
LARGE SCALE DISTRIBUTED
WATERMARKING OF MULTICAST MEDIA
THROUGH ENCRYPTION

Roland Parviainen, Peter Parnes
Department of Computer Science/Centre for Distance-spanning Technology
Lulea University of Technology, 971 87 Lulea, Sweden
Roland.Parviainen@cdt.luth.se, Peter.Parnes@cdt.luth.se

Abstract In this paper we describe a scheme in which each receiver of a multicast session
receives a stream with a different, unique watermark, while still retaining the
scalability of multicast. The watermarked streams can be used to trace those
users who make unauthorized copies of a stream. The watermarking is enabled
by encryption of two slightly different copies of the original stream with a large
set of different keys.

Keywords: Watermarking, fingerprinting, multicast, multimedia

1. INTRODUCTION
IP Multicast [1] provides efficient many-to-many data distribution in an

Internet environment. Senders send datagrams to a 'host group', a set of zero
or more hosts identified by a single IP destination address. The datagrams are
delivered to all members of the host group by the network infrastructure in an
optimized way.

Multicast is very well suited to use for large scale media distribution because
of the scalability: each network link in the network only has to transport one
copy of each packet regardless of the number of receivers. The drawback is
that receivers do not have to be authenticated and can easily eavesdrop on the
traffic without being detected. A unicast solution, where we send one copy
of the stream to each user, is easier to protect but is infeasible for large scale
transmissions to 100,000 to 1000,000 users and above.

Authentication and confidentiality can be solved with the use of encryption,
but there is still a problem with malicious users retransmitting the media
data unencrypted to other users. One way to detect whom the illegal copy
originated from is fingerprinting, embedding unique information, a watermark,
into each copy of the media that identifies the user receiving the copy. This

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2001
R. Steinmetz et al. (eds.), Communications and Multimedia Security Issues of the New Century

10.1007/978-0-387-35413-2_36

http://dx.doi.org/10.1007/978-0-387-35413-2_36

150

information should be robust against any possible user manipulation, and in
the remainder of this paper we will assume a robust watermarking scheme that
can perform this fingerprinting exist. A fingerprinted stream might discourage
illegal copying of the media, since the origin or the buyer of stream can be
identified. This might be the only option for pure software solutions where
tamper-resistant hardware is impossible.

The objectives of multicast and fingerprinting seem contradictory: multicast
sends the same stream to everyone while to achieve the goals of fingerprinting
every receiver should receive a different stream. In [2] Perkins, Brown and
Crowcroft solve this problem by using active network elements that make sure
all receivers get slightly different streams. In this paper we present a solution
that does not suffer from the requirement of trusted active network elements.
We propose a scheme were encryption is used to ensure different users receive
fingerprinted streams. No trusted or active network elements are needed; all
security is handled by the applications.

The remainder of this paper is structured as follows. In the next section we
describe related work on multicast security. Then in section 3 we describe our
approach in detail. In section 4 we describe possible attacks against the system.
In section 5 an experimental implementation of this system is described.
Sections 6 and 7 conclude this paper with limitations and conclusions.

2. BACKGROUND
2.1. MULTICAST SECURITY

Since IP multicast provides no authentication or confidentiality it is very
easy to eavesdrop on, record and copy or retransmit a media stream completely
anonymously. Basic encryption of multicast streams is not sufficient to protect
important media streams since it is possible to retransmit either the content
stream or the keys to untrusted users.

In [3] a 'virtual key' is marked instead of the plain-text. A certain minimum
number of users need to collaborate to construct a key that works but identifies
none of them. This does not prevent retransmission of media content and the
bandwidth needed for the control messages may be too high.

Scalable content control schemes such as Nark [4] provides scalable authen­
tication and encryption but need tamper-resistant smart-cards. Watermarking
is not possible in todays limited smart-cards and have to be done off-card, but
can be done using a system such as Chameleon [5].

