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Abstract In this paper we describe a scheme in which each receiver of a multicast session 
receives a stream with a different, unique watermark, while still retaining the 
scalability of multicast. The watermarked streams can be used to trace those 
users who make unauthorized copies of a stream. The watermarking is enabled 
by encryption of two slightly different copies of the original stream with a large 
set of different keys. 
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1. INTRODUCTION 
IP Multicast [1] provides efficient many-to-many data distribution in an 

Internet environment. Senders send datagrams to a 'host group', a set of zero 
or more hosts identified by a single IP destination address. The datagrams are 
delivered to all members of the host group by the network infrastructure in an 
optimized way. 

Multicast is very well suited to use for large scale media distribution because 
of the scalability: each network link in the network only has to transport one 
copy of each packet regardless of the number of receivers. The drawback is 
that receivers do not have to be authenticated and can easily eavesdrop on the 
traffic without being detected. A unicast solution, where we send one copy 
of the stream to each user, is easier to protect but is infeasible for large scale 
transmissions to 100,000 to 1000,000 users and above. 

Authentication and confidentiality can be solved with the use of encryption, 
but there is still a problem with malicious users retransmitting the media 
data unencrypted to other users. One way to detect whom the illegal copy 
originated from is fingerprinting, embedding unique information, a watermark, 
into each copy of the media that identifies the user receiving the copy. This 
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information should be robust against any possible user manipulation, and in 
the remainder of this paper we will assume a robust watermarking scheme that 
can perform this fingerprinting exist. A fingerprinted stream might discourage 
illegal copying of the media, since the origin or the buyer of stream can be 
identified. This might be the only option for pure software solutions where 
tamper-resistant hardware is impossible. 

The objectives of multicast and fingerprinting seem contradictory: multicast 
sends the same stream to everyone while to achieve the goals of fingerprinting 
every receiver should receive a different stream. In [2] Perkins, Brown and 
Crowcroft solve this problem by using active network elements that make sure 
all receivers get slightly different streams. In this paper we present a solution 
that does not suffer from the requirement of trusted active network elements. 
We propose a scheme were encryption is used to ensure different users receive 
fingerprinted streams. No trusted or active network elements are needed; all 
security is handled by the applications. 

The remainder of this paper is structured as follows. In the next section we 
describe related work on multicast security. Then in section 3 we describe our 
approach in detail. In section 4 we describe possible attacks against the system. 
In section 5 an experimental implementation of this system is described. 
Sections 6 and 7 conclude this paper with limitations and conclusions. 

2. BACKGROUND 
2.1. MULTICAST SECURITY 

Since IP multicast provides no authentication or confidentiality it is very 
easy to eavesdrop on, record and copy or retransmit a media stream completely 
anonymously. Basic encryption of multicast streams is not sufficient to protect 
important media streams since it is possible to retransmit either the content 
stream or the keys to untrusted users. 

In [3] a 'virtual key' is marked instead of the plain-text. A certain minimum 
number of users need to collaborate to construct a key that works but identifies 
none of them. This does not prevent retransmission of media content and the 
bandwidth needed for the control messages may be too high. 

Scalable content control schemes such as Nark [ 4] provides scalable authen­
tication and encryption but need tamper-resistant smart-cards. Watermarking 
is not possible in todays limited smart-cards and have to be done off-card, but 
can be done using a system such as Chameleon [5]. 

Chameleon by Anderson and Manifacas is a similar scheme to ours, where 
a stream . cipher is adapted to give slightly different output depending on a 
large unique key for each user. Our scheme can handle much more flexible 
watermarking algorithms; the two different watermarked packets do not have 
to have any common bits at all. 
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In the watercasting scheme [2] the source sends multiple subtly different 
copies of each packets and routers at the nodes in the multicast distribution 
tree discard packets, such that the stream delivered to each receiver is unique. 
This approach bas several problems: support :(or this protocol in routers is 
needed which is probably hard to achieve, the routers have to be trusted, and 
the source must send d copies of each media packet, where d is the depth of 
the multicast tree. 

2.2. WATERMARKING 
A simple watermarking method is to change the least significant bits in 

for example an audio clip or an image. For an audio clip, we could put our 
embedded message into to least significant bit of some or all samples. These 
methods are easily broken. More advanced methods often use spread spectrum 
techniques or transforms such as Fourier and OCT to make the watermarks 
more robust. 

