
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected

.
The

Erratum to this chapter is available

at

DOI:

© IFIP International Federation for Information Processing 2001
B. Kleinjohann (ed.), Architecture and Design of Distributed Embedded Systems

10.1007/978-0-387-35409-5_23

http://dx.doi.org/10.1007/978-0-387-35409-5_23

112 Architecture and Design of Distributed Embedded Systems

behavioral specification, run-time analysis, and system synthesis. Additional needs
are the evaluation of application-specific characteristics at the system specification
level. PARADISE is an open design environment for parallel, distributed embedded
real-time systems. The basis of this common design environment is a highly
structured design view called P-chart.

This paper shows the extension of PARADISE with the specification language
SpecC in order to support systematic refinement from a system specification. SpecC
is a system-level design methodology and specification language developed at the
University of California, Irvine [Ga+OO].

Section 2 gives an overview of the PARADISE design environment followed by
an overview of SpecC in Section 3. An example, which is implemented in SpecC,
was chosen to demonstrate the extension of PARADISE (Section 4.). The extended
design methodology is presented in Section 5. The results for the example are shown
in Section 6. Finally, Section 7 draws some conclusions and summarizes the paper.

2. PARADISE Design Environment

The PARADISE [HaReK199] [Re+OO] design environment combines different
design dimensions. Design dimensions needed for establishing a design methodology
for today's ES are:

• specification

• modeling

• analysis

• verification

• RT SW-synthesis

• RT operating systems

• HW -synthesis

• rapid prototyping

Each design dimension covers all levels of abstraction. A very good basis for the
structuring of the HW-design domain has been suggested by Gajski [Ga88]. The so­
called Y-chart distinguishes a behavioral, structural, and a geometrical design view.
Design views are applied to different abstraction levels. The Y -chart differentiates
between five hierarchical layers: algorithmic, register-transfer, gate, symbolic layout,
and electrical layout layers. For testability, a test view has been introduced as a
fourth design view leading to the X-chart [Ra89]. The abstraction of this basic
structure leads to the P-chart design view first presented in [HaReKI99]. The P-chart
design view applies the X-structure to each design domain separately. Based on this
abstract structure, domain-specific methods and tools can be integrated. The abstract
P-chart structuring is illustrated in Figure 1.

The different layers of abstraction (algorithm to layout) of the Y-chart are
depicted for each of the eight design dimensions. In addition, each dimension is
structured by the four views of the X-chart. Based on this concept, a variety of
automation tools for different design domains and levels have been integrated within
the PARADISE design environment. Thus, PARADISE can be understood as an

The Specification Language SpecC within the PARADISE Design Environment 113

implementation of a general applicable, integrated design methodology for today's
ES. A special Internet-based communication service allows remote access to each
tool in a distributed environment [Astair99] .

Specification SW -Synthesis

ati ng-

Analysis Rapid Prototyping

Figure 1. PARADISE design environment

3. SpecC Language and Methodology

Due to the increasing demand for analysis and evaluation of application
specifications on the system level, the SpecC specification language has been
introduced into the PARADISE design environment. SpecC allows to analyze
functional aspects of a system level application specification through simulation or
rapid prototyping in a very early design phase. The usage of SpecC within the
PARADISE design environment accelerates the design process, which is important
in order to keep today's time-to-market limits.

The SpecC specification language satisfies all the requirements for a codesign
language and supports structural and behavioral hierarchy, concurrency, state
transitions, exception handling, timing and synchronization in an explicit and
orthogonal way. SpecC encourages reuse and supports integration of IPs. Since
SpecC is a superset of ANSI-C. a large library of already existing algorithms can be
used directly. A system design modeled in SpecC is executable, modular and
complete. As a result, SpecC fulfills all of the requirements of a system specification
language for the specification and modeling design dimensions on the different
levels in PARADISE.

114 Architecture and Design of Distributed Embedded Systems

The SpecC-based design of complex systems, for example SOCs, is the process of
implementing a desired functionality using a set of physical components. This
process must begin with a specification of the desired functionality. The SpecC
design methodology [Ga+OO] starts with an executable specification as shown in
Figure 2. This initial specification model describes the functionality as well as the
performance, power, cost and other constraints of the design. The specification does
not make any premature allusions to implementation details. During the specification
of the desired functionality the designer has the ability to reuse existing code
segments, functions or procedures by instantiating them out of an algorithm library.

