
Abstract:

EXPLOITING SYMMETRY IN
PROTOCOL TESTING

Judi Romijn 1

Jan Springintveld1•2

ICWI

Amsterdam
The Netherlands

E-mail: {judi, spring}@cwLnl

2 Computing Science Institute
University of Nijmegen

The Netherlands

Test generation and execution are often hampered by the large state spaces of the systems
involved. In automata (or transition system) based test algorithms, taking advantage of
symmetry in the behavior of specification and implementation may substantially reduce
the amount of tests. We present a framework for describing and exploiting symmetries in
black box test derivation methods based on finite state machines (FSMs). An algorithm
is presented that, for a given symmetry relation on the traces of as FSM, computes a
subautomaton that characterizes the FSM up to symmetry. This machinery is applied to
Chow's classical W-method for test derivation. Finally, we focus on symmetries defined
in terms of repeating patterns.
Keywords: conformance testing, automated test generation, state space reduction, sym­
metry.
Note: The research of the first author was carried out as part of the project "Specifica­
tion, Testing and Verification of Software for Technical Applications" at the Stichting
Mathematisch Centrum for Philips Research Laboratories under Contract RWC-06I-PS-
950006-ps. The research ofthe second author was partially supported by the Netherlands
Organization for Scientific Research (NWO) under contract SION 612-33-006. His cur­
rent affiliation is: Philips Research Laboratories Eindhoven, Prof. Holstlaan 4, 5656 AA,
Eindhoven, The Netherlands.

1 INTRODUCTION

It has long been recognized that for the proper functioning of components in open and
distributed systems, these components have to be thoroughly tested for interoperability

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 1998
S. Budkowski et al. (eds.), Formal Description Techniques and Protocol Speci�cation, Testing and Veri�cation

10.1007/978-0-387-35394-4_29

http://dx.doi.org/10.1007/978-0-387-35394-4_29

338

and conformance to internationally agreed standards. For thorough and efficient testing,
a high degree of automation of the test process is crucial. Unfortunately, methods for
automated test generation and execution are still seriously hampered by the often very
large state spaces of the implementations under test. One of the ways to deal with this
problem is to exploit structural properties of the implementation under test that can be
safely assumed to hold. In this paper we focus on taking advantage of symmetry that is
present in the structure of systems. The symmetry, as it is defined here, may be found
in any type of parameterized system: such parameters may for example range over IDs
of components, ports, or the contents of messages.

We will work in the setting of test theory based on finite state machines (FSMs).
Thus, we assume that the specification of an implementation under test is given as an
FSM and the implementation itself is given as a black box. From the explicitly given
specification automaton a collection of tests is derived that can be applied to the black
box. Exploiting symmetry will allow us to restrict the test process to sub automata
of specification and implementation that characterize these systems up to symmetry
and will often be much smaller. The symmetry is defined in terms of an equivalence
relation over the trace sets of specification and implementation. Some requirements are
imposed to ensure that such a symmetry indeed allows to find the desired subautomata.
We instantiate this general framework by focusing on symmetries defined in terms of
repeating patterns. Some experiments with pattern-based symmetries, supported by a
prototype tool implemented using the OPEN/CJESAR tool set [14], have shown that
substantial savings may be obtained in the number of tests.

Since we assume th'at the black box system has some symmetrical structure (cf.
the uniformity hypothesis in [15,6]), it is perhaps more appropriate to speak of gray
box testing. For the specification FSM it will generally be possible to verify that a
particular relation is a symmetry on the system, but for the black box implementation
one has to assume that this is the case. The reliability of this assumption is the tester's
responsibility. In this respect, one may think of exploiting symmetry as a structured
way of test case selection [13,4] for systems too large to be tested exhaustively, where
at least some subautomata are tested thoroughly.

This paper is not the first to deal with symmetry in protocol testing. In [20], similar
techniques have been developed for a test generation methodology based on labeled
transition systems, success trees and canonical testers [3,24]. Like in our case, sym­
metry is an equivalence relation between traces, and representatives of the equivalence
classes are used for test generation. Since our approach and the approach in [20] start
from different testing methodologies, it is not easy to compare them. In [20], the sym­
metry relation is defined through bijective renamings of action labels; our pattern-based
definition generalizes this approach. On the other hand, since in our case a symmetry
relation has to result in subautomata of specification and implementation that char­
acterize these systems up to the symmetry, we have to impose certain requirements,
which are absent in [20].

In [18], symmetrical structures in the product automaton of interoperating systems
are studied. It is assumed that the systems have already been tested in isolation and
attention is focused on pruning the product automaton by exploiting symmetry arising
from the presence of identical peers. In the present paper, we abstract away from

339

the internal composition of the system and focus on defining a general framework for
describing and using symmetries on FSMs.