A watermarking method that fulfills some requirements for the difficulty in 
removing it is called robust. Some examples of robustness requirements for 
audio recordings from IFPI, the International Federation for the Phonographic 
Industry [6] are: 

• The sonic quality of the sound recording should not change 

• The marking information should be recoverable after a wide range of 
filtering and processing operations, including two successive D/ A and 
AID conversions, MPEG compression, etc. 

• There should be no other way to remove or alter the embedded informa­
tion without sufficient degradation of the sound quality as to render it 
unusable 

Similar requirements can be made for still images, video and other media 
types. A good introduction to the subject is [7]. 

3. METHOD DESCRIPTION 

The source sends two different copies of each media packet, each with a 
different watermark. Both copies are encrypted with two different, random 
encryption keys. The encrypted packets are then sent to all receivers using IP 
multicast. Any given receiver has access to the key of only one of the two 
encrypted packets of one media packet. 

3.1. TRANSMISSION OF PACKETS 

The source has access to k media packets: P[l], P[2], · · · , P[k] and an 
encryption algorithm E, such that P = D(E(P, K), K). That is, E(P, K) 
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encrypts P with key k and D(P, K) decrypts P. A watermarking algorithm W: 
Pw = W ( P, w ), w = U ( P w) and two watermarks, w0 and w1 are also needed. 
W embeds the watermark w in the cover object P, and U extracts the watermark 
from the marked object. A detection algorithm that detects if the watermark 
is still present can be used instead: U(Pw, w) = B, B E {true, false}. The 
source needs 2k random encryption keys, SK[1], SK[2], · · · , SK[2k], to be 
able to transmit the media packets. A receiver r has access to k of these keys: 
either RKr[i] = SK[2i- 1] or RKr[i] = SK[2i], i = {1, 2, · · · , k}. 

To transmit media packet i the source perform the following operations: 

1 Read the media packet, P[i] 
2 Create two watermarked packets, Vo[i] = W(P[i],w0 ) and Vi[i] 

W(P[i],w1) 
3 Get two encryption keys: SK[2i- 1] and SK[2i] 
4 Encrypt Vo[i] and V1[i]: C0 [i] = E(V0 [i], SK[2i - 1]) and C1[i] = 

E(V1[i], SK[2i]) 
5 Transmit Co[i] and C![i] together with i 

At the receiver side, the client receives both packets and tries to decrypt 
them: 

1 Receive two packets: Co[i] andC1[i] 
2 Get the decryption key for packet i: RKr[i] 
3 Try to decrypt both packets with key RKr[i] 
4 Only one packet will decrypt into a proper media packet: VJ; [i] 

D( Cj;[i], RKr [i]), ji E {0, 1} 
5 Decode and render l/j; [ i] 

For each media packet the receiver will be able to decode exactly one of 
the watermarked packets. Which of the two packets is decided by the keys the 
source has assigned to the receiver. 

3.2. IDENTITY STRINGS 
If the keys a receiver have access to is unique among all receivers and 

known by the source, a unique identity string for that user can be defined: 
idr = Br[1], Br[2], ... , Br[k], Br[i] E {0, 1 }. 

This identity string can be derived by the source from both the keys given 
to the receiver and the stream the receiver decrypted. From the keys the source 
sent to the receiver: 

Br[i] = {0, if RKr[i] = SK[2i -1] 
1, if RKr[i] = SK[2i] 



From the decrypted stream for the user: 

if U(Vj;[i]) = wo 
if U(Vj;(i]) = w1 
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{
0, 

Br[i] = 1, 
undefined, if neither C0[i] nor Cl[i] was received or decrypted 

If the receiver do not receive all packets, due to for example packet loss or 
that the receiver tuned in late, the identity strings will not match completely. 
If n is large enough, the partial identity string will still be long enough to be 
unique among all receivers although some bits are undefined. 

3.3. BANDWIDTH USAGE 
Since 2 copies have to be sent for each media packet, the bandwidth usage is 

doubled both for the source and the receivers. This can be decreased by some 
optimizations. 

