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1 INTRODUCTION 

It has long been recognized that for the proper functioning of components in open and 
distributed systems, these components have to be thoroughly tested for interoperability 
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and conformance to internationally agreed standards. For thorough and efficient testing, 
a high degree of automation of the test process is crucial. Unfortunately, methods for 
automated test generation and execution are still seriously hampered by the often very 
large state spaces of the implementations under test. One of the ways to deal with this 
problem is to exploit structural properties of the implementation under test that can be 
safely assumed to hold. In this paper we focus on taking advantage of symmetry that is 
present in the structure of systems. The symmetry, as it is defined here, may be found 
in any type of parameterized system: such parameters may for example range over IDs 
of components, ports, or the contents of messages. 

We will work in the setting of test theory based on finite state machines (FSMs). 
Thus, we assume that the specification of an implementation under test is given as an 
FSM and the implementation itself is given as a black box. From the explicitly given 
specification automaton a collection of tests is derived that can be applied to the black 
box. Exploiting symmetry will allow us to restrict the test process to sub automata 
of specification and implementation that characterize these systems up to symmetry 
and will often be much smaller. The symmetry is defined in terms of an equivalence 
relation over the trace sets of specification and implementation. Some requirements are 
imposed to ensure that such a symmetry indeed allows to find the desired subautomata. 
We instantiate this general framework by focusing on symmetries defined in terms of 
repeating patterns. Some experiments with pattern-based symmetries, supported by a 
prototype tool implemented using the OPEN/CJESAR tool set [14], have shown that 
substantial savings may be obtained in the number of tests. 

Since we assume th'at the black box system has some symmetrical structure (cf. 
the uniformity hypothesis in [15,6]), it is perhaps more appropriate to speak of gray 
box testing. For the specification FSM it will generally be possible to verify that a 
particular relation is a symmetry on the system, but for the black box implementation 
one has to assume that this is the case. The reliability of this assumption is the tester's 
responsibility. In this respect, one may think of exploiting symmetry as a structured 
way of test case selection [13,4] for systems too large to be tested exhaustively, where 
at least some subautomata are tested thoroughly. 

This paper is not the first to deal with symmetry in protocol testing. In [20], similar 
techniques have been developed for a test generation methodology based on labeled 
transition systems, success trees and canonical testers [3,24]. Like in our case, sym­
metry is an equivalence relation between traces, and representatives of the equivalence 
classes are used for test generation. Since our approach and the approach in [20] start 
from different testing methodologies, it is not easy to compare them. In [20], the sym­
metry relation is defined through bijective renamings of action labels; our pattern-based 
definition generalizes this approach. On the other hand, since in our case a symmetry 
relation has to result in subautomata of specification and implementation that char­
acterize these systems up to the symmetry, we have to impose certain requirements, 
which are absent in [20]. 

In [18], symmetrical structures in the product automaton of interoperating systems 
are studied. It is assumed that the systems have already been tested in isolation and 
attention is focused on pruning the product automaton by exploiting symmetry arising 
from the presence of identical peers. In the present paper, we abstract away from 
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the internal composition of the system and focus on defining a general framework for 
describing and using symmetries on FSMs. 

This paper is organized as follows. Section 2 contains some basic definitions concerning 
FSMs and their behavior. In Section 3, we introduce and define a general notion of trace 
based symmetry. We show how, given such a symmetry on the behavior of a system, 
a subautomaton of the system can be computed, a so-called kernel, that characterizes 
the behavior of the system up to symmetry. In Section 4 we apply the machinery to 
Chow's classical W-method for test derivation. In Section 5 we will instantiate the 
general framework by focusing on symmetries defined in terms of repeating patterns. 
Section 6 contains an extensive example, inspired by [23]. Finally, we discuss future 
work in Section 7. Due to space limitations, proofs have been left out. 

2 FINITE STATE MACHINES 

In this section, we will briefly present some terminology concerning finite state ma­
chines and their behavior, that we will need in the rest of this paper. 