This paper is organized as follows. Section 2 contains some basic definitions concerning
FSMs and their behavior. In Section 3, we introduce and define a general notion of trace
based symmetry. We show how, given such a symmetry on the behavior of a system,
a subautomaton of the system can be computed, a so-called kernel, that characterizes
the behavior of the system up to symmetry. In Section 4 we apply the machinery to
Chow's classical W-method for test derivation. In Section 5 we will instantiate the
general framework by focusing on symmetries defined in terms of repeating patterns.
Section 6 contains an extensive example, inspired by [23]. Finally, we discuss future
work in Section 7. Due to space limitations, proofs have been left out.

2 FINITE STATE MACHINES

In this section, we will briefly present some terminology concerning finite state ma­
chines and their behavior, that we will need in the rest of this paper.

We let N denote the set of natural numbers. (Finite) Sequences are denoted by greek
letters. Concatenation of sequences is denoted by juxtaposition; E denotes the empty
sequence and the sequence containing a single element a is simply denoted a. If a
is non-empty thenfirst(a) returns the first element of a and last(a) returns the last
element of a .

If V and Ware sets of sequences and a is a sequence, then a W = {a t' I t' E W}
and V W = Uuev a W. For X a set of symbols, we define XO = {E} and, for i > 0,
Xi = Xi- 1 U X Xi-I. As usual, X" = UieN Xi.

Definition 2.1. Afinite state machine (FSM) is a structure A = (S, I:, E, so) where

• S is a finite set of states

• I: a finite set of actions

• E S; S x I: x S is a finite set of edges

• sO E S is the initial state

We require that A is deterministic, i.e., for every pair of edges (s, a, s'), (s, a, s") in
EA, s' = s".

We write SA, I:A, etc., for the components of an FSM A, but often omit subscripts
when they are clear from the context. We let s, s' range over states, a, a', b, c, ... over
actions, and e, e' over edges. If e = (s, a, s') then act (e) = a. We write s s'

if (s, a, s') E E and with s we denote that s s' for some state s'. A
subautomaton of an FSM A is an FSM B such that = S8 S; SA, I:8 S; I:A,
and E8 S; EA.

An executionjragmentof an FSM A is an alternating sequence y = So al SI ... an Sn of
states and actions of A, beginning and ending with a state, such that for all i, 0 ::: i < n,

we have Si Si+ 1. If so = sn then y is a loop, if n i= 0 then y is a non-empty loop.
An execution of A is an execution fragment that begins with the initial state of A.

340

For y = so al SI ... an Sn an execution fragment of A, trace(y) is defined as the

sequence al a2 ... an. If a is a sequence of actions, then we write s s' if A has an
execution fragment y withfirst(y) = s, last(y) = s', and trace(y) = a. If y is a loop,

then a is a looping trace. We write s if there exists an s' such that s s', and

write traces(s) for the set {a E I s We write traces(A) for
o

3 SYMMETRY

In this section we introduce the notion of symmetry employed in this paper.
We want to be able to restrict the test process to subautomata of specification and

implementation that characterize these systems up to symmetry. In papers on exploiting
symmetry in model checking [2, 8, 10, 11, 12, 17], such subautomata are constructed
for explicitly given FSMs by identifying and collapsing symmetrical states. We are
concerned with black box testing, and, by definition, it is impossible to refer directly
to the states of a black box. In traditional FSM based test theory, FSMs are assumed
to be deterministic and hence a state of a black box is identified as the unique state of
the black box that is reached after a certain trace of the system. Thus it seems natural
to define symmetry as a relation over traces.

Our basic notion of symmetry on an FSM A, then, is an equivalence relation on
such that A is closed under the symmetry, i.e., if a sequence of actions is

symmetrical to a trace of A then the sequence is a trace of A too.
The idea is to construct from the specification automaton an automaton such that its

trace set is included in the trace set of the specification and contains a representative trace
for each equivalence class of the symmetry relation on the traces of the specification.
In order to be able to do this, we need to impose some requirements on the symmetry.
For the specification we demand (1) that each equivalence class of the symmetry is
represented by a unique trace, (2) that prefixes of a trace are represented by prefixes
of the representing trace, and (3) that representative traces respect loops. The third
requirement means that if a representative trace is a looping trace, then the trace with
the looping part removed is also a representative trace. This requirement introduces
some state-based information in the definition of symmetry.

These requirements enable us to construct a subautomaton of the specification, a
so-called kernel, such that every trace of the specification is represented by a trace from
the kernel. Of course, it will often be the case that the symmetry itself is preserved
under prefixes and respects loops, so the requirements will come almost for free.

For the black box implementation, we will, w.r.t. symmetry, only demand that it is
closed under symmetry. So if tests have established that the implementation displays
certain behavior, then by assumption it will also display the symmetrical behavior. In
Section 4, where the theory is applied to Mealy machines, we will in addition need
a way to identify a subautomaton of the implementation that is being covered by the
tests derived from the kernel of the specification.

