development of collaborative modelling systems is still at its early stages,
such systems will soon play an important role in the product development
process.

REFERENCES

Ames, A., Nadeau, D. and Moreland, J. (1997) The VRML 2.0 Sourcebook. Second Edition,
John Wiley & Sons, New York

van den Berg, E. (2000) Web-based collaborative modelling with SPIFF. MSc Thesis, Delft
University of Technology, The Netherlands

Bidarra, R. and Bronsvoort, W.F. (2000) Semantic feature modelling. Computer-Aided
Design, 32(3): 201-225

Bronsvoort, W.F., Bidarra, R., Dohmen, M., van Holland, W. and de Kraker, KJ. (1997)
Multiple-view feature modelling and conversion. In W. Strasser, R. Klein and R. Rau,
(eds.): Geometric Modeling: Theory and Practice - The State of the Art, Springer, Berlin,
pp. 159-174

Bronsvoort, W.F., Bidarra, R. and Noort, A. (2001) Feature model visualization. Submitted
for publication

Chan, S., Wong, M. and Ng, V. (1999) Collaborative solid modelling on the WWW.
Proceedings of the 1999 ACM Symposium on Applied Computing, San Antonio, CA, pp.
598-602

CoCreate (2000) Shared engineering. http://www.cocreate.com/onespace/documentation/
whitepaperslshared_eng.pdf

CollabWare (2000) An introduction to GS-Design Beta. https:llwww.prodeveloper.netl
downloadslwhitepaper.pdf

Comerford, R. (2000) Software, piecewise. IEEE Spectrum, 37(2): 60--61
Gueziec A., Taubin, G., Hom, B. and Lazarus, F. (1999) A framework for streaming

geometry in VRML. IEEE Computer Graphics and Applications, 19(2): 68-78
Lee J.Y., Kim, H., Han, S.B. and Park, S.B. (1999) Network-centric feature-based modeling.

Proceedings of Pacific Graphics '99, IEEE Computer Society, pp. 280--289
Lewandowski, S. (1998) Frameworks for component-based client/server computing. ACM

Computing Surveys, 30(1): 3-27
Nam, TJ. and Wright, D.K. (1998) CollIDE: A shared 3D workspace for CAD. Proceedings

of the 1998 Conference on Network Entities, Leeds. http://interaction.brunel.ac.uk/
-dtpgtjnlneties98Inam.pdf

Spatial (2000) ACIS 3D Modeling Kernel, Version 6.2. Spatial Technology Inc., Boulder,
CO. http://www.spatial.coml

Sun Microsystems (2000) The Sun Java™ Technology Homepage. http://java.sun.coml

	Web-based interaction on feature models
	1. INTRODUCTION
	2. WEB-BASED, COLLABORATIVE FEATUREMODELLING
	3. VISUALISATION OF THE PRODUCT MODEL
	3.1. Sophisticated feature model images
	3.2. Interactive visualisation model

	4. INTERACTIVE SELECTION OF FEATURE ENTITIES
	5. IMPLEMENTATION AND POSSIBLE EXTENSIONS
	5.1. Using Java3D
	5.2. Mouse events
	5.3. Extensions

	6. CONCLUSIONS
	REFERENCES

