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Abstract 
This paper discusses some developments and results of the theory of test 

generation from automata. These developments are driven by the needs to better 
understand the nature of automata testing and thus to make the testing theory more 
applicable to real systems. We provide an overview of some important results in 
automata testing recently obtained in the Soviet Union and in the countries that 
have arisen from it. 
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1 INTRODUCTION 
Automata or finite state machines have been widely used as mathematical 

models of discrete systems in diverse areas such as computer hardware and 
software and more recently, communication protocols [2,3,4,7,18,19,29,31]. In 

A. Petrenko et al. (eds.), Testing of Communicating Systems
© Springer Science+Business Media New York 1998



4 

this paper, we study the fault-detection problems on automata. We are given the 
state diagram of an automaton A, and we have a «black box» automaton B which 
is supposed to implement A. We can test B by applying input sequences (tests) and 
observing the produced output sequences. We want to design the tests to determine 
whether or not B is an implementation of A. This problem has been referred to as 
the «fault-detection» or «checking problem» in automata theory. In the recent 
literature, this problem is also called conformance testing (of communication 
protocols). 

There is an extensive literature on problems of automata testing. One may state 
that the theory of automata testing has been built over the last 40 years. There exist 
several excellent books [15,18,29] and surveys [2,20,31] in this theory, but many 
interesting results were omitted in these publications. The aim of this paper is to 
represent some important results recently obtained in the USSR and in the 
countries arisen from the Soviet Union (mainly, in Russia and Ukraine). 

2 BACKGROUND 
2.1 Basic notations 

A deterministic finite state machine (FSM) or an automaton A is quintuple 
A=(S,X,y,aA), where S,x,Y are finite and nonempty sets of states, input symbols, 
and output symbols, respectively; cS: DomA~S is the state transition function and A 
: Dom~Y is the output function; DomA is a specification domain of A, i.e. a subset 
of SXX. If DomA= SXX then A is complete, otherwise it is partial. Let n,m,r be the 
cardinality of S,x,Y, respectively. If p=xr-.Xt is an input word, then cS(s,p) is the 
state reached by A from state s when p is applied to A, and A.(s,p)=Yr-.Yt is the 
corresponding output word. The pair (p, A,(s,p)) is called an input-output word 
produced by the state s. We use w=(x1,y) ... (xI!Yt ) to denote this word. The word W 

determines the unique partial «string» automaton R(w) with the state set {O,I, ... ,k}, 
transition function Ll, and output function A: Ll(i,x,+)=(i+J), A(i,x/+)=Y/+I for 05i5 
k-J and these functions are undefined in all other cases. 

We denote A, and A,i the sets of all input-output words produced by s 
which are of finite length and length equal to or less than k, respectively. The 
automaton A is reduced if A,,¢A, for every pair of distinct states s and t. The reduced 
automaton is uniquely characterized by the set LA=(AJ, SES. An important 
characterization of A is the set c:PA=U,E;",. 

Let So be a designated initial state of A. The automaton A is called 
connected if for all states SES exists an input word p such that cS(SI1P)=s. The 
automaton is called strongly connected if it is connected for all SoES. 

Two automata A and B are said to be equivalent if LA=LB• If So and to are 
the initial states of A and B, then A and B are equivalent if A.o=Aro. 

An input word p is a distinguishing word for A, if s¢t, S,tES, implies A 
(s,p)¢A.(t,p). The automaton A is called definitely diagnosable of order k if every p 
of length k is a distinguishing word ( DDA-k, for short). It is known that k in this 
case is equal to or less than n( n-l)I2. A word p is a homing word for A if A.( S,p )=A 
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(t,p) implies O(s,p);t.O(t,p). If every p of length k is a homing sequence for A, then A 
is the finite memory of order k automaton. The order k of finite memory is also 
equal to or less than n(n-l)l2. 

2.2 Testing problems 
In testing problems, we have a machine about which we lack some 

information, and we would like to deduce this information from input-output 
words obtained by experimenting with the machine. An experiment is a process 
when we apply input words to the machine, observe the produced output words 
and deduce the missing information about the machine. The applied input words 
are called a test suite and obtained input-output words are called an experiment. 

We discuss the machine verification problem also known as the fault­
detection or conformance testing problem. We are given a specification machine 
A, i.e. we have its state transition and output function. We are also given an 
implementation machine B that is a «black box» and we can only observe its input­
output behaviour. We want to design a test (an experiment) to determine whether B 
conforms (is equivalent) to A. Obviously, without any assumption the problem is 
undecidable. There are a number of «classical» assumptions that are usually made 
in the literature: 
a) the specification machine A is complete, reduced and strongly connected; 
b) an implementation machine B has the same input alphabet as A; 
c) B belongs to some known class F of «faulty machines». 
The class F is often assumed to coincide with the class F. of all machines with the 
number of states not more than n. The specification machines considered in the 
machine verification problem usually have a designated initial state (initialized 
machines). 