Chameleon by Anderson and Manifacas is a similar scheme to ours, where
a stream . cipher is adapted to give slightly different output depending on a
large unique key for each user. Our scheme can handle much more flexible
watermarking algorithms; the two different watermarked packets do not have
to have any common bits at all.

151

In the watercasting scheme [2] the source sends multiple subtly different
copies of each packets and routers at the nodes in the multicast distribution
tree discard packets, such that the stream delivered to each receiver is unique.
This approach bas several problems: support :(or this protocol in routers is
needed which is probably hard to achieve, the routers have to be trusted, and
the source must send d copies of each media packet, where d is the depth of
the multicast tree.

2.2. WATERMARKING
A simple watermarking method is to change the least significant bits in

for example an audio clip or an image. For an audio clip, we could put our
embedded message into to least significant bit of some or all samples. These
methods are easily broken. More advanced methods often use spread spectrum
techniques or transforms such as Fourier and OCT to make the watermarks
more robust.

A watermarking method that fulfills some requirements for the difficulty in
removing it is called robust. Some examples of robustness requirements for
audio recordings from IFPI, the International Federation for the Phonographic
Industry [6] are:

• The sonic quality of the sound recording should not change

• The marking information should be recoverable after a wide range of
filtering and processing operations, including two successive D/ A and
AID conversions, MPEG compression, etc.

• There should be no other way to remove or alter the embedded informa­
tion without sufficient degradation of the sound quality as to render it
unusable

Similar requirements can be made for still images, video and other media
types. A good introduction to the subject is [7].

3. METHOD DESCRIPTION

The source sends two different copies of each media packet, each with a
different watermark. Both copies are encrypted with two different, random
encryption keys. The encrypted packets are then sent to all receivers using IP
multicast. Any given receiver has access to the key of only one of the two
encrypted packets of one media packet.

3.1. TRANSMISSION OF PACKETS

The source has access to k media packets: P[l], P[2], · · · , P[k] and an
encryption algorithm E, such that P = D(E(P, K), K). That is, E(P, K)

152

encrypts P with key k and D(P, K) decrypts P. A watermarking algorithm W:
Pw = W (P, w), w = U (P w) and two watermarks, w0 and w1 are also needed.
W embeds the watermark w in the cover object P, and U extracts the watermark
from the marked object. A detection algorithm that detects if the watermark
is still present can be used instead: U(Pw, w) = B, B E {true, false}. The
source needs 2k random encryption keys, SK[1], SK[2], · · · , SK[2k], to be
able to transmit the media packets. A receiver r has access to k of these keys:
either RKr[i] = SK[2i- 1] or RKr[i] = SK[2i], i = {1, 2, · · · , k}.

To transmit media packet i the source perform the following operations:

1 Read the media packet, P[i]
2 Create two watermarked packets, Vo[i] = W(P[i],w0) and Vi[i]

W(P[i],w1)
3 Get two encryption keys: SK[2i- 1] and SK[2i]
4 Encrypt Vo[i] and V1[i]: C0 [i] = E(V0 [i], SK[2i - 1]) and C1[i] =

E(V1[i], SK[2i])
5 Transmit Co[i] and C![i] together with i

At the receiver side, the client receives both packets and tries to decrypt
them:

1 Receive two packets: Co[i] andC1[i]
2 Get the decryption key for packet i: RKr[i]
3 Try to decrypt both packets with key RKr[i]
4 Only one packet will decrypt into a proper media packet: VJ; [i]

D(Cj;[i], RKr [i]), ji E {0, 1}
5 Decode and render l/j; [i]

For each media packet the receiver will be able to decode exactly one of
the watermarked packets. Which of the two packets is decided by the keys the
source has assigned to the receiver.

3.2. IDENTITY STRINGS
If the keys a receiver have access to is unique among all receivers and

known by the source, a unique identity string for that user can be defined:
idr = Br[1], Br[2], ... , Br[k], Br[i] E {0, 1 }.

