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behavioral specification, run-time analysis, and system synthesis. Additional needs 
are the evaluation of application-specific characteristics at the system specification 
level. PARADISE is an open design environment for parallel, distributed embedded 
real-time systems. The basis of this common design environment is a highly 
structured design view called P-chart. 

This paper shows the extension of PARADISE with the specification language 
SpecC in order to support systematic refinement from a system specification. SpecC 
is a system-level design methodology and specification language developed at the 
University of California, Irvine [Ga+OO]. 

Section 2 gives an overview of the PARADISE design environment followed by 
an overview of SpecC in Section 3. An example, which is implemented in SpecC, 
was chosen to demonstrate the extension of PARADISE (Section 4.). The extended 
design methodology is presented in Section 5. The results for the example are shown 
in Section 6. Finally, Section 7 draws some conclusions and summarizes the paper. 

2. PARADISE Design Environment 

The PARADISE [HaReK199] [Re+OO] design environment combines different 
design dimensions. Design dimensions needed for establishing a design methodology 
for today's ES are: 

• specification 

• modeling 

• analysis 

• verification 

• RT SW-synthesis 

• RT operating systems 

• HW -synthesis 

• rapid prototyping 

Each design dimension covers all levels of abstraction. A very good basis for the 
structuring of the HW-design domain has been suggested by Gajski [Ga88]. The so­
called Y-chart distinguishes a behavioral, structural, and a geometrical design view. 
Design views are applied to different abstraction levels. The Y -chart differentiates 
between five hierarchical layers: algorithmic, register-transfer, gate, symbolic layout, 
and electrical layout layers. For testability, a test view has been introduced as a 
fourth design view leading to the X-chart [Ra89]. The abstraction of this basic 
structure leads to the P-chart design view first presented in [HaReKI99]. The P-chart 
design view applies the X-structure to each design domain separately. Based on this 
abstract structure, domain-specific methods and tools can be integrated. The abstract 
P-chart structuring is illustrated in Figure 1. 

The different layers of abstraction (algorithm to layout) of the Y-chart are 
depicted for each of the eight design dimensions. In addition, each dimension is 
structured by the four views of the X-chart. Based on this concept, a variety of 
automation tools for different design domains and levels have been integrated within 
the PARADISE design environment. Thus, PARADISE can be understood as an 
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implementation of a general applicable, integrated design methodology for today's 
ES. A special Internet-based communication service allows remote access to each 
tool in a distributed environment [Astair99] . 

Specification SW -Synthesis 

ati ng-

Analysis Rapid Prototyping 

Figure 1. PARADISE design environment 

3. SpecC Language and Methodology 

Due to the increasing demand for analysis and evaluation of application 
specifications on the system level, the SpecC specification language has been 
introduced into the PARADISE design environment. SpecC allows to analyze 
functional aspects of a system level application specification through simulation or 
rapid prototyping in a very early design phase. The usage of SpecC within the 
PARADISE design environment accelerates the design process, which is important 
in order to keep today's time-to-market limits. 

The SpecC specification language satisfies all the requirements for a codesign 
language and supports structural and behavioral hierarchy, concurrency, state 
transitions, exception handling, timing and synchronization in an explicit and 
orthogonal way. SpecC encourages reuse and supports integration of IPs. Since 
SpecC is a superset of ANSI-C. a large library of already existing algorithms can be 
used directly. A system design modeled in SpecC is executable, modular and 
complete. As a result, SpecC fulfills all of the requirements of a system specification 
language for the specification and modeling design dimensions on the different 
levels in PARADISE. 
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The SpecC-based design of complex systems, for example SOCs, is the process of 
implementing a desired functionality using a set of physical components. This 
process must begin with a specification of the desired functionality. The SpecC 
design methodology [Ga+OO] starts with an executable specification as shown in 
Figure 2. This initial specification model describes the functionality as well as the 
performance, power, cost and other constraints of the design. The specification does 
not make any premature allusions to implementation details. During the specification 
of the desired functionality the designer has the ability to reuse existing code 
segments, functions or procedures by instantiating them out of an algorithm library. 

Synthesis flow 
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Figure 2. The SpecC methodology 
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The system-level synthesis flow of the SpecC design methodology consists of two 
major tasks: architecture exploration and communication synthesis. Through a series 
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of well-defined steps the initial specification is gradually mapped onto a target 
architecture. Architecture exploration, which refines the specification of the design 
into an architecture model, includes the design steps of allocation of processing 
components and busses, partitioning of behaviors, communication channels and 
variables, and scheduling. 