Synthesis flow

r------- --------
Backend

Implementation

Software Hardware
compila- synthesis
tion

Figure 2. The SpecC methodology

r--------------------------
1 Validation flow

Compilation

Validation
Analysis

Estimation

Compilation

Validation
Analysis

Estimation

Compilation

Validation
Analysis

Estimation

Compilation

Validation
Analysis

Estimation

The system-level synthesis flow of the SpecC design methodology consists of two
major tasks: architecture exploration and communication synthesis. Through a series

The Specification Language SpecC within the PARADISE Design Environment 115

of well-defined steps the initial specification is gradually mapped onto a target
architecture. Architecture exploration, which refines the specification of the design
into an architecture model, includes the design steps of allocation of processing
components and busses, partitioning of behaviors, communication channels and
variables, and scheduling.

The next step in the design flow is communication synthesis, which refines the
abstract communication between behaviors in the architecture model into an
implementation over the wires of system busses. The task of communication
synthesis includes insertion of communication protocols, synthesis of interfaces and
transducers, and inlining of protocols into synthesizable components. In the resulting
communication model, the communication is described in terms of actual wires and
timing relationships as described by bus protocols. The communication model,
which is the resulting output from the system-level design process, describes the
system design. It models the mapping of the specification onto components from the
architecture model enriched by information of the communication structure and
communication protocols.

The result of the synthesis flow is handed off to backend tools for compilation
and high-level synthesis, as shown in the lower part of Figure 2 (back end flow).

In the following sections, we describe the integration of SpecC into the
PARADISE design environment and the resulting new design methodology.

4. Example

To demonstrate the extension of the PARADISE design environment with SpecC,
we choose an application example. The voice encoder/decoder (vocoder) which is
implemented in SpecC is part of the European GSM standard for mobile telephone
networks. The lossy codec scheme was originally developed by Nokia and the
University of Sherbrooke [Ja97] and is based on widely used algorithms for speech
encoding [Sa98]. The so-called Enhanced Full Rate (EFR) speech transcoding is
standardized by the European Telecommunication Standards Institute (ETSI) as
GSM 06.60 [ETSI96].

The GSM 06.60 standard for the EFR vocoder is accompanied by a bit-exact
reference implementation of the vocoder functionality consisting of 13,000 lines of C
code. This code describes the required functionality and was therefore used as the
basis for the SpecC specification. At the top level the vocoder consists of
independent coding decoding behaviors running in parallel. Encoding and decoding
transform a stream of speech samples at a rate of 104 kbit/s into an encoded bit
stream with a rate of 12.2 kbit/s, and vice versa. Coding is based on a segmentation
of the incoming speech into frames of 160 samples corresponding to 20 ms of
speech. For each speech frame the coder produces 244 encoded bits.

The SpecC block diagram of the encoding part is shown in Figure 3. Only the first
levels of the behavior hierarchy of the encoding part are shown. All together, the
SpecC description of the vocoder contains 43 leaf behaviors. At the top level, pre­
filtering and framing, speech coding, and bit serialization run in a pipelined fashion.
At the next level, the first step in the coding process is an extraction of linear­
prediction filter parameters. Each frame is then further subdivided into subframes of

116 Architecture and Design of Distributed Embedded Systems

40 samples (5 ms). In two nested loops, open- and closed-loop analyses of pitch filter
parameters and an exhaustive search of a predefined codebook are performed,
followed by a filter memory update step. For a detailed information about the
implementation of the vocoder in SpecC the reader is referred to [GZGH99]. The
SpecC source code of the specification, architecture and communication models can
be downloaded from the SpecC web page [SC].

/
LP _lllll)ela (/ aa.Joap """\ /

) ! [1!1 I (....... 1'logol) I -I AutocM81. - targll

! I I
I
I,.._,.

"' I lllll1lln l J l .=.J !