This identity string can be derived by the source from both the keys given
to the receiver and the stream the receiver decrypted. From the keys the source
sent to the receiver:

Br[i] = {0, if RKr[i] = SK[2i -1]
1, if RKr[i] = SK[2i]

From the decrypted stream for the user:

if U(Vj;[i]) = wo
if U(Vj;(i]) = w1

153

{
0,

Br[i] = 1,
undefined, if neither C0[i] nor Cl[i] was received or decrypted

If the receiver do not receive all packets, due to for example packet loss or
that the receiver tuned in late, the identity strings will not match completely.
If n is large enough, the partial identity string will still be long enough to be
unique among all receivers although some bits are undefined.

3.3. BANDWIDTH USAGE
Since 2 copies have to be sent for each media packet, the bandwidth usage is

doubled both for the source and the receivers. This can be decreased by some
optimizations.

At any given time, only one of the two watermarked packets is actually
useful for a single receiver since the other packet can not be decrypted. If
we send the two copies on different multicast groups the receivers can hop
between the groups by joining and leaving them as the group the correct packet
is transmitted on changes. In this approach we not only have to send the keys
to each receiver but also which stream to receive; one extra bit for each key is
needed. Unfortunately the join/leave latency for IP multicast is currently too
large for this approach. Also, if more than one receiver is on the same network
segment most of saving is lost.

As pointed out in [2] another optimization would be to only watermark
1 in every x packet, thus reducing the bandwidth to (1 + 1/x) times the
bandwidth of the original stream. Unfortunately a malicious user could remove
these watermarked packets and retransmit the resulting degraded stream if x
is large. We must therefore make sure that the degradation is large enough to
discourage removal of the watermarked packets. One example of this is to only
add watermarks to the I frames of an MPEG video stream or only watermark
the last 10 minutes of a movie.

3.4. KEY DISTRIBUTION
The receiver keys can be treated as a long term key distributed by out-of­

band means when the users registers, either as a downloadable file (protected
by e.g. SSL/TLS [8]) or delivered to the user on a floppy or cdrom. All these
solutions have problems when revocation of access is considered. The keys
can also be continuously streamed to the users. The bandwidth per user needed
for this is small, but it is still a serious scalability problem.

The amount of keys that each receiver needs depends on the required
security (see section 4.1). The total size of the keys for one receiver is then

154

keys· key size. Using 10000 keys and a key size of 128 bits thus requires 160
kbyte per user. The source only has to store a bitmask of length keys for each
user and 2 · keys · key size bytes of key material. A cryptographically secure
random number generator can also generate the bitmasks instead to further
reduce storage needs at the source.

3.5. KEY SIZE
It can be argued that attackers with sufficient funds to break, for example,

56 bit keys also have enough funds to get keys in other easier ways, for
example using false identities while registering, and thus we do not need any
stronger keys. On the other hand, getting access to computing power does not
necessarily require monetary funds; a distributed attack is also possible.

It is not enough to break one of the keys since it only gives the attacker the
option to change one of the watermarked packets in the stream. An attacker
has to break a sufficient amount of keys to get enough packets to create an
unidentifiable watermarked stream.

4. ATTACKS
We assume that it is not possible to either remove the watermark or break

the encryption in reasonable time. We also assume that the attacker can not
steal the non-watermarked stream from the source by breaking into the server.

If the encryption algorithm is broken an attacker can choose the !mal
watermarked stream and make traitor tracing impossible, but if the encryption
algorithm is chosen with care and with large enough key size and the keys are
generated properly this can be avoided.

It is possible to attack another receiver's computer and steal the stream or
keys from there, thus indicating someone else as the pirate. These kinds of
attacks are out of scope for this paper.

Removal of the watermark mighL be possible if a robust watermarking
algorithm is not chosen. The existence of such an algorithm is not considered
in this paper.