The next step in the design flow is communication synthesis, which refines the 
abstract communication between behaviors in the architecture model into an 
implementation over the wires of system busses. The task of communication 
synthesis includes insertion of communication protocols, synthesis of interfaces and 
transducers, and inlining of protocols into synthesizable components. In the resulting 
communication model, the communication is described in terms of actual wires and 
timing relationships as described by bus protocols. The communication model, 
which is the resulting output from the system-level design process, describes the 
system design. It models the mapping of the specification onto components from the 
architecture model enriched by information of the communication structure and 
communication protocols. 

The result of the synthesis flow is handed off to backend tools for compilation 
and high-level synthesis, as shown in the lower part of Figure 2 (back end flow). 

In the following sections, we describe the integration of SpecC into the 
PARADISE design environment and the resulting new design methodology. 

4. Example 

To demonstrate the extension of the PARADISE design environment with SpecC, 
we choose an application example. The voice encoder/decoder (vocoder) which is 
implemented in SpecC is part of the European GSM standard for mobile telephone 
networks. The lossy codec scheme was originally developed by Nokia and the 
University of Sherbrooke [Ja97] and is based on widely used algorithms for speech 
encoding [Sa98]. The so-called Enhanced Full Rate (EFR) speech transcoding is 
standardized by the European Telecommunication Standards Institute (ETSI) as 
GSM 06.60 [ETSI96]. 

The GSM 06.60 standard for the EFR vocoder is accompanied by a bit-exact 
reference implementation of the vocoder functionality consisting of 13,000 lines of C 
code. This code describes the required functionality and was therefore used as the 
basis for the SpecC specification. At the top level the vocoder consists of 
independent coding decoding behaviors running in parallel. Encoding and decoding 
transform a stream of speech samples at a rate of 104 kbit/s into an encoded bit 
stream with a rate of 12.2 kbit/s, and vice versa. Coding is based on a segmentation 
of the incoming speech into frames of 160 samples corresponding to 20 ms of 
speech. For each speech frame the coder produces 244 encoded bits. 

The SpecC block diagram of the encoding part is shown in Figure 3. Only the first 
levels of the behavior hierarchy of the encoding part are shown. All together, the 
SpecC description of the vocoder contains 43 leaf behaviors. At the top level, pre­
filtering and framing, speech coding, and bit serialization run in a pipelined fashion. 
At the next level, the first step in the coding process is an extraction of linear­
prediction filter parameters. Each frame is then further subdivided into subframes of 
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40 samples (5 ms). In two nested loops, open- and closed-loop analyses of pitch filter 
parameters and an exhaustive search of a predefined codebook are performed, 
followed by a filter memory update step. For a detailed information about the 
implementation of the vocoder in SpecC the reader is referred to [GZGH99]. The 
SpecC source code of the specification, architecture and communication models can 
be downloaded from the SpecC web page [SC]. 
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Figure 3. The vocoder encoding part 

5. Design Methodology 

The PARADISE design methodology is based on design dimensions and the 
structuring of each dimension by the P-chart (see section 2). SpecC introduces some 
new features to the design environment and the underlying methodology. Figure 4 
shows the integration of SpecC into the P-chart based design process as 
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implemented within PARADISE. SpecC links the specification domain (left in Fig. 
4) on the system level to the modeling dimension (right side in Fig. 4). The 
specification model is stepwise refined as presented in section 2. The designer of a 
complex ES compiles each SpecC model into an executable description. The 
simulation executable is used for prototyping and validation on the corresponding 
level. Once a model is validated, the designer passes it to the analysis design 
dimension within the PARADISE design environment. For example, the tool 
CHaRy2 is used for timing analysis of the SpecC model in the analysis dimension, as 
depicted in the lower part of Fig.4. 

CHaRy [Al96, Al97, StAl97] is a software synthesis tool for periodic controller 
applications. CHaRy allows to guarantee hard real-time conditions. Due to 
complexity reasons, CHaRy decomposes the overall problem of implementing 
periodic controllers on parallel embedded computers to the sub-problems 
partitioning, timing analysis, allocation, and schedulability analysis. Since all these 
sub-problems are of high complexity, CHaRy provides efficient heuristics for all 
these subjects. Hence, CHaRy supports the mapping of controller models to a 
number of tasks (partitioning), the extraction of their computation times (timing 
analysis), and the assignment of tasks to a processor network (allocation), such that 
all hard-real time conditions are guaranteed (schedulability analysis). 