Definition 3.1. A symmetry S on an FSM A is pair (Y) where is a binary
equivalence relation on and 0' : -+ is a representative Junction
for such that:

341

1. A is closed under::::::: If a E traces(A) and a :::::: r, then r E traces(A).

2. Only traces of the same length are related: If a :::::: r, then la 1 = 1 r I.

3. (Y satisfies:

(a) a r :::::: a

(b) r :::::: a => rr = a r

(c) (YisprefixclosedonA: Ifaa E traces(A)and(aaY = rb,thena r = r
(d) (Y is loop respecting on representative traces: If (aJ a2 a3Y = aJ a2 a3 E

traces(A) and a2 is a looping trace, then (aJ a3Y = aJ a3.

The class of traces r such that r :::::: a is denoted with [a]s, or, if S is clear from the
context, [a]. 0

As mentioned above, we will demand that there exists a symmetry on the specification,
while the implementation under test is required only to be closed under the symmetry.
Note that (ary = ar.

Definition 3.2. Let S = (::::::, (Y) be a symmetry on FSM A. A kernel of A w.r.t. Sis
a subautomaton lC of A, such that for every a E traces(A), a r E traces(lC). 0

In the remainder of this section, we fix an FSM A and a symmetry S = (::::::, (Y) on
A. Figure 1 presents an algorithm that constructs a kernel of A w.r.t. S. The algorithm
basically explores the state space of A, while keeping in mind the trace that leads to
the currently visited state. As soon as such a trace contains a loop, the algorithm will
not explore it any further.

In Figure 1, enabled(s, A) denotes the set of actions a such that EA contains an
edge (s, a, s'), and for such an a, eff(s, a, A) denotes s'. Furthermore, repr(a, E)
denotes the set F of actions such that a E F iff there exists an action bEE such that
a r a = (a bY. We will only call this function for a such that a r = a. By definition
of (y, for some action c, (a by = arc = a c. So, since A is deterministic and closed
under ::::::, F E and if E is non-empty, F is non-empty. This justifies the function
choose(F) which nondeterministically chooses an element from F.

Theorem 3.3. Let lC = Kernel(A,S). If a E traces(A), then a r E traces(lC).

4 TEST DERIVATION FROM SYMMETRIC MEALY MACHINES

In this section we will apply the machinery developed in the previous sections to
Mealy machines. There exists a wealth of test generation algorithms based on the
Mealy machine model [1,5,7]. We will show how Chow's classical W-method [7] can
be adapted to a setting with symmetry. The main idea is that test derivation is not based
on the entire specification automaton, but only on a kernel of it. A technical detail here
is that we do not require Mealy machines to be minimal (as already observed by [19]
for the setting without symmetry).

Definition 4.1. A Mealy machine is a (deterministic) FSM A such that

342

function Kemel(A, S): FSM;
var JC;

procedure Build.Jt(s, a, Seen);
var a, b, s, s', E, F;
begin

if sf/Seen
then E := enabled(s, A);

F:=0;

fi;

while E =F 0
do a := choose(repr(a, E»;

s' := eff(s, a, A);

od;

SIC := SIC U {s'};
EIC := EIC U {a};
EIC := EIC U {(s, a, s')};
Build.Jt(s', a a, Seen U {s});
F:= FU{a};
E:= E \ {a};
for each bEE . a a a b
do E := E \ {b};
od;

end;

begin

end.

so .- so.
IC·- A'

SIC := is:?".};
EIC := 0;
EIC := 0;

E, 0);
retumJC;

Figure 1 The algorithm Kernel

343

where IA and 0 A are two finite and disjoint sets of inputs and outputs, respectively.
We require that A is input enabled and input deterministic, Le., for every state s E SA

d · . I h . . I 0 h th (i/o) an mput I E A, t ere eXIsts preCIse y one output 0 E A suc at s

Input sequences of A are elements of (/A)*' For an input sequence of A and

s, s' E SA, we write s :::bAs' if there exists a trace (1 such that s A s' and
is the result of projecting (1 onto IA. In this case we write s) = (1; the
execution fragment y withfirst(y) = s and trace(y) = (1 is denoted by execA(s,
A distinguishing sequence for two states s, s' of A is an input sequence such that
outcomeA(;, s) =1= s'). We say that distinguishes s from s'. 0

In Chow's paper, conformance is defined as the existence of an isomorphism between
specification and implementation. Since we do not assume automata to be minimal, we
will show the existence of a bisimulation between specification and implementation.
Bisirnilarity is a well-known process equivalence from concurrency theory [21]. For
minimal automata, bisirnilarity is equivalent to isomorphism, while for deterministic
automata, bisimilarity is equivalent to equality of trace sets.

