
4 RACING THE E-BOMB: HOW THE
INTERNET IS REDEFINING INFORMATION

SYSTEMS DEVELOPMENT METHODOLOGY

Abstract

Richard Baskerville
Jan Pries-Heje

Georgia State University
Atlanta, Georgia 30302

U.S.A.

A case study in three companies working on Internet time
reveals that the present notion of methodology seems to be
changing. In fact, the lack of methodology in its traditional
form seems to be characteristic. Instead of methodology, time
pressure and requirements ambiguity are found to be at the
core of J 0 properties of a new and redefined methodology for
Internet time development. In this paper, each of the properties
is briefly described together with causal links between the
properties and using examples from the study of three Danish
companies. Furthermore, it is discussed why methodology
seems to be undergoing a redefinition when working on
Internet time: the underlying philosophical foundation for the
change seems to be pragmatism.

1. INTRODUCTION

The Internet is being adopted faster than nearly any other technology . It took
30 years (1920-1950) for the telephone to reach a 60% penetration in the USA.
It took 15 years for computers to reach a 60% penetration. it took only two
years for the Internet to reach 60% penetration (Atlanta Constitution 2001).
Thus the growth of the Internet seems to be similar to an exploding bomb. We
have called this phenomenon the "e-bomb," and we have called the frantic speed
that companies are developing applications for the Internet and for electronic

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35489-7_33

© IFIP International Federation for Information Processing 2001
N. L. Russo et al. (eds.), Realigning Research and Practice in Information Systems Development

http://dx.doi.org/10.1007/978-0-387-35489-7_33

so Part 1: Developing Information Systems

commerce "racing" since the risk of becoming obsolete--swallowed by the
explosion-seems to be imminent.

Working at "Internet time" is not a new phenomenon. The term was coined
at Netscape and publicized by Cusumano and Yoffie (2000). However, we have
found that a consequence of Internet time is that a metamorphosis is underway
in the concept of methodology in certain systems development sectors. This
metamorphosis may continue the migration of meaning for "methodology" and
involve yet another reformulation of some fundamental assumptions about what
constitutes systems development methodology. This reformulation is being
driven by the dramatic increase in the influence of time on the systems develop­
ment process, and the dominance of "time-to-market. "Furthermore, this change
is not just a new methodology, but a new form of methodology that operates
from a largely separate philosophical foundation. The new form implies a
change in what methodology means to systems developers.

The current concept of methodology in systems theory regards ordered sys­
tems development processes and products. Systems development unfolds in a
series of phases or stages. Each phase operates with a defined notation and will
often result in a prescribed artifact, such as a design document or program. This
artifact is also typically in a prescribed form.

However, methodology is not a crisp concept. Methodology has rather a
messy terminological history among scholars in information systems. The term
has already undergone quite a migration in meaning. The "-ology" originally
implied a study of methods:

It would be better, as in the philosophy of science to speak of
"methods" when referring to specific ways of approaching and
solving problems, and to reserve "methodology" for compara­
tive and critical study of methods in general; otherwise this
vital field of study is nameless. (Stamper 1988)

Gradually, the distinction between methodology and its underlying term,
"method," has become blurred by common usage. For example, compare two
authoritative and current definitions of method and methodology:

Methodology: A systematic approach to conducting at least
one complete phase (e.g., design; testing) of software produc­
tion, consisting of a set of guidelines, activities, techniques and
tools, based on a particular philosophy of system development
and the target system. (Wynekoop and Russo 1993)

A method consists of prescriptions for performing a certain type
of working process .. .is characterized by its application area­
i.e., the type of working processes in which the method may be

Baskerville & Pries-HejelRedefining ISD Methodology

applied-and its perspective (i.e., some assumptions) on the
nature of these working processes and their environment. The
prescriptions of method are given in terms of techniques, tools,
and principles of organization. (Mathiassen and Munk-Madsen
1986)

51

Methodology and method now seem largely conflated concepts in informa­
tion systems parlance. Not surprisingly, when Stamper recognized this confla­
tion on the horizon, he admitted that he felt obliged to use the term methodology
as a substitute for method; although "under protest bowing only to customary
usage" (Stamper 1988).

In the last decade, and perhaps under the weight ofloose and unstable con­
ceptualizations, the practicality of methodology has been questioned altogether.
A growing number of studies have suggested that the relationship of methodo­
logies to the practice of information systems development is altogether tenuous
(Fitzgerald 1997, 1998,2000; Wynekoop and Russo 1997). It seems that metho­
dology has been so dominant in our thinking about systems development that it
may have become somewhat imaginary: a self-confirming hypothesis. For
example, one alternative viewpoint situates systems development as "ametho­
dical": the management and orchestration of systems development without the
predefined sequence, control, rationality, or claims to universality implied by
much of methodological thinking (Truex et al. 2000).