We let N denote the set of natural numbers. (Finite) Sequences are denoted by greek 
letters. Concatenation of sequences is denoted by juxtaposition; E denotes the empty 
sequence and the sequence containing a single element a is simply denoted a. If a 
is non-empty thenfirst(a) returns the first element of a and last(a) returns the last 
element of a . 

If V and Ware sets of sequences and a is a sequence, then a W = {a t' I t' E W} 
and V W = Uuev a W. For X a set of symbols, we define XO = {E} and, for i > 0, 
Xi = Xi- 1 U X Xi-I. As usual, X" = UieN Xi. 

Definition 2.1. Afinite state machine (FSM) is a structure A = (S, I:, E, so) where 

• S is a finite set of states 

• I: a finite set of actions 

• E S; S x I: x S is a finite set of edges 

• sO E S is the initial state 

We require that A is deterministic, i.e., for every pair of edges (s, a, s'), (s, a, s") in 
EA, s' = s". 

We write SA, I:A, etc., for the components of an FSM A, but often omit subscripts 
when they are clear from the context. We let s, s' range over states, a, a', b, c, ... over 
actions, and e, e' over edges. If e = (s, a, s') then act (e) = a. We write s s' 

if (s, a, s') E E and with s we denote that s s' for some state s'. A 
subautomaton of an FSM A is an FSM B such that = S8 S; SA, I:8 S; I:A, 
and E8 S; EA. 

An executionjragmentof an FSM A is an alternating sequence y = So al SI ... an Sn of 
states and actions of A, beginning and ending with a state, such that for all i, 0 ::: i < n, 

we have Si Si+ 1. If so = sn then y is a loop, if n i= 0 then y is a non-empty loop. 
An execution of A is an execution fragment that begins with the initial state of A. 
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For y = so al SI ... an Sn an execution fragment of A, trace(y) is defined as the 

sequence al a2 ... an. If a is a sequence of actions, then we write s s' if A has an 
execution fragment y withfirst(y) = s, last(y) = s', and trace(y) = a. If y is a loop, 

then a is a looping trace. We write s if there exists an s' such that s s', and 

write traces(s) for the set {a E I s We write traces(A) for 
o 

3 SYMMETRY 

In this section we introduce the notion of symmetry employed in this paper. 
We want to be able to restrict the test process to subautomata of specification and 

implementation that characterize these systems up to symmetry. In papers on exploiting 
symmetry in model checking [2, 8, 10, 11, 12, 17], such subautomata are constructed 
for explicitly given FSMs by identifying and collapsing symmetrical states. We are 
concerned with black box testing, and, by definition, it is impossible to refer directly 
to the states of a black box. In traditional FSM based test theory, FSMs are assumed 
to be deterministic and hence a state of a black box is identified as the unique state of 
the black box that is reached after a certain trace of the system. Thus it seems natural 
to define symmetry as a relation over traces. 

Our basic notion of symmetry on an FSM A, then, is an equivalence relation on 
such that A is closed under the symmetry, i.e., if a sequence of actions is 

symmetrical to a trace of A then the sequence is a trace of A too. 
The idea is to construct from the specification automaton an automaton such that its 

trace set is included in the trace set of the specification and contains a representative trace 
for each equivalence class of the symmetry relation on the traces of the specification. 
In order to be able to do this, we need to impose some requirements on the symmetry. 
For the specification we demand (1) that each equivalence class of the symmetry is 
represented by a unique trace, (2) that prefixes of a trace are represented by prefixes 
of the representing trace, and (3) that representative traces respect loops. The third 
requirement means that if a representative trace is a looping trace, then the trace with 
the looping part removed is also a representative trace. This requirement introduces 
some state-based information in the definition of symmetry. 

These requirements enable us to construct a subautomaton of the specification, a 
so-called kernel, such that every trace of the specification is represented by a trace from 
the kernel. Of course, it will often be the case that the symmetry itself is preserved 
under prefixes and respects loops, so the requirements will come almost for free. 