Definition 4.2. Let A and B be FSMs. A relation R SA x S13 is a bisimulation on
A and B iff
• R(SI, S2) and Sl A si implies that there is a E SA such that S2 13

and R(si,

• R(SI, S2) and S2 13 implies that there is a si E SA such that Sl A si
and R(si,

A and Bare bisimilar, notation A B, if there exists a bisimulation R on A and B
such that s&). We call two states Sl, S2 E SA bisimilar, notation Sl S2, if
there exists a bisimulation R on A (and A) such that R(SI, S2). The relation is an
equivalence relation on SA; a bisimulation class of A is an equivalence class of SA

0

The main ingredient of Chow's test suite is a characterizing set for the specification, i.e.,
a set of input sequences that distinguish inequivalent states by inducing different output
behavior from them. In our case, two states are inequivalent if they are non-bisirnilar,
i.e. have different trace sets. In the presence of symmetry we will need a characterizing
set not for the entire specification automaton but only for a kernel of it. However, a
kernel need not be input enabled, so two inequivalent states need not have a common
input sequence that distinguishes between them. Instead we will use a characterizing
set that contains for every two states of the kernel that are inequivalent in the original
specification automaton, an input sequence that these states have in common in the
specification and distinguishes between them.

Constructing distinguishing sequences in the specification automaton rather than
in the smaller kernel is of course potentially as expensive as in the setting without
symmetry, and may lead to large sequences. However, if the number of states of the
kernel is small we will not need many of them, so test execution itself may still benefit
considerably from the restriction to the kernel. Moreover, we expect that in most
cases distinguishing sequences can be found in a well marked out subautomaton of the
specification that envelopes the kernel.

344

Definition 4.3. A test pair for a Mealy machine A is a pair (Ie, W) where Ie is a
kernel of A and W is a set of input sequences of A such that the following holds. For
every pair of states s, s' E SIC such that s tA s', W contains an input sequence such
that s) =1= s'). 0

The proof that Chow's test suite has complete fault coverage crucially relies on the
assumption that (an upper bound to) the number of states of the black box implementa­
tion is correctly estimated. Since specification and implementation are also assumed to
have the same input sets and to be input enabled, this is equivalent to a correct estimate
of the number of states of the implementation that can be reached from the start state
by an input sequence from the specification. Similarly, we will assume that we can
give an upper bound to the number of states of the black box that are reachable from
the start state by an input sequence from the kernel of the specification. We call the
subautomaton of the implementation generated by these states the image of the kernel.

Technically, the assumption on the state space of the black box is used in [7] to
bound the maximum length of distinguishing sequences needed for a characterizing
set for the implementation. Since, like the kernel, the image of the kernel need not be
input enabled, it may be that distinguishing sequences for states of the image cannot
be constructed in the image itself. Thus, it is not sufficient to estimate the number of
states of the image, but we must in addition estimate the number of steps distinguishing
sequences may have to take outside the image of the kernel.

Definition 4.4. Let A and B be Mealy machines with the same input set and let Ie be

a kernel of A. A Ie-sequence is an input sequence such that A state s of

13 is called K-related if there exists a K-sequence such that ::hB s.

We define imJC{B) as the subautomaton (S, E, so) of B defined by:

• S = {s E SB 1 s is Ie-related}

• E = {(s,a, s') E EB 1 s,s' E S}

• = {a E 13s,s'. (s,a,s') E E}

• sO =

o

Definition 4.5. A subautomaton B of a Mealy machine A is (ml, m2}-self-contained
in A when the number of bisimulation classes Q of A such that Q n S13 =1= 0 is m I,
and for every pair of states s, s' of B such that s tA s', there exist input sequences

of A of length at most ml, m2, respectively, such that s s' and
s) =1= s'). 0

The next lemma is a generalization of [7]'s Lemma O.

Lemma 4.6. Let A and B be Mealy machines with the same input set I and let (Ie, W)
be a test pair for A. Let C = imJC{B). Suppose that:

1. Cis (m I, m2)-self-contained in B.

2. W distinguishes between n bisimulation classes Q of B such that Q n Sc =1= 0.

345

Then for every two states s and s' of C such that s tB s', Iml-n 1m2 W distinguishes
s from s'.

This result allows us to construct a characterizing set Z = Iml-n 1m2 W for the image
of the kernel in the implementation. The test suite resulting from the W-method consists
of all concatenations of sequences from a transition cover P for the specification with
sequences from Z.

Definition 4.7. A transition cover for the kernel of a Mealy machine A is a finite

collection P of input sequences of A, such that E E P and, for all transitions s s'

of IC, P contains input sequences and i such that =bK: s. 0

Now follows the main theorem.