The paper will be developed as follows. In section 2, we will describe the
research approach that has given rise to the discovery of a reconceptualized
methodology in empirical settings. Section 3 describes the new methodology.
Section 4 describes how the new methodology differs from the previous
conceptualizations, first in a practical sense and second in a philosophical sense.
Finally, section 5 summarizes the discovery and draws some concluding impli­
cations from this study.

2. RESEARCH METHODOLOGY

The aim of the research was an exploration of the influence of working on
Internet time (Cusumano and Yoffie 2000). At a very general level, one could
say that we were testing the hypothesis that working on Internet time would have
to cause some changes in the way software development work was organized.
But beyond this, no hypotheses were pre-formulated and tested.

Data collection was carried out using open-ended interviewing following an
interview guide. The topics in the interview guide are shown in Figure 1.

52 Part I: Developing Information Systems

1. The finn and product and services
2. The interviewee
3. Projects in the organization-from start to end
4. Development model used?
5. Internet time-What does it mean to you?
6. The development process itself
7. Talent, learning, training and knowledge
8. Transfer of knowledge
9. Your biggest problem/Greatest challenge

Figure 1. Topics in Interview Guide

We interviewed in three Danish companies in 1999 and 2000. Two of the
companies were new to the authors and the third was a company we had visited
over a period of time for a longitudinal study. The main facts about the three
companies are given in Table 1.

Table 1. Facts on the Companies Studied

COMPANY NEWWAYS PROFWEB ALFAWEB

NO. OF 2000: 50 1999: 40 1999: 12
EMPLOYEES 1998: 50

1996: 20

NO. OF PEOPLE Four people: One Two people inter- CEO and develop-
INTERVIEWED project manager, a viewed in 1999: A ment manager

development mana- development mana- interviewed
gerand two ger and a developer/
developers/coders. coder.

Earlier (1996, 1997,
1998) we inter-
viewed four people
several times

PRODUCTS Custom-tailored Custom-tailored A general web-
Internet products for Internet and intranet based product sold
major customers products interfacing on the market as a
internationally. with large existing standard product for

databases. e-comrnerce.

Baskerville & Pries-HejelRedefining ISD Methodology 53

The interviews at Alfaweb and ProfWeb were tape and video recorded. The
interviews at Newways were recorded at the site using a portable computer. All
of the interviews were transcribed and the transcripts used for analysis.

To analyze the data we had collected, we used the grounded theory
methodology (Strauss and Corbin 1990). This research methodology allows the
development of a substantive theory of a problem under investigation without
prior hypotheses. The chosen grounded theory approach is composed of an
alternation between three different coding procedures to analyze the collected
data: open, axial, and selective coding. The goal of open coding is to reveal the
essential ideas found in the data. Open coding involves two essential tasks. The
first task is labeling phenomena. This task involves decomposing an observation
into discrete incidents or ideas. Each discrete incident or idea receives a name
or label that represents the phenomenon. These names represent a concept
inherent in the observation. An example of our coding is shown in Figure 2.

Example excerpt from interview at Open Coding
PROFWEB, May 1999

We talk about a generation 1 and a generation 2 Two generations of
Internet application Generation 1 is just a home Ihternet applications
page in Danish. A kind of a business card on the called generation 1
net. No functionality. Whereas generation 2 is and generation 2
what we call a web application ... from having just
simple functionality we now have a lot of com- Generation 2 has
plexity, and we have integration to other systems more complexity and
of different kinds and we have administration integration
And often to go from generation 1 to generation 2
is not a development it is a revolution. A rejection Generation1 was' not
of what we saw in generation 1 because the foun- solid
dation wasn't solid enough. We also had a number
of databases supporting some kind of stupid archi- Architecture didn't
tecture that didn't keep up. Thus generation 2 is keep up
characterized by moving further. We needed to
begin again and make it a formalized process. We Generation 2
were to begin software development. This was a requires a formalized
realization that surfaced in an executive meeting. process

Figure 2. Example of Open Coding

54 Part 1: Developing Information Systems

The second essential open-coding task is discovering categories. Cate­
gorizing is the process of finding related phenomena or common concepts and
themes in the accumulated data and grouping them under joint headings, thus
identifying categories and sub-categories of data. Developing a better and deeper
understanding of how the identified categories are related is the purpose of axial
coding. Axial coding involves two tasks further developing the categories and
properties. The first task connects categories in terms of a sequence of relation­
ships. For example, a causal condition or a consequence can connect two cate­
gories, or a category and a sub-category. The second task turns back to the data
for validation of the relationships. This return gives rise to the discovery and
specification of the differences and similarities among and within the categories.
This discovery adds variation and depth of understanding.

The authors did the first part of the axial coding together. One author pre­
sented the results of the open coding to the other. Similarities and differences
were noted and discussed. Categories and relationships were identified, dis­
cussed, corrected, and changed, until a common understanding of the categories,
sub-categories, and their relationships was reached. Finally one of the authors
returned to the data for validation. This led to further changes and additions.