For the black box implementation, we will, w.r.t. symmetry, only demand that it is 
closed under symmetry. So if tests have established that the implementation displays 
certain behavior, then by assumption it will also display the symmetrical behavior. In 
Section 4, where the theory is applied to Mealy machines, we will in addition need 
a way to identify a subautomaton of the implementation that is being covered by the 
tests derived from the kernel of the specification. 

Definition 3.1. A symmetry S on an FSM A is pair (Y) where is a binary 
equivalence relation on and 0' : -+ is a representative Junction 
for such that: 
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1. A is closed under::::::: If a E traces(A) and a :::::: r, then r E traces(A). 

2. Only traces of the same length are related: If a :::::: r, then la 1 = 1 r I. 

3. (Y satisfies: 

(a) a r :::::: a 

(b) r :::::: a => rr = a r 

(c) (YisprefixclosedonA: Ifaa E traces(A)and(aaY = rb,thena r = r 
(d) (Y is loop respecting on representative traces: If (aJ a2 a3Y = aJ a2 a3 E 

traces(A) and a2 is a looping trace, then (aJ a3Y = aJ a3. 

The class of traces r such that r :::::: a is denoted with [a]s, or, if S is clear from the 
context, [a]. 0 

As mentioned above, we will demand that there exists a symmetry on the specification, 
while the implementation under test is required only to be closed under the symmetry. 
Note that (ary = ar. 

Definition 3.2. Let S = (::::::, (Y) be a symmetry on FSM A. A kernel of A w.r.t. Sis 
a subautomaton lC of A, such that for every a E traces(A), a r E traces(lC). 0 

In the remainder of this section, we fix an FSM A and a symmetry S = (::::::, (Y) on 
A. Figure 1 presents an algorithm that constructs a kernel of A w.r.t. S. The algorithm 
basically explores the state space of A, while keeping in mind the trace that leads to 
the currently visited state. As soon as such a trace contains a loop, the algorithm will 
not explore it any further. 

In Figure 1, enabled(s, A) denotes the set of actions a such that EA contains an 
edge (s, a, s'), and for such an a, eff(s, a, A) denotes s'. Furthermore, repr(a, E) 
denotes the set F of actions such that a E F iff there exists an action bEE such that 
a r a = (a bY. We will only call this function for a such that a r = a. By definition 
of (y, for some action c, (a by = arc = a c. So, since A is deterministic and closed 
under ::::::, F E and if E is non-empty, F is non-empty. This justifies the function 
choose(F) which nondeterministically chooses an element from F. 

Theorem 3.3. Let lC = Kernel(A,S). If a E traces(A), then a r E traces(lC). 

4 TEST DERIVATION FROM SYMMETRIC MEALY MACHINES 

In this section we will apply the machinery developed in the previous sections to 
Mealy machines. There exists a wealth of test generation algorithms based on the 
Mealy machine model [1,5,7]. We will show how Chow's classical W-method [7] can 
be adapted to a setting with symmetry. The main idea is that test derivation is not based 
on the entire specification automaton, but only on a kernel of it. A technical detail here 
is that we do not require Mealy machines to be minimal (as already observed by [19] 
for the setting without symmetry). 

Definition 4.1. A Mealy machine is a (deterministic) FSM A such that 
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function Kemel(A, S): FSM; 
var JC; 

procedure Build.Jt(s, a, Seen); 
var a, b, s, s', E, F; 
begin 

if sf/Seen 
then E := enabled(s, A); 

F:=0; 

fi; 

while E =F 0 
do a := choose(repr(a, E»; 

s' := eff(s, a, A); 

od; 

SIC := SIC U {s'}; 
EIC := EIC U {a}; 
EIC := EIC U {(s, a, s')}; 
Build.Jt(s', a a, Seen U {s}); 
F:= FU{a}; 
E:= E \ {a}; 
for each bEE . a a a b 
do E := E \ {b}; 
od; 

end; 

begin 

end. 

so .- so. 
IC·- A' 

SIC := is:?".}; 
EIC := 0; 
EIC := 0; 

E, 0); 
retumJC; 