Theorem 4.8. Let Spec and Impl be Mealy machines with the same input set I, and
assume (Y) is a symmetry on Spec such that Impl is closed Let (IC, W)
be a test pair for Spec. Write C = imdlmpl). Suppose

1. The number of bisimulation classes Q of Spec such that Q n SK: =1= 0 is n.

2. C is (m 1 ,m2)-self-contained in Impl.

3. For all 0' E P and r E Iml-n 1m2 W

Then Spec Impl.

5 PATTERNS

In this section we describe symmetries based on patterns. A pattern is an FSM, together
with a set of permutations of its set of actions, so-called transformations. The FSM
is a template for the behavior of a system, while the transformations indicate how this
template may be filled out to obtain symmetric variants that cover the full behavior of
the system.

In [18] an interesting example automaton is given for a symmetric protocol, repre­
senting the behavior of two peer hosts that may engage in the ATM call setup procedure.
This behavior is completely symmetric in the identity of the peers. An FSM represen­
tation is given in Figure 2. Here, ! <action > (i) means output of the ATM service to
caller i, and ?<action>(i) means input from caller i to the ATM service. So, action
?set-up(1) denotes the request from caller 1 to the ATM service, to set up a call to caller
2. A set-up request is followed by an acknowledgement in the form of calLproc if the
service can be performed. Then, action conn indicates that the called side is ready
for the connection, which is acknowledged by conn..ack. A caller may skip sending
calLproc, if it can already send conn instead (transition from state 3 to 5 and from 10
to 12 in Figure 2).

Here, a typical template is the subautomaton representing the call set up as initiated
by a single initiator (e.g. caller 1), and the transformation will be the permutation of
actions generated by swapping the roles of initiator and responder. Such a template is
displayed in Figure 3.

346

Figure 2 The ATM call setup protocol Figure 3 A template

In the example of Section 6, featuring a chatbox that supports mUltiple conversa­
tions between callers, the template will be the chatting between two callers, while the
transformations will shuffle the identity of the callers.

The template FSM may be arbitrarily complex; intuitively, increasing complexity
indicates a stronger symmetry assumption on the black box implementation.

To define pattern based symmetries, we need some terminology for partial functions
and multisets. If f : A B is a partial function and a E A, then f(a) i means that
f(a) is defined, while f(a) t means that f(a) is not defined. A multiset over A is
a set of the form {(ai, nl), ... , (at, nk)} where, for I i k, ai is an element of
A and ni E N denotes its multiplicity. We use [f(x)1 cond(x)] as a shorthand for the
multi set over A that is created by adding, for every single x E A, a copy of f (x) if the
condition cond(x) holds.

Definition 5.1 (Patterns). A pattern P is a pair (7, n) where 7 is an FSM, called the
template of p, and n is a finite set of permutations of :E" which we call transforma­
tions.

Given a sequence (iI, ... , fn) of (partial) functions iI, ... , fn : n E" we
denote with exec ((fl , ... , fn), Jl") the sequence of edges obtained by taking for each
function Ii, 0 i n, the edge e (if any) such that Ii (Jl") = e. 0

In the remainder of this section, we fix an FSM A and a pattern P = (7, n).

Below we will define how P defines a symmetry of the behavior of an FSM A. Each
transformation Jl" E n gives rise to a copy Jl" (7) of 7 obtained by renaming the actions
according to Jl". Each such copy is a particular instantiation of the template. Intuitively,
the trace set of A is included in the trace set of the parallel composition of the copies

347

rr(n, indexed by elements of n, with enforced synchronization over all actions of
A. Using that traces of A are traces of the parallel composition, we will define the
symmetry relation on traces in terms of the behavior of the copies and permutations of
the index set n.

The following definition rephrases the inclusion requirement above in such a way
that the relation and a representative function for it can be formulated succinctly. In
particular, if A is the parallel composition of the copies of T, the requirement in this
definition apply.

Definition 5.2. Let (1 = al ... an be an element of CEA)*. A covering of (1 by P is a
sequence (II, ... , In) of partial functions Ii : n Er with non-empty domain such
that for every rr E n and I i n:

1. If li(rr) = e then ai = rr(act(e».

2. The sequence exec ((II, ... , Ii), rr) induces an execution Yi of r.
3. If the sequence trace(Yi-}) aj is a trace of rr(n then f; (rr)

We say that P covers (1 if there exists a covering of (1 by P.

We call P loop preserving when the following holds. Suppose (11 (12 E traces(A)
is covered by (II, ... , In, gl, ... , gm) and (12 is a looping trace. Then for all :rr E n,

last(exec«(lI, .. ·, In), rr» = last(exec«(/I, ... , In, gl,···, gm), :rr»

o

Intuitively, these requirements mean the following. The 'non-empty domain' require­
ment for the partial functions f; ensures the inclusion of the trace set of A in the
trace set of the parallel composition of copies of r. Requirements I and 2 express
that a covering should not contain 'junk'. Requirement 3 corresponds to the enforced
synchronization of actions of the parallel composition.
Two traces (1 and 'l' of the same length n that are covered by p, are variants of each
other if at each position i, I ::::: i ::::: n, of (1 and 'l' the following holds. The listings for
(1 and 'l', respectively, of the copies rr(n that participate in the action at position i, the
states these copies are in before participating, and the edge they follow by participating,
are equal up to a permutation of n. Then, two traces of the same length are symmetric
iff they are either both not covered by P or are covered by coverings that are variants
of each other.