Selective coding is the process of determining a core category, relating it to
all other categories, validating these relationships, and elaborating the categories
that need further refinement and development. The definition of only one core
category is usually recommended to maintain clarity and precision and to
achieve a tight integration of the categories. However, the authors found that the
analysis o(the data led to two core categories, one about time pressure, and
another about ambiguity of requirements.

Strauss and Corbin clearly advocate grounded theory coding of the data until
one core category stands out. However, we decided to have two core categories
since we found no empirical evidence in the data that time pressure preceded
ambiguity when on Internet time. Besides the two main categories, we identified
nine sub-categories. In Figure 3, the relationships between the categories are
shown and section 3 of this paper presents an account of each category and sub­
category.

3. NEW METHODOLOGY: INTERNET
TIME DEVELOPMENT

In the cases, we noted 10 properties of the new methodology. Each of these
properties is briefly described below, along with examples of how these pro­
perties are manifested in the cases. We will also describe the chain of causal
links that we discovered among these properties, which helps explain why this
particular set of properties has come to characterize Internet time development.
These properties and the causal chain are depicted graphically in Figure 3.

Baskerville & Pries-HejelRedefining ISD Methodology

Figure 3. The Model Consisting of Concepts Identified in the Study
and the Causal Chains Between Them

3.1 Time Pressure

55

First-to-market is the central, defining high-priority goal of Internet time
development. Minimizing time-to-market from concept to customer use is an
all-consuming activity and achievement of this goal drives almost all other ele­
ments of the methodology. This goal is not altogether new in business (Smith
and Reinertsen 1995) nor in software development (Cusumano and Selby 1995;
Iansiti and McCormack 1997); however, the degree to which it has inflamed
widespread systems development methodology has not yet been recognized.

We found time pressure to be a condition permeating software development
in all the three Internet web companies we studied. At Alfa Web, they experience
the time pressure as a pressure to keep up with all the needs and requirements
from the market: "Time .. .is not what we have now You just need to move to
fulfill customer needs and requirements and then you don't have the time to
think"

At NewWays, we studied a web site being developed for a major company
in the travel industry. This project was under extreme time pressure right from
the beginning. The launch of the web site to be developed was timed with a

56 Part 1.' Developing Information Systems

direct mail on campaign March I, 2000, and the project didn't really start before
January!

And at ProfWeb, they point to the relationship between time pressure and
the fast changing technology. A few years ago (1998), they earned a profit on
what they call generation 1 web sites, mainly giving companies a face on the
Internet. But today, all of the technology that went into those web sites is
obsolete. The lead programmer states:

The operational knowledge we have ... has a very short time­
span. We can live from the hands-on technological knowledge
we have for a year or maybe two, and then it will be a totally
different set of tools [with which] we are working.

3.2 Vague Requirements

An inability to pre-define system requirements is the central, defming
constraint of Internet time development. The requirements specification that
defines the operational goals and strategies in the systems project has
traditionally been the heart of systems methodology. However, Internet time
methodology accepts a starting point in which the goals, and consequently the
specific strategies, are permitted to persist in near or full ambiguity. A good
example of this ambiguity was given us at NewWays. A project manager relates:

Often a proj ect starts without a requirements specification. The
project manager says: "Companies come to us and say: We
believe there is a treasure buried in the Wodd Wide Web. But
we can't find it! We don't just want to copy and change some­
thing others have made available on the Internet. We want
something new."

Another good example of vague requirements and the ambiguity that it leads
to also comes from NewWays. After having struggled to fix a very fluid set of
features, it was decided to require written requirements specifications. How­
ever, since the customer did not have sufficient knowledge to do that, NewWays
did it themselves and just asked the customer to comment. In that way, eight
specifications were written over the course of two months with nearly 50%
change from version 1 to version 8 of the specification.

At ProfW eb, we find another way of handling vague requirements. Again
it involves writing a specification but this time the specification is only
specifying future use situations (known as use cases). The interesting thing here
is that it is done in such a speedy way, as the following quote by the develop­
ment manager at ProfWeb illustrates:

Baskerville & Pries-Heje/Redejining ISD Methodology

It is now our way of making a receipt for an assignment, saying;
if we have understood you correctly then tomorrow you will
have a description of what you want specified as use cases and
a prototype. Then we send it to the customer, and if they say
it's correct, that is what I want, then we move on.

3.3 Prototyping

57

The idea of using prototypes seems to be widespread and permeating both
early and late work in development projects. ProfWeb describes their use of
prototypes-as described above-as being part of their core competence. The
R&D manager says:

We live from being technologically in front of our competitors,
and from being able to visualize more far-reaching and wide­
ranging solutions to our customers than our competitors are
able.