Figure 1 The algorithm Kernel 
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where IA and 0 A are two finite and disjoint sets of inputs and outputs, respectively. 
We require that A is input enabled and input deterministic, Le., for every state s E SA 

d · . I h . . I 0 h th (i/o) an mput I E A, t ere eXIsts preCIse y one output 0 E A suc at s 

Input sequences of A are elements of (/A)*' For an input sequence of A and 

s, s' E SA, we write s :::bAs' if there exists a trace (1 such that s A s' and 
is the result of projecting (1 onto IA. In this case we write s) = (1; the 
execution fragment y withfirst(y) = s and trace(y) = (1 is denoted by execA(s, 
A distinguishing sequence for two states s, s' of A is an input sequence such that 
outcomeA(;, s) =1= s'). We say that distinguishes s from s'. 0 

In Chow's paper, conformance is defined as the existence of an isomorphism between 
specification and implementation. Since we do not assume automata to be minimal, we 
will show the existence of a bisimulation between specification and implementation. 
Bisirnilarity is a well-known process equivalence from concurrency theory [21]. For 
minimal automata, bisirnilarity is equivalent to isomorphism, while for deterministic 
automata, bisimilarity is equivalent to equality of trace sets. 

Definition 4.2. Let A and B be FSMs. A relation R SA x S13 is a bisimulation on 
A and B iff 
• R(SI, S2) and Sl A si implies that there is a E SA such that S2 13 

and R(si, 

• R(SI, S2) and S2 13 implies that there is a si E SA such that Sl A si 
and R(si, 

A and Bare bisimilar, notation A B, if there exists a bisimulation R on A and B 
such that s&). We call two states Sl, S2 E SA bisimilar, notation Sl S2, if 
there exists a bisimulation R on A (and A) such that R(SI, S2). The relation is an 
equivalence relation on SA; a bisimulation class of A is an equivalence class of SA 

0 

The main ingredient of Chow's test suite is a characterizing set for the specification, i.e., 
a set of input sequences that distinguish inequivalent states by inducing different output 
behavior from them. In our case, two states are inequivalent if they are non-bisirnilar, 
i.e. have different trace sets. In the presence of symmetry we will need a characterizing 
set not for the entire specification automaton but only for a kernel of it. However, a 
kernel need not be input enabled, so two inequivalent states need not have a common 
input sequence that distinguishes between them. Instead we will use a characterizing 
set that contains for every two states of the kernel that are inequivalent in the original 
specification automaton, an input sequence that these states have in common in the 
specification and distinguishes between them. 

Constructing distinguishing sequences in the specification automaton rather than 
in the smaller kernel is of course potentially as expensive as in the setting without 
symmetry, and may lead to large sequences. However, if the number of states of the 
kernel is small we will not need many of them, so test execution itself may still benefit 
considerably from the restriction to the kernel. Moreover, we expect that in most 
cases distinguishing sequences can be found in a well marked out subautomaton of the 
specification that envelopes the kernel. 
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Definition 4.3. A test pair for a Mealy machine A is a pair (Ie, W) where Ie is a 
kernel of A and W is a set of input sequences of A such that the following holds. For 
every pair of states s, s' E SIC such that s tA s', W contains an input sequence such 
that s) =1= s'). 0 

The proof that Chow's test suite has complete fault coverage crucially relies on the 
assumption that (an upper bound to) the number of states of the black box implementa­
tion is correctly estimated. Since specification and implementation are also assumed to 
have the same input sets and to be input enabled, this is equivalent to a correct estimate 
of the number of states of the implementation that can be reached from the start state 
by an input sequence from the specification. Similarly, we will assume that we can 
give an upper bound to the number of states of the black box that are reachable from 
the start state by an input sequence from the kernel of the specification. We call the 
subautomaton of the implementation generated by these states the image of the kernel. 

Technically, the assumption on the state space of the black box is used in [7] to 
bound the maximum length of distinguishing sequences needed for a characterizing 
set for the implementation. Since, like the kernel, the image of the kernel need not be 
input enabled, it may be that distinguishing sequences for states of the image cannot 
be constructed in the image itself. Thus, it is not sufficient to estimate the number of 
states of the image, but we must in addition estimate the number of steps distinguishing 
sequences may have to take outside the image of the kernel. 