Definition 5.3. Let (1 and 'l' be elements of (EA)n, which P covers by COV\ =
(II, ... , In) and COV2 = (gl, ... , gn), respectively. Then COVI and COV2 are said to be
variants of each other iffor every 1 i n, [f;(rr) I :rr E n] = [gi(:rr) I :rr E n].
We define the binary relation on (EA)* by:

(1 'l' {:} /\ 1(11 = I'l'l
/\ v both (1 and 'l' are not covered by P

v P covers (1 and 'l' by variant coverings

It is easy to check that is an equivalence relation. As in Section 3, we will write
[(1] for the equivalence class of (1 and instead of l' . 0

348

An important special case is the following. Suppose A consists of the parallel compo­
sition of components Cj, indexed by elements of a set I, that are identical up to their
ID (which occur as parameters in the actions). Let a and l' be traces of A. If there
exists a permutation p of the index set I such that for all indices i E I, a induces (up
to renaming of IDs in actions) the same execution of Cj as l' induces in Cp(i), then a
and l' are symmetric.

Now we define a representative function for:::::. We assume given a total, irreflexive
ordering < on Such an ordering of course always exists, but the choice for < may
greatly influence the size of the kernel constructed for a symmetry based on P.

Definition 5.4. Let < be a total, irreflexive ordering on This ordering induces a
reflexive, transitive ordering::: on traces of the same length in the following way:

a a ::: b l' {:} a < b v (a = b /\ a ::: 1')

We define a r as the least element of [a] under :::. o
Given the definition of :::::, it is reasonable to demand that every trace of A is covered
by P. We will also need the following closure property. We call a binary relation R
on persistent on A when R(a, 1'} and a a E traces(A} implies that there exists
an action b such that R(a a, l' b}.

The next result allows us to use the pattern-approach for computing a kernel. In our
example of the ATM switch, we have computed the kernel from the FSM in Figure 2,
using the symmetry induced by the template in Figure 3 and an ordering < that obeys
the relation ?seLup(1} < ?seLup(2}. Not surprisingly, the resulting kernel is identical
to the template.

Theorem 5.5. Suppose P is a loop preserving pattern on A and let < be a total,
irreflexive ordering on Let (Y be as in Definition 5.4. Suppose every trace of A
is covered by p, A is closed under :::::, and::::: is persistent on A. Then (:::::, or) is a
symmetry on A.

6 EXAMPLE: TESTING A CHATBOX

In this section we report on some initial experiments in the application of symmetry
to the testing of a chatbox. This example was inspired by the conference protocol
presented in [23]. Part of the test generation trajectory was implemented: we used
the tool environment OPEN/ClESAR[14] for prototyping the algorithm Kernel from
Section 3. We work with a pattern based symmetry (Section 5) and apply the test
derivation method from Section 4.

A chatbox offers the possibility to talk with users connected to the chatbox. After one
joins (connects to) the chatbox, one can talk with all other connected users, until one
leaves (disconnects). One can only join if not already present, and one can leave at any
time. For simplicity, we assume that every user can at each instance talk with at most
one user. Moreover, we demand that a user waits for a reply before talking again (unless
one of the partners leaves). Finally, we abstract from the contents of the messages, and
consider only one message. The service primitives provided by the chatbox are thus
the following; Join, Leave, DReq, and DInd, with the obvious meaning (see Figure 4).

349

USC'A usc's use'e USC'A usc's USC'e USC'A usc's use'e
Join Ltavt DReq D1nd

I I
t \. I.::" :: _ ..

'. '.

Figure 4 The chatbox protocol service

For lack of space, we do not give the full formal specification of the chatbox or its
template.

What we test for is the service of the chatbox as a whole, such as it may be offered by
a vendor, rather than components of its implementation, which we (the "customers")
are not allowed to, or have no desire to, inspect.

The symmetry inherent in the protocol is immediate: pairs of talking users can be
replaced by other pairs of talking users, as long as this is done systematically according
to Definitions 5.2 and 5.3. As an example, the trace in which user 1 joins, leaves and
joins again, is symmetric to the trace in which user 1 joins and leaves, after which user
2 joins. The essence is that after user 1 has joined and left, this user is at the same
point as all the other users not present, so all new join actions are symmetric. Note
that this symmetry is more general than a symmetry induced solely by a permutation
of actions or IDs of users. Thus the template T used for the symmetry basically
consists of the conversation between two users, including joining and leaving, while
the transformations 'f{ in the set n shuffle the identity of users. We feel that it is a
reasonable assumption that the black implementation offering the service indeed is
symmetric in this sense.