At NewWays, prototypes are not being used only in cooperation with the
front end of a project. In fact, NewWays makes three or four prototypes within
a project. The development manager states:

We start out with a hand-drawn graphical mock-up. It doesn't
derail the discussion with technical details, thus we can concen­
trate on getting the systems architecture in place. Then we
write a basic requirement specification with use cases and
visual sketches included. This ensures that two people reading
the same specification get kind of the same picture inside their
head. The next thing we do is to make a clickable HTML­
version. It has no content but it gives the user an experience.
Then we make a prototype and then the final system.

3.4 Release Orientation

The vague requirements are not just something we see in the beginning of
a project. In fact, it continues throughout the project. One consequence is what
we have named a "release orientation." Software systems are produced in a
series of ever more refined and extensive versions of the product, and each
release contains bug fixes and new features. These maturing product cycles
characterize major Internet software development in which competition demands
significant product and feature changes every few months (Cusumano and

58 Part I: Developing Information Systems

Y offie 2000, p. 299). Our cases share this release orientation notable in this
well-known experience. This release orientation helps relieve some of the time
pressure because there always seems to be a new release one or two months
ahead. If a feature doesn't make it for the contemporary release, it is less of a
crisis because it can simply be postponed to the following release, which is
never very far behind.

3.5 Parallel Development

It appears that the release orientation demands a fast cycle time that is
impossible to meet in a serial process. Parallel development processes seem to
flourish along with release orientation, meaning that a number of activities take
place at the same time. For example, typical NewWays projects have a duration
of two to three months. A waterfall-like model is seen as much too slow.
Therefore, NewWays will have several parallel development processes running
at the same time.

This means that products and releases have to be designed and coordinated
for parallel development, another aspect common to large-scale Internet software
development (Cusumano and Yoffie 2000, p. 14). To make sure that the parallel
development activities still result in a consistent and coherent product, a very
important role in projects at NewWays is the coordinator. In every project, the
coordinator ensures that the interfaces between groups are kept well defined.

3.6 Fixed Architecture

To make parallel development possible, it is also necessary to have some
method to divide work. Interestingly, we have found in all three cases this
necessity has led to a fixed three-tier architecture. At NewWays, the develop­
ment manager describes it in the following way:

Architecture is important to NewWays. Typically an appli­
cation has three layers: At the bottom you have a database with
content. In the middle you have the business logic. And, at the
top, you have the HTML generating logic, typically written in
Visual Basic Scripts.

Thus the architecture is used as an important coordination mechanism to
divide the work in the project, as the following quotes clearly illustrate:
"Typically the graphical person is drawing something in PhotoShop which the
HTML person then can cut up and put into tags," says one developer and another

Baskerville & Pries-HejelRedejining ISD Methodology 59

continues, "Which means that we are released from worrying about presentation
and can concentrate on the heavy things" (the business logic and the database).

At ProfWeb, a very similar architecture was found. The development
manager reveals:

We have also developed a ProfWeb three-layer architecture
where you can see the databases we want to specialize inIn
the middle is our logic layer, which we are making as objects.
In the future we believe there will be many standard products
here ... and then we place the roles in our ProfWeb development
model in relation to the architecture.

3.7 Coding Your Way Out

The short time frame allowed for developing applications also introduces a
coding focus or even hacking as a project manager from NewWays expresses it:
"You have to accept that hacks are being made. That you don't have time to
think systematically. And that you don't reuse because of the time pressure."

Another very interesting example of coding your way out was found at
AlfaWeb. They simply developed their own programming language to be able
to speed development to what was needed. The CEO states:

PMA is our own programming language ... we have created our
own server-site programming language to Unix allowing us
direct access to the databases One good reason is that when
we need something we just put it into the language .. .it allows us
to do things fast, incredibly fast.

3.8 Quality Is Negotiable

Quality is a term often used-and misused. Everyone is for it, everyone feels
they understand it, and everyone feels that others are causing the problems
(Crosby 1980). Three different ways oflooking and talking about quality have
appeared over the last 20 years. One school of thought focuses on fulfilment of
customer expectations, thus suggesting that quality is the degree of fulfilled
expectations. Another way of thinking focuses on measurable product attri­
butes: defining quality as conformance to requirements. The third way of
looking at quality believes that a good development process will lead to quality.
The three resulting kinds of quality can be named expectation-based, product­
based, and process-based quality.

60 Part J: Developing Information Systems

As a consequence of both time pressure and vague requirements, we have
found that both product-based and process-based quality in our cases seems to
be ignored. However, since quality also can be defined as expectation-based,
thus fulfilling customer and user expectations, and since customers and users
seems to expect low quality, we decided to call this phenomena negotiable
quality.