Definition 4.4. Let A and B be Mealy machines with the same input set and let Ie be 

a kernel of A. A Ie-sequence is an input sequence such that A state s of 

13 is called K-related if there exists a K-sequence such that ::hB s. 

We define imJC{B) as the subautomaton (S, E, so) of B defined by: 

• S = {s E SB 1 s is Ie-related} 

• E = {(s,a, s') E EB 1 s,s' E S} 

• = {a E 13s,s'. (s,a,s') E E} 

• sO = 

o 

Definition 4.5. A subautomaton B of a Mealy machine A is (ml, m2}-self-contained 
in A when the number of bisimulation classes Q of A such that Q n S13 =1= 0 is m I, 
and for every pair of states s, s' of B such that s tA s', there exist input sequences 

of A of length at most ml, m2, respectively, such that s s' and 
s) =1= s'). 0 

The next lemma is a generalization of [7]'s Lemma O. 

Lemma 4.6. Let A and B be Mealy machines with the same input set I and let (Ie, W) 
be a test pair for A. Let C = imJC{B). Suppose that: 

1. Cis (m I, m2)-self-contained in B. 

2. W distinguishes between n bisimulation classes Q of B such that Q n Sc =1= 0. 
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Then for every two states s and s' of C such that s tB s', Iml-n 1m2 W distinguishes 
s from s'. 

This result allows us to construct a characterizing set Z = Iml-n 1m2 W for the image 
of the kernel in the implementation. The test suite resulting from the W-method consists 
of all concatenations of sequences from a transition cover P for the specification with 
sequences from Z. 

Definition 4.7. A transition cover for the kernel of a Mealy machine A is a finite 

collection P of input sequences of A, such that E E P and, for all transitions s s' 

of IC, P contains input sequences and i such that =bK: s. 0 

Now follows the main theorem. 

Theorem 4.8. Let Spec and Impl be Mealy machines with the same input set I, and 
assume (Y) is a symmetry on Spec such that Impl is closed Let (IC, W) 
be a test pair for Spec. Write C = imdlmpl). Suppose 

1. The number of bisimulation classes Q of Spec such that Q n SK: =1= 0 is n. 

2. C is (m 1 ,m2)-self-contained in Impl. 

3. For all 0' E P and r E Iml-n 1m2 W 

Then Spec Impl. 

5 PATTERNS 

In this section we describe symmetries based on patterns. A pattern is an FSM, together 
with a set of permutations of its set of actions, so-called transformations. The FSM 
is a template for the behavior of a system, while the transformations indicate how this 
template may be filled out to obtain symmetric variants that cover the full behavior of 
the system. 

In [18] an interesting example automaton is given for a symmetric protocol, repre­
senting the behavior of two peer hosts that may engage in the ATM call setup procedure. 
This behavior is completely symmetric in the identity of the peers. An FSM represen­
tation is given in Figure 2. Here, ! <action > (i) means output of the ATM service to 
caller i, and ?<action>(i) means input from caller i to the ATM service. So, action 
?set-up( 1) denotes the request from caller 1 to the ATM service, to set up a call to caller 
2. A set-up request is followed by an acknowledgement in the form of calLproc if the 
service can be performed. Then, action conn indicates that the called side is ready 
for the connection, which is acknowledged by conn..ack. A caller may skip sending 
calLproc, if it can already send conn instead (transition from state 3 to 5 and from 10 
to 12 in Figure 2). 

Here, a typical template is the subautomaton representing the call set up as initiated 
by a single initiator (e.g. caller 1), and the transformation will be the permutation of 
actions generated by swapping the roles of initiator and responder. Such a template is 
displayed in Figure 3. 



346 

Figure 2 The ATM call setup protocol Figure 3 A template 

In the example of Section 6, featuring a chatbox that supports mUltiple conversa­
tions between callers, the template will be the chatting between two callers, while the 
transformations will shuffle the identity of the callers. 