We have applied the machinery to chatboxes with up to 4 users. We also considered
a (much simpler) version of the protocol without joining and leaving. Still, a chatbox
with only 4 users and no joining or leaving already has 4096 reachable states.

We start the test generation by computing a kernel for these specifications. Our
prototype is able to find a significantly smaller Mealy machine as a kernel for each
of the models, provided that it is given a suitable ordering < (see Definition 5.4) on
the actions symbols for its representative function. The kernels constructed consist of
interleavings of transformations of the pattern, constrained by the symmetry and the
ordering <.

For instance, in a chatbox with 3 users and no joining and leaving, we take the
ordering < defined as follows. "Sending a message from i I to il" < "sending a
message from i2 to h" if (i I < i2) or if (i I = i2 and h < h), and "sending a reply
from i I to h" < "sending a reply from i2 to h" if (i I > i2) or if (i I = i2 and h > h).

Using this ordering, the kernel only contains those traces in which first messages
from user 1 are sent, then messages from user 2 and finally messages from user 3, while
the sending of replies is handled in the reverse order. Each trace with different order of
sending messages can then be computed from a trace of this kernel, which is exactly
what Theorem 3.3 states.

350

Our experiments so far have revealed that for chatboxes with joining and leaving,
the kernel is approximately half the size. When considering chatboxes without joining
and leaving, the size of the kernel is reduced much more. Of course, the algorithm
should be run on more and larger examples to get definite answers about possible size
reduction.

Given the computed kernels, we can construct test pairs by determining for each
kernel a set of input sequences W that constitutes a characterizing set for the kernel (as
defined in Definition 4.3). Although this part has not yet been automated, it is easily
seen by a generic argument that for every pair of inequivalent (non-bisimilar) states
very short distinguishing sequences exist. It is easy to devise a transition cover for a
kernel, the size of which is proportional to the size of the kernel.

As shown in Theorem 4.8, the size of the test suite to be generated will depend on the
magnitude of two numbers m 1 and m2, indicating the search space for distinguishing
sequences for the image of the kernel in the implementation. This boils down to the
following questions: (l) What is the size of the image part of the implementation for
this kernel? (2) What is the size of a minimal distinguishing experience for each two
inequivalent (non-bisimilar) states in the image part of the implementation? (3) How
many steps does a distinguishing sequence perform outside the image of the kernel?
These questions are variations of the classical state space questions for black box
testing. For practical reasons, these numbers are usually taken to be not much larger
than the corresponding numbers for the specification.

The algorithm Kernel (see Figure 1) was implemented using the OPEN/ClESAR [14]
tool set. An interesting detail here is that the algorithm uses two finite state machines:
one for the specification that is reduced to a kernel, and one for the template of the
symmetry, which is used to determine (as an oracle) whether two traces are symmetric.
To enable this, OPEN / ClESAR interface had to be generalized somewhat so that it is
now able to explore several labeled transition systems at the same time. We have the
experience that OPEN / ClESAR is suitable for prototyping exploration algorithms such
as Kernel.

7 FUTURE WORK

We have introduced a general, FSM based, framework for exploiting symmetry in spec­
ifications and implementations in order to reduce the amount of tests needed to establish
correctness. The feasibility of this approach has been shown in a few experiments.

However, a number of open issues remain. We see the following steps as possible,
necessary and feasible. On the theoretical side we would like to (1) construct algorithms
for computing and checking symmetries, and (2) determine conditions that are on the
one hand sufficient to guarantee symmetry, and on the other hand enable significant
optimizations of the algorithms. On the practical side we would like to (1) generate
and execute tests for real-life implementations, and (2) continue prototyping for the
whole test generation trajectory.

351

Acknowledgments

We thank Frits Vaandrager for suggesting the transfer of model checking techniques
to test theory, and Radu Mateescu and Hubert Garavel for their invaluable assistance
(including adding functionality!) with the OPEN/ClESAR tool set. We also thank Jan
Tretmans and the anonymous referees for their comments on this paper.

References

[1] AV. Aho, AT. Dahbura, D. Lee, and M.U. Uyar. An optimization technique
for protocol conformance test generation based on UIO sequences and Rural
Chinese Postman Tours. IEEE Transactions on Communications, 39(11):1604-
1615, 1991.

[2] K. Ajami, S. Haddad and J-M. Ilie. Exploiting symmetry in linear time temporal
logic model checking: One step beyond. In Steffen [22], pages 52-67.

[3] E. Brinksma. A theory for the derivation of tests. In S. Aggrawal and K. Sabani,
editors, Protocol Specification Testing and Verification, Volume VIII, pages 63-
74. North-Holland, 1988.