NewWays is an example of negotiable quality. The product under develop­
ment during our study was released in the beginning of March 2000. However,
it wasn't finished. "In the week after we corrected defects," tells one of the
developers, "and we also made some of lowest priority scenarios after the
release." The project manager adds: "Weare doing module testing, but typically
we don't have enough time."

ProfWeb was also struggling with quality. They knew it wasn't good
enough. They knew that there might be potential catastrophes waiting, and they
had started thinking about what to do, as the development manager relates:

We collect a test group for every project. At least that is the
plan for the future, but right now we are running the pumps, not
financially, but we are very busy I have a capacity planning
system and the UNIX department is booked four months ahead.

Thus time pressure definitely is a cause of the negotiable quality, as is also
clearly seen from the following quote about maintaining an existing site
originally developed by ProfWeb two years before:

Documentation works fairly well for smaller maintenance
projects ... but if you have larger sites to maintain like the XYZ
site we did two years ago and are updating right now, then so
many new technologies and new tools have arrived, that in fact
you start from the beginning again.

3.9 Dependence on Good People

Time pressure is the primary reason why good people are in high demand.
As one of founders ofProfWeb phrases it: "I believe the largest bottleneck we
have is to get enough qualified employees."

However, not all kinds ofIT people seems to be in high demand. Traditional
analysts are not in as high demand as the technical folks who are close to the
code, as the following quote from the development manager at ProfW eb
illustrates: "I also realized that the job market is such that 1 could find 25 new
consultants tomorrow but 1 wouldn't be able to find two new programmers."

Baskerville & Pries-Heje/Redejining ISD Methodology 61

The reliance on good people is even more important in the smaller company,
Alfa Web. The CEO says:

The people I have sitting in there are bright. I thought I was
good at coding back then but I can't follow these people. They
are lightning intelligent, and maybe, at times, a little strange,
but very bright and very intelligent.... they also have a good
salary, that is part of this business isn't it?

Thus the last part of the quote above leads us to another interesting observa­
tion, namely that many nontraditional perks are put into place for retaining
employees. It might be offering computer games and room to play, or it could
be cappuccino machines or pool tables, as we have seen in some places when
visiting for interviews.

However, there is also a downside to the reliance on good people. Gold
plating (adding things that the customer never asked for) seems to be common.
"That may be the biggest problem we have in this business. Everyone wants to
be proud of what he or she is doing so they put in some extra," acording to the
project manager at NewWays.

3.10 Need for New Kinds of Structure

An issue that is closely related to methodology and to a number of issues we
have addressed above is structure. We haven't been able to establish a solid
causal relationship but we have indications that seem to reveal that the older and
larger the organization and/or the customers, the larger the need for structure.

AlfaWeb, which was only haIfa year old at the time of the interview, was
not feeling any need for structure. The CEO, answering the question of what it
is that creates quality and innovation, said: "I believe it is the informality but
also the lack of formal structures. If people have too close-knit a framework to
work in, you may cut down on creativity."

NewWays, being close to two years old and having 50 employees, had
started creating some structures. In fact, they had (in one single project men­
tioned earlier as the project having a requirements specification) placed a num­
ber of object-oriented techniques in use. The technique used for the require­
ments specification was, for example, use cases:

We gathered people from content editing, HTML, project
managers and me as developer. We then focused on the central
themes and identified use cases Based on that we then made
state-activity-diagrams, and then we wrote the requirements
specification.

62 Part 1: Developing Information Systems

NewWays is planning to use the experience from this project to see whether
this structure can be used in other (or maybe in all) projects.

Finally, ProfWeb tried to enforce structure twice without succeeding. The
fIrst time was a development manager who, as part of his graduate studies at a
university, developed a methodology. However, that methodology was too tradi­
tional and was never really used. The same happened in a second attempt, which
originally was presented in the following way by the development manager:

generation 2 is what we call a web application ... from having
just simple functionality we now have a lot of complexity, and
we have integration to other systems of different kinds and we
have administration Thus we needed to ... create a formalized
process And based on this we decided to take up a classic
development methodology with fIve phases: pre-analysis,
analysis, design, implementation, and editing.

However, this second attempt to add structure also collapsed. In fact, the
development manager quoted above left the company partly because of the lack
of acceptance for the structure he wanted to add.

We conclude that the breadth of resources available for systems develop­
ment drives the degree of structure in Internet time methodology. There seems
to be a need for structure, but the traditional structures seem to fail. When
resources grow in breadth without structure, quality seems to be driven down,
perhaps through ineffective resource use, ineffIciency, and poorly coordinated
activity. Structure is added almost begrudgingly, and only as little as may be
necessary to keep the development activities focused on the goals of fast
delivery of desired features.

4. DISCUSSION

A fIrst reaction to the above description of Internet time methodology might
be: "Ok, these are the properties of the methodology, but where is the methodo­
logy itself?" This reaction betrays a set of assumptions about methodology
rooted in the conflated concept we have been using for methodologies in the
1990s. Such a reaction overlooks the possibility that there is nothing more in
this methodology, nor actually necessary for the methodology, than that stated
by the 10 properties described in the preceding section.