The template FSM may be arbitrarily complex; intuitively, increasing complexity 
indicates a stronger symmetry assumption on the black box implementation. 

To define pattern based symmetries, we need some terminology for partial functions 
and multisets. If f : A B is a partial function and a E A, then f(a) i means that 
f(a) is defined, while f(a) t means that f(a) is not defined. A multiset over A is 
a set of the form {(ai, nl), ... , (at, nk)} where, for I i k, ai is an element of 
A and ni E N denotes its multiplicity. We use [f(x)1 cond(x)] as a shorthand for the 
multi set over A that is created by adding, for every single x E A, a copy of f (x) if the 
condition cond(x) holds. 

Definition 5.1 (Patterns). A pattern P is a pair (7, n) where 7 is an FSM, called the 
template of p, and n is a finite set of permutations of :E" which we call transforma­
tions. 

Given a sequence (iI, ... , fn) of (partial) functions iI, ... , fn : n E" we 
denote with exec ( (fl , ... , fn), Jl") the sequence of edges obtained by taking for each 
function Ii, 0 i n, the edge e (if any) such that Ii (Jl") = e. 0 

In the remainder of this section, we fix an FSM A and a pattern P = (7, n). 

Below we will define how P defines a symmetry of the behavior of an FSM A. Each 
transformation Jl" E n gives rise to a copy Jl" (7) of 7 obtained by renaming the actions 
according to Jl". Each such copy is a particular instantiation of the template. Intuitively, 
the trace set of A is included in the trace set of the parallel composition of the copies 
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rr(n, indexed by elements of n, with enforced synchronization over all actions of 
A. Using that traces of A are traces of the parallel composition, we will define the 
symmetry relation on traces in terms of the behavior of the copies and permutations of 
the index set n. 

The following definition rephrases the inclusion requirement above in such a way 
that the relation and a representative function for it can be formulated succinctly. In 
particular, if A is the parallel composition of the copies of T, the requirement in this 
definition apply. 

Definition 5.2. Let (1 = al ... an be an element of CEA)*. A covering of (1 by P is a 
sequence (II, ... , In) of partial functions Ii : n Er with non-empty domain such 
that for every rr E n and I i n: 

1. If li(rr) = e then ai = rr(act(e». 

2. The sequence exec ( (II, ... , Ii), rr) induces an execution Yi of r. 
3. If the sequence trace(Yi-}) aj is a trace of rr(n then f; (rr) 

We say that P covers (1 if there exists a covering of (1 by P. 

We call P loop preserving when the following holds. Suppose (11 (12 E traces(A) 
is covered by (II, ... , In, gl, ... , gm) and (12 is a looping trace. Then for all :rr E n, 

last(exec«(lI, .. ·, In), rr» = last(exec«(/I, ... , In, gl,···, gm), :rr» 

o 

Intuitively, these requirements mean the following. The 'non-empty domain' require­
ment for the partial functions f; ensures the inclusion of the trace set of A in the 
trace set of the parallel composition of copies of r. Requirements I and 2 express 
that a covering should not contain 'junk'. Requirement 3 corresponds to the enforced 
synchronization of actions of the parallel composition. 
Two traces (1 and 'l' of the same length n that are covered by p, are variants of each 
other if at each position i, I ::::: i ::::: n, of (1 and 'l' the following holds. The listings for 
(1 and 'l', respectively, of the copies rr(n that participate in the action at position i, the 
states these copies are in before participating, and the edge they follow by participating, 
are equal up to a permutation of n. Then, two traces of the same length are symmetric 
iff they are either both not covered by P or are covered by coverings that are variants 
of each other. 