Several users can collaborate and combine their streams to try to prevent
watermark detection, either by choosing packets from different streams or by
merging packets with for example bit voting. The two watermarks Wo and w1

and the watermarking algorithm should be chosen so that at least one of the
watermarks is still present and recoverable after the bit voting.

Getting access to several streams and selecting packets from different
streams is an easy and powerful attack. In the next section we analyze this
attack further.

155

4.1. TRAITOR TRACING
If p users collaborate, at least k J p of the original bits from one of the streams

will always remain. We must make sure that this fraction is large enough to
ensure a high probability of detection of the collaborators.

We assume we have one identy string for the illegal stream id1 and n identy
strings for the legal watermarked streams: id£[1], id£[2], ..• , idL[n]· We want
to identify the identy string of at least one of the streams that was used to create
the illegal stream. We can calculate a measure on how good a watermarked
stream match the illegal stream by adding the XOR value of bits from the
identity strings:

k

M(L[i], I) = L BL[i][j] EB BI[j]
j=1

We define the set Snc as the values M(L[i], I) where i is not one of the
collaborators, that is L[i] was not used to create the illegal stream. Sc is the
values M(L[i], I) where i one of the collaborators. The values in Snc have a
binomial distribution Xnc = Bin (k, and the distribution of the values in

Sc is Xc = Bin (k (1 - , + These distributions can be approximated
with a normal distribution,

and

As the number of collaborators, p, increases Xc converges towards Xnc as
expected. If p is relatively small, the probability that all values in Sc are less
than E[Xc] is very high. For example, if n = 100000, p = 10, k = 10000
the distributions are Xnc = N (5000, 50) and Xc = N (5500, 47.43). The
probability that at least one of the values in Sc is greater than E[Xc] is
A = 1 - P (Xc < E[Xc]) 100000 = 1 - P (Xc < 5500) 100000 = 0. 76 · 10-18

The probability that at least one of the values in Snc is greater that E[Xc] is
B = 1- P (Xnc < E[Xc]) 10 = 1- 10 = 0.9990. That is, there is a high
probability that the identy string with the highest value of M(L[i], I) is one of
the collaborators. For p = 50 on the other hand, we have virtually no chance
to detect any of the collaborators.

156

5. IMPLEMENTATION
To test the feasibility of our scheme it was implemented in an existing Java

application system[9] for audio transmission over multicast which uses the
MPEG-1 [1 0] audio compression standard. The system consists of a server
application and a client application. The server read MPEG-1 audio data from
disk and send it to a multicast address using RTP[11], the client receives this
data and decodes it. The MPEG decoding is not done in Java but in native
code.

Blowfish was chosen as the encryption algorithm, and was provided by the
reference implementation of the Java™ Cryptography Extension (JCE) 1.2.1
from Sun. Since the implementation is not supposed to be used in a production
environment a very weak watermarking algorithm was chosen for simplicity:
a few otherwise unused bits in the MPEG audio frame header are used for the
watermark.

Prior to the transmission, the server generate 2n random keys and keys for
p users, where the values n and p are given. These keys are stored in files
until they are used. If the stream is longer than the value of n, the keys 'wrap
around': the keys for packet i is SK[l + {2i- 1 mod n)] and SK[l + {2i
mod n)].

When we enable the watermarking scheme in the server the CPU usage
increases from 1.0% to 12%1. The large increase is because the server now
has to encrypt every packet twice. For the client application the increase is
from 6.7% to 18%. The bandwidth usage is the same for both a client and a
server, independent of the number of users. As expected, the bandwidth2 usage
increases by a factor of roughly two, from 133.3 kbyte/s to 270.4 kbyte/s. That
the factor is 2.03 and not 2 is due to a small extra overhead for padding when
doing encryption. The cost of key distribution is not included.