At any given time, only one of the two watermarked packets is actually 
useful for a single receiver since the other packet can not be decrypted. If 
we send the two copies on different multicast groups the receivers can hop 
between the groups by joining and leaving them as the group the correct packet 
is transmitted on changes. In this approach we not only have to send the keys 
to each receiver but also which stream to receive; one extra bit for each key is 
needed. Unfortunately the join/leave latency for IP multicast is currently too 
large for this approach. Also, if more than one receiver is on the same network 
segment most of saving is lost. 

As pointed out in [2] another optimization would be to only watermark 
1 in every x packet, thus reducing the bandwidth to (1 + 1/x) times the 
bandwidth of the original stream. Unfortunately a malicious user could remove 
these watermarked packets and retransmit the resulting degraded stream if x 
is large. We must therefore make sure that the degradation is large enough to 
discourage removal of the watermarked packets. One example of this is to only 
add watermarks to the I frames of an MPEG video stream or only watermark 
the last 10 minutes of a movie. 

3.4. KEY DISTRIBUTION 
The receiver keys can be treated as a long term key distributed by out-of­

band means when the users registers, either as a downloadable file (protected 
by e.g. SSL/TLS [8]) or delivered to the user on a floppy or cdrom. All these 
solutions have problems when revocation of access is considered. The keys 
can also be continuously streamed to the users. The bandwidth per user needed 
for this is small, but it is still a serious scalability problem. 

The amount of keys that each receiver needs depends on the required 
security (see section 4.1). The total size of the keys for one receiver is then 
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keys· key size. Using 10000 keys and a key size of 128 bits thus requires 160 
kbyte per user. The source only has to store a bitmask of length keys for each 
user and 2 · keys · key size bytes of key material. A cryptographically secure 
random number generator can also generate the bitmasks instead to further 
reduce storage needs at the source. 

3.5. KEY SIZE 
It can be argued that attackers with sufficient funds to break, for example, 

56 bit keys also have enough funds to get keys in other easier ways, for 
example using false identities while registering, and thus we do not need any 
stronger keys. On the other hand, getting access to computing power does not 
necessarily require monetary funds; a distributed attack is also possible. 

It is not enough to break one of the keys since it only gives the attacker the 
option to change one of the watermarked packets in the stream. An attacker 
has to break a sufficient amount of keys to get enough packets to create an 
unidentifiable watermarked stream. 

4. ATTACKS 
We assume that it is not possible to either remove the watermark or break 

the encryption in reasonable time. We also assume that the attacker can not 
steal the non-watermarked stream from the source by breaking into the server. 

If the encryption algorithm is broken an attacker can choose the !mal 
watermarked stream and make traitor tracing impossible, but if the encryption 
algorithm is chosen with care and with large enough key size and the keys are 
generated properly this can be avoided. 

It is possible to attack another receiver's computer and steal the stream or 
keys from there, thus indicating someone else as the pirate. These kinds of 
attacks are out of scope for this paper. 

Removal of the watermark mighL be possible if a robust watermarking 
algorithm is not chosen. The existence of such an algorithm is not considered 
in this paper. 

Several users can collaborate and combine their streams to try to prevent 
watermark detection, either by choosing packets from different streams or by 
merging packets with for example bit voting. The two watermarks Wo and w1 

and the watermarking algorithm should be chosen so that at least one of the 
watermarks is still present and recoverable after the bit voting. 

Getting access to several streams and selecting packets from different 
streams is an easy and powerful attack. In the next section we analyze this 
attack further. 
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4.1. TRAITOR TRACING 
If p users collaborate, at least k J p of the original bits from one of the streams 

will always remain. We must make sure that this fraction is large enough to 
ensure a high probability of detection of the collaborators. 

We assume we have one identy string for the illegal stream id1 and n identy 
strings for the legal watermarked streams: id£[1], id£[2], ..• , idL[n]· We want 
to identify the identy string of at least one of the streams that was used to create 
the illegal stream. We can calculate a measure on how good a watermarked 
stream match the illegal stream by adding the XOR value of bits from the 
identity strings: 

k 

M(L[i], I) = L BL[i][j] EB BI[j] 
j=1 

We define the set Snc as the values M(L[i], I) where i is not one of the 
collaborators, that is L[i] was not used to create the illegal stream. Sc is the 
values M(L[i], I) where i one of the collaborators. The values in Snc have a 
binomial distribution Xnc = Bin ( k, and the distribution of the values in 