Definition 5.3. Let (1 and 'l' be elements of (EA)n, which P covers by COV\ = 
(II, ... , In) and COV2 = (gl, ... , gn), respectively. Then COVI and COV2 are said to be 
variants of each other iffor every 1 i n, [f;(rr) I :rr E n] = [gi(:rr) I :rr E n]. 
We define the binary relation on (EA)* by: 

(1 'l' {:} /\ 1(11 = I'l'l 
/\ v both (1 and 'l' are not covered by P 

v P covers (1 and 'l' by variant coverings 

It is easy to check that is an equivalence relation. As in Section 3, we will write 
[(1] for the equivalence class of (1 and instead of l' . 0 
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An important special case is the following. Suppose A consists of the parallel compo­
sition of components Cj, indexed by elements of a set I, that are identical up to their 
ID (which occur as parameters in the actions). Let a and l' be traces of A. If there 
exists a permutation p of the index set I such that for all indices i E I, a induces (up 
to renaming of IDs in actions) the same execution of Cj as l' induces in Cp(i), then a 
and l' are symmetric. 

Now we define a representative function for:::::. We assume given a total, irreflexive 
ordering < on Such an ordering of course always exists, but the choice for < may 
greatly influence the size of the kernel constructed for a symmetry based on P. 

Definition 5.4. Let < be a total, irreflexive ordering on This ordering induces a 
reflexive, transitive ordering::: on traces of the same length in the following way: 

a a ::: b l' {:} a < b v (a = b /\ a ::: 1') 

We define a r as the least element of [a] under :::. o 
Given the definition of :::::, it is reasonable to demand that every trace of A is covered 
by P. We will also need the following closure property. We call a binary relation R 
on persistent on A when R(a, 1'} and a a E traces(A} implies that there exists 
an action b such that R(a a, l' b}. 

The next result allows us to use the pattern-approach for computing a kernel. In our 
example of the ATM switch, we have computed the kernel from the FSM in Figure 2, 
using the symmetry induced by the template in Figure 3 and an ordering < that obeys 
the relation ?seLup(1} < ?seLup(2}. Not surprisingly, the resulting kernel is identical 
to the template. 

Theorem 5.5. Suppose P is a loop preserving pattern on A and let < be a total, 
irreflexive ordering on Let (Y be as in Definition 5.4. Suppose every trace of A 
is covered by p, A is closed under :::::, and::::: is persistent on A. Then (:::::, or) is a 
symmetry on A. 

6 EXAMPLE: TESTING A CHATBOX 

In this section we report on some initial experiments in the application of symmetry 
to the testing of a chatbox. This example was inspired by the conference protocol 
presented in [23]. Part of the test generation trajectory was implemented: we used 
the tool environment OPEN/ClESAR[14] for prototyping the algorithm Kernel from 
Section 3. We work with a pattern based symmetry (Section 5) and apply the test 
derivation method from Section 4. 

A chatbox offers the possibility to talk with users connected to the chatbox. After one 
joins (connects to) the chatbox, one can talk with all other connected users, until one 
leaves (disconnects). One can only join if not already present, and one can leave at any 
time. For simplicity, we assume that every user can at each instance talk with at most 
one user. Moreover, we demand that a user waits for a reply before talking again (unless 
one of the partners leaves). Finally, we abstract from the contents of the messages, and 
consider only one message. The service primitives provided by the chatbox are thus 
the following; Join, Leave, DReq, and DInd, with the obvious meaning (see Figure 4). 
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USC'A usc's use'e USC'A usc's USC'e USC'A usc's use'e 
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'. .......... '. .. ........ 

Figure 4 The chatbox protocol service 

For lack of space, we do not give the full formal specification of the chatbox or its 
template. 

What we test for is the service of the chatbox as a whole, such as it may be offered by 
a vendor, rather than components of its implementation, which we (the "customers") 
are not allowed to, or have no desire to, inspect. 

The symmetry inherent in the protocol is immediate: pairs of talking users can be 
replaced by other pairs of talking users, as long as this is done systematically according 
to Definitions 5.2 and 5.3. As an example, the trace in which user 1 joins, leaves and 
joins again, is symmetric to the trace in which user 1 joins and leaves, after which user 
2 joins. The essence is that after user 1 has joined and left, this user is at the same 
point as all the other users not present, so all new join actions are symmetric. Note 
that this symmetry is more general than a symmetry induced solely by a permutation 
of actions or IDs of users. Thus the template T used for the symmetry basically 
consists of the conversation between two users, including joining and leaving, while 
the transformations 'f{ in the set n shuffle the identity of users. We feel that it is a 
reasonable assumption that the black implementation offering the service indeed is 
symmetric in this sense. 