[4] E. Brinksma, J. Tretmans and L. Verhaard. A framework for test selection. In
B. Jonsson, 1. Parrow and B. Pehrson, editors, Protocol Specification Testing and
Verification, Volume XI, pages 233-248. North-Holland, 1991.

[5] W.Y.L. Chan, S.T. Vuong, and M.R. Ito. An improved protocol test generation
procedure based on UIOs. In Proceedings of the ACM Symposium on Communi­
cation Architectures and Protocols, pages 283-294, 1989.

[6] O. Charles, and R. Groz. Basing test coverage on a formalization of test hy­
potheses. In M. Kim, S. Kang, and K. Hong, editors, Testing of Communicating
Systems, Volume 10, pages 109-124. Chapman & Hall, 1997.

[7] T.S. Chow. Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, 4(3):178-187,1978.

[8] E.M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model
checking. In Courcoubetis [9], pages 450-462.

[9] C. Courcoubetis, editor. Proceedings 5th International Conference on Computer
Aided Verification (CAV '93). Lecture Notes in Computer Science 697. Springer­
Verlag, 1993.

[10] E.A Emerson, S. Jha and D. Peled. Combining partial order and symmetry
reductions. In E. Brinksma, editor, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS '97), pages 19-34. Lecture Notes in Computer
Science 1217 . Springer-Verlag, 1997.

[11] E.A Emerson and AP. Sistla. Symmetry and model checking. In Courcoubetis
[9], pages 463-478.

[12] E.A Emerson and AP. Sistla. Utilizing symmetry when model-checking under
fairness assumptions: an automata-theoretic approach. ACM Transactions on
Programming Languages and Systems, 19(4):617-638,1997.

[13] S. Fujiwara, G. v. Bochmann,F. Khendek,M. Amalou and A Ghedamsi. Testse­
lection based on finite state models. IEEE Transactions on Software Engineering,
16(6):591-603,1991.

352

[14] H. Garavel. OPEN/ClESAR: An open software architecture for verification, sim­
ulation, and testing. In Steffen [22], pages 68-84. For more information on the
tool set, see http://www.inrialpes.fr/vasy/pub/cadp . html.

[15] M.-C. Gaudel. Testing can be formal, too. In P.O. Mosses, M. Nielsen, and
M.I. Schwartzbach, editors, TAPSOFT'95: Theory and Practice of Software De­
velopment, pages 82-96. Lecture Notes in Computer Science 915. Springer­
Verlag, 1995.

[16] O. Grumberg, editor. Proceedings 9th International Conference on Computer
Aided Verification (CAV '97). Lecture Notes in Computer Science 1254. Springer­
Verlag, 1997.

[17] V. Gyuris and A.P. Sistla. On-the-fly model checking under fairness that exploits
symmetry. In Grumberg [16], pages 232-243.

[18] S. Kang and M. Kim. Interoperability test suite derivation for symmetric com­
munication protocols. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi,
editors, Formal Description Techniques and Protocol Specification, Testing and
Verification (FORTE XI PSTV XVII '97), pages 57-72. Chapman & Hall, 1997.

[19] A. Petrenko, T. Higashino, and T. Kaji. Handling redundant and additional states
in protocol testing. In A. Cavalli and S. Budkowski, editors, Protocol Test Systems,
Volume VIII, pages 307-322. Chapman & Hall, 1995.

[20] F. Michel, P. Azema, and K. Drira. Selective generation of symmetrical test
cases. In B. Baumgarten, H.-J. Burkhardt and A. Giessler, editors, Testing of
Communicating Systems, Volume 9, pages 191-206. Chapman & Hall, 1996.

[21] R. Milner. Communication and Concurrency. Prentice-Hall International, En­
glewood Cliffs, 1989.

[22] B. Steffen, editor. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS '98). Lecture Notes in Computer Science 1384. Springer-Verlag,
1998.

[23] R. Terpstra, L. Fereira Pires, L. Heerink, and J. Tretmans. Testing theory in
practice: A simple experiment. In Proceedings of the COST 247 International
Workshop on Applied Formal Methods in System Design, 1996. Also published
as Technical Report CTIT 96-21, University of Twente, The Netherlands, 1996.

[24] J. Tretmans. A theory for the derivation of tests. In Formal Description Techniques
(FORTE II '89). North-Holland, 1989.

	EXPLOITING SYMMETRY IN PROTOCOL TESTING
	1 INTRODUCTION
	2 FINITE STATE MACHINES
	3 SYMMETRY
	4 TEST DERIVATION FROM SYMMETRIC MEALY MACHINES
	5 PATTERNS
	6 EXAMPLE: TESTING A CHATBOX
	7 FUTURE WORK
	Acknowledgments
	References