Sc is Xc = Bin ( k ( 1 - , + These distributions can be approximated 
with a normal distribution, 

and 

As the number of collaborators, p, increases Xc converges towards Xnc as 
expected. If p is relatively small, the probability that all values in Sc are less 
than E[Xc] is very high. For example, if n = 100000, p = 10, k = 10000 
the distributions are Xnc = N (5000, 50) and Xc = N (5500, 47.43). The 
probability that at least one of the values in Sc is greater than E[Xc] is 
A = 1 - P (Xc < E[Xc]) 100000 = 1 - P (Xc < 5500) 100000 = 0. 76 · 10-18 

The probability that at least one of the values in Snc is greater that E[Xc] is 
B = 1- P (Xnc < E[Xc]) 10 = 1- 10 = 0.9990. That is, there is a high 
probability that the identy string with the highest value of M(L[i], I) is one of 
the collaborators. For p = 50 on the other hand, we have virtually no chance 
to detect any of the collaborators. 
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5. IMPLEMENTATION 
To test the feasibility of our scheme it was implemented in an existing Java 

application system[9] for audio transmission over multicast which uses the 
MPEG-1 [1 0] audio compression standard. The system consists of a server 
application and a client application. The server read MPEG-1 audio data from 
disk and send it to a multicast address using RTP[11], the client receives this 
data and decodes it. The MPEG decoding is not done in Java but in native 
code. 

Blowfish was chosen as the encryption algorithm, and was provided by the 
reference implementation of the Java™ Cryptography Extension (JCE) 1.2.1 
from Sun. Since the implementation is not supposed to be used in a production 
environment a very weak watermarking algorithm was chosen for simplicity: 
a few otherwise unused bits in the MPEG audio frame header are used for the 
watermark. 

Prior to the transmission, the server generate 2n random keys and keys for 
p users, where the values n and p are given. These keys are stored in files 
until they are used. If the stream is longer than the value of n, the keys 'wrap 
around': the keys for packet i is SK[l + {2i- 1 mod n)] and SK[l + {2i 
mod n)]. 

When we enable the watermarking scheme in the server the CPU usage 
increases from 1.0% to 12%1. The large increase is because the server now 
has to encrypt every packet twice. For the client application the increase is 
from 6.7% to 18%. The bandwidth usage is the same for both a client and a 
server, independent of the number of users. As expected, the bandwidth2 usage 
increases by a factor of roughly two, from 133.3 kbyte/s to 270.4 kbyte/s. That 
the factor is 2.03 and not 2 is due to a small extra overhead for padding when 
doing encryption. The cost of key distribution is not included. 

6. LIMITATIONS 
Our scheme relies on the existence of a robust watermarking scheme. No 

perfectly robust watermarking algorithm has been proposed so far, and it is not 
clear such a algorithm is possible. Without any optimizations, we need at least 
twice the bandwidth of the original media stream which might be too much for 
some applications. We have not considered the problem of revoking access for 
a receiver; with the current scheme this would require that new keys have to 
be distributed to all receivers again. 

Although only the use of two watermarks are described in this paper we are 
not limited to this. Instead of sending two different packets for each media 
packet it is possible to send any number of copies, although this increases the 
bandwidth substantially. The watermarks wo and w1 do not have be constant 
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and can change at any time as long as w0 # w1 and the source keeps track of 
them. 

7. CONCLUSION 
We have described a scheme for scalable fingerprinting of multicasted 

media. Contrary to other proposed schemes no active network components or 
tamper-resistant smart-cards are needed. By increasing the bandwidth with a 
constant factor we can ensure that every receiver get a unique fingerprinted 
stream. The watermarks that make up the fingerprints are not fixed to a certain 
number of bits or format but can be of any format the watermarking algorithm 
requires for robustness. 

Like other traitor tracing schemes based on watermarks, it has only limited 
collusion resistance. The most promising attack is to get hold of several streams 
and mix them together so the source can no longer be identified. The main 
countermeasure is to increase the number of watermarks in one stream. 

Notes 
1. Measured with perfmon.exe on a Pentium III 550 :MHz computer running Windows NT4. The 

bit-rate of the media stream was 128 kbit/s and each key was 40 bits. 
2. This includes RTP headers but not IP and UDP headers 
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