6. LIMITATIONS
Our scheme relies on the existence of a robust watermarking scheme. No

perfectly robust watermarking algorithm has been proposed so far, and it is not
clear such a algorithm is possible. Without any optimizations, we need at least
twice the bandwidth of the original media stream which might be too much for
some applications. We have not considered the problem of revoking access for
a receiver; with the current scheme this would require that new keys have to
be distributed to all receivers again.

Although only the use of two watermarks are described in this paper we are
not limited to this. Instead of sending two different packets for each media
packet it is possible to send any number of copies, although this increases the
bandwidth substantially. The watermarks wo and w1 do not have be constant

157

and can change at any time as long as w0 # w1 and the source keeps track of
them.

7. CONCLUSION
We have described a scheme for scalable fingerprinting of multicasted

media. Contrary to other proposed schemes no active network components or
tamper-resistant smart-cards are needed. By increasing the bandwidth with a
constant factor we can ensure that every receiver get a unique fingerprinted
stream. The watermarks that make up the fingerprints are not fixed to a certain
number of bits or format but can be of any format the watermarking algorithm
requires for robustness.

Like other traitor tracing schemes based on watermarks, it has only limited
collusion resistance. The most promising attack is to get hold of several streams
and mix them together so the source can no longer be identified. The main
countermeasure is to increase the number of watermarks in one stream.

Notes
1. Measured with perfmon.exe on a Pentium III 550 :MHz computer running Windows NT4. The

bit-rate of the media stream was 128 kbit/s and each key was 40 bits.
2. This includes RTP headers but not IP and UDP headers

References

[1] S. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis,
Stanford University, 1991.

[2] I. Brown, C. Perkins, and J. Crowcroft. Watercasting: Distributed wa­
termarking of multicast media. In Proceedings of the First International
Workshop on Networked Group Communication, 1999. Springer-Verlag
Lecture Notes in Computer Science, 1736.

[3] B. Chor, A. Fiat, and M. Naor. Tracing Traitors. In Advances in
Cryptology---CRYPTO '94, volume 839 of Lecture Notes in Computer
Science, pages 257--270. Springer-Verlag, 1994.

[4] B. Briscoe and I. Fairman. Nark: Receiver-based multicast non­
repudiation and key management. In ACM Conference on Electronic
Commerce, 1999.

[5] R.J Anderson and C. Manifavas. Chameleon -- A New Kind of Stream
Cipher. In Fourth Workshop on Fast Software Encryption, 1997.

[6] London W1R 5P J International Federation of the Phonographic Industry,
54 Regent Street. Request for proposals - Embedded signalling systems
issue 1.0., June 1997.

158

[7] S. Katzenbeisser and F.A.P. Petitcolas, editors. Information Hiding:
Techniques for Steganography and Digital Watermarking. Artech House,
2000.

[8] T. Dierks and C. Allen. The TI..S protocol, 19.99. IETF RFC2246.

[9] R. Parviainen. Multicast Interactive Radio. In Proceedings of the
Practical Application of Java, pages 137--153, 1999.

[10] MPEG Group. ISO/IEC International Standard 11172; coding of moving
pictures and associated audio for digital storage media up to about 1,5
mbit/s, 1993.

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
transport protocol for real-time applications, 1996. IETF RFC1889.

	LARGE SCALE DISTRIBUTED WATERMARKING OF MULTICAST MEDIA THROUGH ENCRYPTION
	1. INTRODUCTION
	2. BACKGROUND
	2.1. MULTICAST SECURITY
	2.2. WATERMARKING

	3. METHOD DESCRIPTION
	3.1. TRANSMISSION OF PACKETS
	3.2. IDENTITY STRINGS
	3.3. BANDWIDTH USAGE
	3.4. KEY DISTRIBUTION
	3.5. KEY SIZE

	4. ATTACKS
	4.1. TRAITOR TRACING

	5. IMPLEMENTATION
	6. LIMITATIONS
	7. CONCLUSION
	References