Internet time methodology is not a methodology in the traditional sense (if
indeed there is anything stable enough in the concept of methodology that could
be characterized as traditional), but is rather a different form of methodology
that can only be understood in practice if we rethink what it means to follow a
methodology or to be a methodology. This rethinking is similar to the earlier

Baskerville & Pries-HejelRedefining ISD Methodology 63

rethinking that conflated methodology and method. It is not dissimilar to the
conceptual leap necessary for procedural programmers to make the transition
from procedural programming languages (e.g., Fortran or Pascal) to declarative
programming languages (e.g., Lisp or Prolog). First, we must recognize that in
the conflation of methodology and method, we have imbued the concept with
certain procedural and reductionist properties. From the definitions given earlier
in section 1 for method and methodology (Mathiassen and Munk-Madsen 1986;
Wynekoop and Russo 1993) we discover a concept laden with certain assump­
tions. Among these assumptions we find that methodology involves distinct
periods: phases, stages. We also find that activities in these phases are pre­
scribed as processes, prescriptive guidelines, etc. We also find an assumption
that these activities should revolve around a definite set oftechniques and tools.
There is a context: a use-setting or an application area. Finally we find an
assumption set or philosophy to which the methodology responds.

Second, we need to realize that the concept of methodology to which
Internet time methodology corresponds is dissimilar in certain ways. We still
find a context and we still find a philosophy. However, the remaining assump­
tions have been shifted: either changed in essence, de-emphasized, or entirely
missing. For example, the stages may no longer be fixed, and may routinely
change depending on the nature of each release; or these stages may iterate
continuously through the life of the product; or they may merge for one release
and separate for others. The activities for each release may be innovational or
redefined daily, depending on the features and the time available. The techni­
ques and tools may be completely left up to the individual programmer/
developer, or they may be opportunistically selected according to the latest
technological advances.

In a "traditional" sense, this development environment may not be a
methodology at all. Indeed, it could be characterized as entirely amethodical
(Truex et al. 2000). However, it may represent the beginning of a transition of
our understanding of information systems methodology away from its current
position, one in which it has been conflated with method, toward one that more
accurately responds to information systems development practice. This may be
an entirely natural migration of the meaning of information systems develop­
ment methodology, when we consider the historical basis of this meaning.

Information systems development methodology has traditionally aligned
within systems methodology in general. According to Klir (1991), the systems
movement emerged from three principle roots: mathematics, computer science,
and "systems thinking." A key aspect of systems thinking is holism, the anti­
thesis of reductionism, which originated in Gestalt theory. Consequently,
systems methodology in general can be associated with the last century's protest
against reductionism and positivist science. However, systems development
methodologies are a design science, rather than more abstract pure mathematical
science:

64 Part 1.' Developing Information Systems

Hence, the primacy of problems in systems methodology is in
sharp contrast with the primacy of methods in applied mathe­
matics. It is the most fundamental commitment of systems
methodology to develop methods or solving genuine systems
problems in their natural formulation (Klir 1991, p. 88).

There are two kinds of systems methodology: hard and soft systems
methodologies (Flood and Carson 1988). Hard systems methodology is based
on the assumption that problems can be structured, through a problem formu­
lation stage, in terms of well-defined objectives and constraints. Hard systems
methodology remains closely related to its mathematical roots. However, the
primacy of problems in systems science, moves methods out of their mathe­
matical driver'S seat. The methodological tools for dealing with a problem are
chosen in such a way as to best fit the problem rather than the other way round.
Even in hard systems methodologies, the tools may not only be mathematical in
nature, but also consist of a combination of mathematical, computational,
heuristic, experimental, or any other desired methodological trait.

Soft systems methodology deals with ill-structured problems, in which
objectives or purposes are themselves problematic. Its strongest proponent in
the systems science community has been Peter Checkland, whose formulation
of soft systems methodology has been persistently adapted in information
systems development (cf. Avison and Wood-Harper 1990; Checkland 1981).
However, Checkland's contribution also shifted the foundations of systems
methodology. Checkland drew heavily on action research, both as the scientific
method by which he developed and validated his methodology, and as the philo­
sophical basis of his soft systems methodology. In this way, the philosophical
roots of action research have crept into the foundations of the body of systems
science.

Notably, action research had already been applied to information systems
development. The action research underpinnings of the socio-technical move­
ment were independently brought from the Tavistock Institute into the informa­
tion systems arena by Mumford (cf. Mumford and Weir 1979). Thus the
influence of action research on information systems methodologies arrived in
both systems science and socio-technical forms.