[.::.] 1..::.1!1 I] I -I

l = J
(-...... LBP'>A(ZI

I lralpol.&

LSP..>Aq{l) I
I II I -

z.- '- '

2porftanll

Figure 3. The vocoder encoding part

5. Design Methodology

The PARADISE design methodology is based on design dimensions and the
structuring of each dimension by the P-chart (see section 2). SpecC introduces some
new features to the design environment and the underlying methodology. Figure 4
shows the integration of SpecC into the P-chart based design process as

The Specification Language SpecC within the PARADISE Design Environment 117

implemented within PARADISE. SpecC links the specification domain (left in Fig.
4) on the system level to the modeling dimension (right side in Fig. 4). The
specification model is stepwise refined as presented in section 2. The designer of a
complex ES compiles each SpecC model into an executable description. The
simulation executable is used for prototyping and validation on the corresponding
level. Once a model is validated, the designer passes it to the analysis design
dimension within the PARADISE design environment. For example, the tool
CHaRy2 is used for timing analysis of the SpecC model in the analysis dimension, as
depicted in the lower part of Fig.4.

CHaRy [Al96, Al97, StAl97] is a software synthesis tool for periodic controller
applications. CHaRy allows to guarantee hard real-time conditions. Due to
complexity reasons, CHaRy decomposes the overall problem of implementing
periodic controllers on parallel embedded computers to the sub-problems
partitioning, timing analysis, allocation, and schedulability analysis. Since all these
sub-problems are of high complexity, CHaRy provides efficient heuristics for all
these subjects. Hence, CHaRy supports the mapping of controller models to a
number of tasks (partitioning), the extraction of their computation times (timing
analysis), and the assignment of tasks to a processor network (allocation), such that
all hard-real time conditions are guaranteed (schedulability analysis).

Specification
SpecC

behavlo,,)

System-Level

stnJcture

Analysis
CHaRy

Modelling
SpecC

HW - Synthesis
PMOSS

Figure 4. SpecC in PARADISE

System
Synthesis ..

Architecture
Exploration

+
Communica­

tion Synthesis

The communication model of the SpecC design flow is the result of the system­
level synthesis process, describing the structure of the system in terms of system
components connected via system busses. High-level synthesis of the custom

2 C-LAB Hard Real-Time System

118 Architecture and Design of Distributed Embedded Systems

hardware components in the communication model is handled within the HW­
synthesis design dimension. On the behavioral level, the PMOSS3 system can be
used. The PMOSS system is a powerful platform for high-level synthesis of
embedded hardware out of a behavioral description. PMOSS divides the design
process into several design tasks (e.g. HW/SW-partitioning, data-flow analysis and
scheduling) which in turn may be subdivided into subtasks. Based on a well­
structured database, at least one algorithm is available for each task or subtask which
reads the database an writes all results back to the same database. Thus, subsequent
tasks have immediate access to all the results. The same concept holds for data input
which can be imported from different languages and for data output at the interface
to commercial and public-domain tools for logic synthesis. For detailed information
see [Ha95].

6. Results

In the following, we describe the results for some parts of the vocoder example. The
c/osed_loop part of the vocoder model was analyzed with CHaRy. At the top-level
the c/osed_loop is split into five different tasks (Figure 3): impulse response, target
signal, pitch delay search, code vector computation and pitch gain calculation.
CHaRy analyzed the worst-case execution time (WCET) for each of this task. The
target architecture was a PowerPC. With CHaRy, we obtained the following WCET
estimates for each individual task in terms of delay in J..IS and number of machine
cycles as summarized in Table 1. The overall run-time for the c/osed_loop is 89854
).ls and 8064786 cycles.

Task from closed loop cycles
impulse response 4595 454261
target signal 11853 1085458
find pitch delay 60731 5432123
compute code vector 10747 923495
calculate pitch gain 1796 156312

Table1. WCET for closed_loop tasks

The LP _analysis (short term analysis) was analyzed with the high-level synthesis
tool PMOSS. For our example, we use the high-level transformation and synthesis
process from PMOSS. The SpecC description of the LP _analysis was transformed
into a data-flow graph (DFG) and a control-data-flow graph (CDFG). Furthermore,
PMOSS generates a controller and a datapath. The LP _analysis function is optimized
by several high-level transformations. In fact, high-level design space exploration is
enabled by the transformation task. Available high-level transformations include
loop-unrolling, constant propagation, dead code elimination, elimination of
temporary data elements as well as algebraic transformations. High-level
transformations result in an optimized high-level description of the LP _analysis. All

3 Paderbom MOdular System for High-Level Synthesis and HW/SW-CodeSign

The Specification Language SpecC within the PARADISE Design Environment 119

examined points of the design space can be visualized for feedback to the designer as
transformation graph. The partitioned and optimized LP _analysis description can
now be passed to the synthesis task, as shown in Figure 5. Within this task, the
synthesis sub-tasks functional unit (FU) scheduling, FU allocation, FU binding,
register (REG) allocation, REG binding, interconnection and finally netlist
generation are performed. PMOSS provides several algorithms for each synthesis
sub-task which allows to direct the optimizations. The DFG of the LP _analysis has
24 nodes and the CDFG has 128 nodes. The datapath contains 7 FU's, 7 registers and
uses 13 multiplexers. The controller has 25 states and 57 transitions. The register
transfer level netlist can be stored in different formats, for example VHDL.