Specification 
SpecC 
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System-Level 
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SpecC 

HW - Synthesis 
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Figure 4. SpecC in PARADISE 
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The communication model of the SpecC design flow is the result of the system­
level synthesis process, describing the structure of the system in terms of system 
components connected via system busses. High-level synthesis of the custom 

2 C-LAB Hard Real-Time System 
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hardware components in the communication model is handled within the HW­
synthesis design dimension. On the behavioral level, the PMOSS3 system can be 
used. The PMOSS system is a powerful platform for high-level synthesis of 
embedded hardware out of a behavioral description. PMOSS divides the design 
process into several design tasks (e.g. HW/SW-partitioning, data-flow analysis and 
scheduling) which in turn may be subdivided into subtasks. Based on a well­
structured database, at least one algorithm is available for each task or subtask which 
reads the database an writes all results back to the same database. Thus, subsequent 
tasks have immediate access to all the results. The same concept holds for data input 
which can be imported from different languages and for data output at the interface 
to commercial and public-domain tools for logic synthesis. For detailed information 
see [Ha95]. 

6. Results 

In the following, we describe the results for some parts of the vocoder example. The 
c/osed_loop part of the vocoder model was analyzed with CHaRy. At the top-level 
the c/osed_loop is split into five different tasks (Figure 3): impulse response, target 
signal, pitch delay search, code vector computation and pitch gain calculation. 
CHaRy analyzed the worst-case execution time (WCET) for each of this task. The 
target architecture was a PowerPC. With CHaRy, we obtained the following WCET 
estimates for each individual task in terms of delay in J..IS and number of machine 
cycles as summarized in Table 1. The overall run-time for the c/osed_loop is 89854 
).ls and 8064786 cycles. 

Task from closed loop cycles 
impulse response 4595 454261 
target signal 11853 1085458 
find pitch delay 60731 5432123 
compute code vector 10747 923495 
calculate pitch gain 1796 156312 

Table1. WCET for closed_loop tasks 

The LP _analysis (short term analysis) was analyzed with the high-level synthesis 
tool PMOSS. For our example, we use the high-level transformation and synthesis 
process from PMOSS. The SpecC description of the LP _analysis was transformed 
into a data-flow graph (DFG) and a control-data-flow graph (CDFG). Furthermore, 
PMOSS generates a controller and a datapath. The LP _analysis function is optimized 
by several high-level transformations. In fact, high-level design space exploration is 
enabled by the transformation task. Available high-level transformations include 
loop-unrolling, constant propagation, dead code elimination, elimination of 
temporary data elements as well as algebraic transformations. High-level 
transformations result in an optimized high-level description of the LP _analysis. All 

3 Paderbom MOdular System for High-Level Synthesis and HW/SW-CodeSign 
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examined points of the design space can be visualized for feedback to the designer as 
transformation graph. The partitioned and optimized LP _analysis description can 
now be passed to the synthesis task, as shown in Figure 5. Within this task, the 
synthesis sub-tasks functional unit (FU) scheduling, FU allocation, FU binding, 
register (REG) allocation, REG binding, interconnection and finally netlist 
generation are performed. PMOSS provides several algorithms for each synthesis 
sub-task which allows to direct the optimizations. The DFG of the LP _analysis has 
24 nodes and the CDFG has 128 nodes. The datapath contains 7 FU's, 7 registers and 
uses 13 multiplexers. The controller has 25 states and 57 transitions. The register 
transfer level netlist can be stored in different formats, for example VHDL. 

CDFG 

Figure 5. PMOSS synthesis process 

7. Conclusion 

VHDL 

BLIF 

KISS 

In this paper we presented the integration of the specification language SpecC into 
the PARADISE design environment. SpecC fulfills all requirements for the design 
dimensions specification and modeling within PARADISE. The existing tools 
CHaRy and PMOSS are used for timing-analysis and high-level synthesis with a link 
to logic synthesis. Therefore, the integration of SpecC into PARADISE results in a 
closed design flow from system specification down to implementation. The results of 
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the vocoder example reflects the usability of the presented methodology and the 
design environment. 
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