Thus action research sprang forward in response to the primacy of informa­
tion systems methodology, both from Checkland's ill-structured systems prob­
lems and Mumford's concern for the human problems of organizational informa­
tion systems. Action research is itself an attempt to structure the solution­
seeking behavior of social scientists in rather familiar terms to systems
designers: stages, guidelines, and a set of techniques (cf. Lewin 1947a, 1947b;
Susman and Evered 1978).

But Lewin was, to a certain degree, only instantiating Dewey's logic of
controlled inquiry (Dewey 1938) as a generalized scientific methodology for

Baskerville & Pries-Heje/Redejining fSD Methodology 65

clinical use organizational development. Ifwe return to Dewey's original philo­
sophy, however, Dewey was not merely prescribing a logic of scientific inquiry,
but also describing the methodology of everyday human enquiry. The over­
arching practical need to address high-pressure Internet time goals has forced a
return of systems development methodology to Dewey's original, basic
formulation of human problem-solving behavior, one in which the exact stages,
guidelines, and techniques were fluid. Only a logic of goals and constraints
define the methodology, and beyond this the basic human problem solving philo­
sophy of logic will take over. Such is the case with Internet time development
methodology. The philosophy of logic is defined in the causal relationships
between the central goal and constraint of the development setting: time is
limited, and requirements are ambiguous. The rest is pragmatism:

... the controlled or directed transformation of an indeterminate
situation into one that is so determinate in its cotistituent
distinctions and relations as to convert the elements of the
original situation into a unified whole. (Dewey 1938, p. lO4)

Internet time methodology does not attempt to defme how this transfor­
mation is to be implemented for each cycle, stage, or phase. The human beings
in situ define and redefme this transformation each day depending on the
situation. On one day, they will need to prototype, on another day, they will just
need to hack: code their way out of a problem. The procedures, stages, and tools
cannot be predefined, only the logical relation between the properties of the
setting. Beyond this, they need to apply the best human intellect toward prag­
matically resolving each day's problems.

5. CONCLUSION

Internet time methodology makes no attempt to predefme certain methodical
elements that are common in recent methodologies. However, it does focus on
more fundamental and older methodological elements. Because the new
methodology does not "look" like the usual methodology, it is necessary for
methodologists to rethink what it means to be a methodology.

Internet time methodology is comprised of a central goal and constraint
(time and ambiguity), and is defined by a logic of properties that proceed from
the central goal and constraint. Internet time methodology assumes a philosophy
of pragmatism that defers substantial decisions about process to the everyday
logic of human inquiry. It is by all means a complete methodology within its
assumption space. More importantly, it works for its purposes. Internet time
methodology pushes an information product out the door in a satisfying way.

66 Part I: Developing Information Systems

The human beings involved feel that they matter, and that their problems are
getting resolved.

Further work is needed in this area. There are the usual limitations to
grounded theory analysis. The results above were derived through the use of
interpretive techniques using data from exploratory interviews. There was no
attempt to consider statistical-style sampling. The interpretive techniques limit
imposition of positivist criteria for evaluation of the findings, such as reliability
or validity. However, we believe exploratory and theoretical research such as
this is necessary in the development of knowledge, since a redefinition of the
assumption space is indicated, and this redefinition must proceed before more
objective approaches can continue on to confirm the findings (Galliers 1991).
However, we agree that additional confirmatory research is called for.

6. ACKNOWLEDGMENTS

A warm thanks to our interviewees who dedicated their valuable time to help
us advance our knowledge in this area. We are also grateful for the thoughtful
and constructive comments of two anonymous reviewers.

7. REFERENCES

Atlanta Constitution. "Internet Growing by Leaps and Bytes: Study Says Americans' Trek to
Cyberspace Is Now a Stampede," The Atlanta Constitution, February 19, 2001, pp. AI, A9.

Avison, D., and Wood-Harper, A. Multiview: An Exploration in Information Systems Develop­
ment, London: McGraw Hill, 1990.

Checkland, P. Systems Thinking, Systems Practice, Chichester, England: J. Wiley, 1981.
Crosby, P. B. Quality Is Free: The Art of Making Quality Certain, New York: New American

Library, 1980.
Cusumano, M., and Yoffie, D. Competing on Internet Time: Lessonsfrom Netscape and Its

Battle with Microsoft (1 Sf Touchstone Edition), New York: Touchstone, 2000.
Cusumano, M. A., and Selby, R. W. Microsoft Secrets: How the World's Most Powerful

Company Creates Technology, Shapes Markets and Manages People, New York: Free Press,
1995.