CDFG

Figure 5. PMOSS synthesis process

7. Conclusion

VHDL

BLIF

KISS

In this paper we presented the integration of the specification language SpecC into
the PARADISE design environment. SpecC fulfills all requirements for the design
dimensions specification and modeling within PARADISE. The existing tools
CHaRy and PMOSS are used for timing-analysis and high-level synthesis with a link
to logic synthesis. Therefore, the integration of SpecC into PARADISE results in a
closed design flow from system specification down to implementation. The results of

120 Architecture and Design of Distributed Embedded Systems

the vocoder example reflects the usability of the presented methodology and the
design environment.

References

[Al96] P. Altenbemd: "Timing Analysis, Scheduling, and Allocation of Periodic Hard Real­
Time Tasks". Dissertation, Paderbom, 1996.

[Al97] P. Altenbernd: "CHaRy: The C-LAB Hard Real-Time System to Support
Mechatronical Design". In Proc. Of the International Conference on Engineering of
Computer Based Systems (ECBS-97), Monterey, California, March 1997.

[ETSI96] European Telecommunication Standards Institute (ETSI), "Digital cellular
telecommunications system; Enhanced Full Rate (EFR) speech transcoding (GSM 0.60)",
Final Draft, November 1996.

[Astair99] http://www.c-lab.de/astair
[Ga88] D. D. Gajski: "Silicon Compilation". Addison Wesley Publishing Company, 1988.
[Ga+OO] D. D. Gajski, J. Zhu, R. OOmer, A. Gerstlauer, S. Zhao: "SpecC Specification

Language and Methodology". Kluwer Academic Publishers, 2000.
[GZGH99] A. Gerstlauer, S. Zhao, D.D. Gajski, A. Horak, "Design of a GSM Vocoder using

SpecC Methodology", University of California, Irvine, Technical Report ICS-TR-99-11,
Feburary 1999.

[Ha95]W. Hardt, "An Automated Approach to HW/SW-Codesign". In IEEE Colloquium:
Partitioning in Hardware-Software Codesings. London, Great Britain, February 1995.

[HaReKl99] W. Hardt, A. Rettberg, B. Kleinjohann. "The PARADISE design environment".
In Proc. of the 1st Embedded System Conference, Auckland (New Zealand), 1999.

[Ja97] K. Jllrvinen et. al., "GSM enhanced full rate speech codec". In Proceedings of
ICASSP, pp. 771-774, 1997.

[Ra89] F. J. Rammig. "Systematischer Entwurf digitaler Systeme". B. G. Teubner, Stuttgart,
1989.

[Re+OO] A. Rettberg, W. Hardt, J. Teich, M. Bednara. "Automated Design Space Exploration
on System Level for Embedded Systems". In Proc. of the Ninth Annual International HDL
Conference and Exhibition (HDL Conf. 2000), San Jose (USA), March 8- 10, 2000.

[Sa98] R. Salambi et.al., "Design and description of CS-ACELP: a toll quality 8 kb/s speech
coder", IEEE Transactions on Speech and Audio Processing, Vol. 6, No.2, pp. 116-130,
March 1998.

[StAl97] F. Stappert, P. Altenbernd: "Complete Worst-Case Execution Time Analysis of
Straight-line Hard Real-Time Programs". in C-LAB External Report 27-97 Paderborn,
1997.

[SC] SpecC home page, http://www.cecs.uci.edu/-sreccl

	THE SPECIFICATION LANGUAGESPECC WITHIN THE PARADISE DESIGN ENVIRONMENT
	1. Introduction
	2. PARADISE Design Environment
	3. SpecC Language and Methodology
	4. Example
	5. Design Methodology
	6. Results
	7. Conclusion
	References