We have applied the machinery to chatboxes with up to 4 users. We also considered 
a (much simpler) version of the protocol without joining and leaving. Still, a chatbox 
with only 4 users and no joining or leaving already has 4096 reachable states. 

We start the test generation by computing a kernel for these specifications. Our 
prototype is able to find a significantly smaller Mealy machine as a kernel for each 
of the models, provided that it is given a suitable ordering < (see Definition 5.4) on 
the actions symbols for its representative function. The kernels constructed consist of 
interleavings of transformations of the pattern, constrained by the symmetry and the 
ordering <. 

For instance, in a chatbox with 3 users and no joining and leaving, we take the 
ordering < defined as follows. "Sending a message from i I to il" < "sending a 
message from i2 to h" if (i I < i2) or if (i I = i2 and h < h), and "sending a reply 
from i I to h" < "sending a reply from i2 to h" if (i I > i2) or if (i I = i2 and h > h). 

Using this ordering, the kernel only contains those traces in which first messages 
from user 1 are sent, then messages from user 2 and finally messages from user 3, while 
the sending of replies is handled in the reverse order. Each trace with different order of 
sending messages can then be computed from a trace of this kernel, which is exactly 
what Theorem 3.3 states. 
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Our experiments so far have revealed that for chatboxes with joining and leaving, 
the kernel is approximately half the size. When considering chatboxes without joining 
and leaving, the size of the kernel is reduced much more. Of course, the algorithm 
should be run on more and larger examples to get definite answers about possible size 
reduction. 

Given the computed kernels, we can construct test pairs by determining for each 
kernel a set of input sequences W that constitutes a characterizing set for the kernel (as 
defined in Definition 4.3). Although this part has not yet been automated, it is easily 
seen by a generic argument that for every pair of inequivalent (non-bisimilar) states 
very short distinguishing sequences exist. It is easy to devise a transition cover for a 
kernel, the size of which is proportional to the size of the kernel. 

As shown in Theorem 4.8, the size of the test suite to be generated will depend on the 
magnitude of two numbers m 1 and m2, indicating the search space for distinguishing 
sequences for the image of the kernel in the implementation. This boils down to the 
following questions: (l) What is the size of the image part of the implementation for 
this kernel? (2) What is the size of a minimal distinguishing experience for each two 
inequivalent (non-bisimilar) states in the image part of the implementation? (3) How 
many steps does a distinguishing sequence perform outside the image of the kernel? 
These questions are variations of the classical state space questions for black box 
testing. For practical reasons, these numbers are usually taken to be not much larger 
than the corresponding numbers for the specification. 

The algorithm Kernel (see Figure 1) was implemented using the OPEN/ClESAR [14] 
tool set. An interesting detail here is that the algorithm uses two finite state machines: 
one for the specification that is reduced to a kernel, and one for the template of the 
symmetry, which is used to determine (as an oracle) whether two traces are symmetric. 
To enable this, OPEN / ClESAR interface had to be generalized somewhat so that it is 
now able to explore several labeled transition systems at the same time. We have the 
experience that OPEN / ClESAR is suitable for prototyping exploration algorithms such 
as Kernel. 

7 FUTURE WORK 

We have introduced a general, FSM based, framework for exploiting symmetry in spec­
ifications and implementations in order to reduce the amount of tests needed to establish 
correctness. The feasibility of this approach has been shown in a few experiments. 

However, a number of open issues remain. We see the following steps as possible, 
necessary and feasible. On the theoretical side we would like to (1) construct algorithms 
for computing and checking symmetries, and (2) determine conditions that are on the 
one hand sufficient to guarantee symmetry, and on the other hand enable significant 
optimizations of the algorithms. On the practical side we would like to (1) generate 
and execute tests for real-life implementations, and (2) continue prototyping for the 
whole test generation trajectory. 
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