Dewey, J. Logic: The Theory of Inquiry, New York: Henry Holt and Co., 1938
Fitzgerald, B. ''The Use of System Development Methodologies in Practice: A Field Study,"

Information Systems Journal (7:3), 1997, pp. 201-212.
Fitzgerald, B. "An Empirical Investigation Into the Adoption of Systems Development

Methodologies," Information and Management (34), 1998, pp. 317-328.
Fitzgerald, B. "Systems Development Methodologies: The Problem of Tenses," Information

Technology and People (13:2), 2000, pp. 13-22.
Flood, R. L., and Carson, E. R. Dealing with Complexity: An Introduction to the Theory and

Application of Systems Science, New York: Plenum Press, 1988.
Galliers, R. "Choosing Appropriate Information Systems Research Approaches: A Revised

Taxonomy," in Information Systems Research: Contemporary Approaches and Emergent

Baskerville & Pries-HejelRedefining ISD Methodology 67

Traditions, H.-E. Nissen, H. K. Klein, and R. Hirschheim (eds.), Amsterdam: North­
Holland, 1991, pp. 327-346.

Iansiti, M., and McCormack, A. "Developing Products on Internet Time," Harvard Business
Review (75:5), 1997, pp. 108-117.

Klir, G. Facets of Systems Science, New York: Plenum Press, 1991.
Lewin, K. "Frontiers in Group Dynamics," Human Relations (I: I), I 947a, pp. 5-41.
Lewin, K. "Frontiers in Group Dynamics n," Human Relations (I :2), 1 947b, pp. 143-153.
Mathiassen, L., and Munk-Madsen, A. "Formalizations in Systems Development," Behaviour and

Information Technology (5:2),1986, pp. 145-155.
Mumford, E., and Weir, M. Computer Systems Work Design: The ETHICS Method, London:

Associated Business Press, 1979.
Smith, P. G., and Reinertsen, D. G. Developing Products in Half the Time (2nd Edition), New

York: Van Nostrand Reinhold, 1995.
Stamper, R. "Analyzing the Cultural Impact of a System," International Journal of Information

Management (8), 1988.
Strauss, A., and Corbin, 1. Basics of Qualitative Research: Grounded Theory Procedures and

Techniques, Newbury Park, CA: Sage Publications, 1990.
Susman, G., and Evered, R. "An Assessment of the Scientific Merits of Action Research,"

Administrative Science Quarterly (23:4), 1978, pp. 582-603.
Truex, D., Baskerville, R., and Travis, J. "Amethodical Systems Development: The Deferred

Meaning of Systems Development Methods," Accounting. Management and Information
Technology (10), 2000, pp. 53-79.

Wynekoop, J. L., and Russo, N. L. "Studying System Development Methodologies: An
Examination of Research Methods," Information Systems Journal (7: I), 1997, pp. 47-65.

Wynekoop, J., and Russo, N. "System Development Methodologies: Unanswered Questions and
the Research-Practice Gap," in Proceedings of the Fourteenth International Conference
Information Systems, 1. l. DeGross, R. P. Bostrom, and D. R. Robey (eds.), Orlando, FL,
1993, pp. 181-190.

About the Authors

Jan Pries-Heje holds M.sc. and Ph.D. degrees from Copenhagen Business
School, Denmark, and is currently a visiting professor in the Department of
Computer Infonnation Systems of Georgia State University. His research
interests include infonnation systems development, diffusion and adoption of IT ,
and software process improvement. He is a certified ISO 9000 auditor and
BOOTSTRAP assessor and has been a project manager for a number of multi­
media and organizational change projects. He is the Danish national representa­
tive to IFIP Technical Conunittee 8 on Infonnation Systems. He was conference
and organizing chair for the European Conference on Infonnation Systems
(ECIS) in Copenhagen, June 1999. Jan can be reached bye-mail at
jpries@cis.gsu.edu.

Richard Baskerville holds M.Sc. and Ph.D. degrees from the London
School of Economics and is department chair and professor of information
systems in the Department of Computer Infonnation Systems of Georgia State
University. His research specializes in security ofinfonnation systems, methods

68 Part 1: Developing Information Systems

of infonnation systems design and development, and the interaction of infor­
mation systems and organizations. His interests in methods extends to quali­
tative research methods. He is an associate editor of The Information Systems
Journal and MIS Quarterly. Richard's practical and consulting experience
includes advanced information system designs for the U.S. Defense and Energy
Departments. He is a Chartered Engineer under the British Engineering Council.
Richard can be reached bye-mail at baskerville@acm.org.

	4 RACING THE E-BOMB: HOW THE INTERNET IS REDEFINING INFORMATION SYSTEMS DEVELOPMENT METHODOLOGY
	1. INTRODUCTION
	2. RESEARCH METHODOLOGY
	3. NEW METHODOLOGY: INTERNETTIME DEVELOPMENT
	3.1 Time Pressure
	3.2 Vague Requirements
	3.3 Prototyping
	3.4 Release Orientation
	3.5 Parallel Development
	3.6 Fixed Architecture
	3.7 Coding Your Way Out
	3.8 Quality Is Negotiable
	3.9 Dependence on Good People
	3.10 Need for New Kinds of Structure
	4. DISCUSSION
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	About the Authors