Let W={(ppq)}, l.$i.$k, be a set of input-output words. The set W is called 
a checking experiment, if W~A.,o and, for all BEF. and any state t of B, W~, 
implies that the machine B is equivalent to A. The parameter k is called the 
multiplicity of the experiment W, the length of the longest word from W is called 
the length of W, and the total length of all words in W is the size of W. The 
experiment is called simple when k= 1 and multiple otherwise. A simple checking 
experiment (p,q) is called a checking sequence and p is called a checking test. 

There is an extensive literature on testing automata, the fault-detection 
problem, in particular. It is convenient for us to distinguish three periods in this 
research: primary, classical, and modern periods. The primary period was opened 
by the famous Moore's paper [23] in which he studied a related, but harder 
problem of machine identification: given a machine with a known number of 
states, determine its state diagram. This period is characterised by the 
combinatorial nature of offered solutions, i.e. the obtained results are implied by 
counting the number of automata in a certain class. 

Moore proved that there exists a multiple checking test for A with n states 
and F. containing all input words of length 2n-l. He also provided an exponential 
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algorithm for constructing a checking sequence of an exponential length and an 
exponential lower bound for this problem on the basis of the class F cardinality. 
Books [7,18,29] give a good exposition of the major results of the primary period. 

The classical period was started by the influential Hennie's paper [14]. He 
shown that if the automaton A has a distinguishing input sequence of length I, then 
one can construct a checking sequence of a length polynomial in I and nm. 
Unfortunately, not every machine has a distinguishing sequence. Furthermore, 
only exponential algorithms are known for determining the existence such 
sequences. In [27] it is shown that the problem is PS-complete [1]. Rystsov [26] 
proved that for the length I of shortest distinguishing sequences the inequality 

3n(J'£JKi < l<3n(J+£JKi holds, where e is any positive real number and n~oo. 
Nevertheless, the main Hennie's idea is most fruitful. It lies in embedding a 
distinguishing sequence in a test sequence in a special way to: 
a) obtain the response of each state of A to the distinguishing sequence and, 
b) check each transition of A by applying a proper input at the start state, observing 
the produced output, and verifying the tail state of the transition by using the 
distinguishing sequence. 

Based on this idea, many papers were published in which various 
subsequences were used to verify the start and tail states of transitions, 
distinguishing sequences, adaptive distinguishing sequences, locating sequences, 
identifying sequences, homing sequences and others. To the classical period an 
important Vasilevskii's paper [30] belongs. He provided a polynomial algorithm 
for constructing a multiple checking experiment, and proved polynomial upper and 
lower bounds on the length of checking sequences. Books [3,4,15,18] and papers 
[20,31] give a good exposition of the major results of the classical period. During 
this period, many algorithms were constructed for special classes of specification 
automata, diagnosable, definitely diagnosable of order k [18] etc. In [25,28], the 
exact upper bound of adaptive distinguishing sequences was obtained. In [8], so­
called checking sequences for state of A were investigated. The period has 
continued till recent days. 

3 MODERN RESEARCHES 
The results obtained during the primary and classical periods give a basis 

and a possibility to build a general theory of automata checking. A variant of the 
theory is stated below. Consider an automaton A and a (possibly partial) automaton 
R=(T,X,Y,Ll,A,DR). A mapping qJ: T~S is a homomorphism of R to A, if qJ(L1 
(t,x))=Ii(qJ(t),x), A(t,x)=A(qJ(t),x) for all (t,x)EDR • The automaton R is called a 
fragment of A if such a mapping exists. This fact is denoted RSA, and in the case, 
when qJ is one-to-one mapping, it is denoted R~. It is obvious, that if WE «PA , then 
R(w) is a fragment of the automaton A. 

Let F be a class of reduced complete automata over the alphabets X, Yand 
1: be a similarity relation on Pu{A}. 't(A) is the class of automata similar to A. An 
automaton R is said to be a representation of A with respect to F and 1: (a 
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representation of (A,F, 't), for short), if R5A and if R5B, BE F, implies Ber(A). It is 
obvious, that if w is a checking sequence for A and F, then the automaton R(w) is 
the representation of (A,F, 't), where 't is the automata equivalence relation, that is 
(A,B) E't iff LA=LB• If W is a checking experiment, then the tree-like automaton 
R(W) defined analogously to R(W) is a representation of A, as well. The notion of a 
representation is a nontrivial and useful generalisation of checking experiments 
and it enables us to construct a unified profound theory of automata checking. The 
representation theory is widely stated in [11]. In the same book, the application of 
the representation theory to problems of technical diagnostics is discussed. 

3.1 Existence of representations 

Theorem 1 [llJ 
The following statements are equivalent: 
1. a representation of (A,F, 't) exists, 
2. the automaton A is a representation of (A,F, 't), 
3. if AQJ, BEF, then BE't(A). 

Given a checking experiment W, the tree-like automaton R(W) is the 
representation. The existence condition for this important. class of tree 
representations is given by: 

Theorem 2 [11 J 
A tree representation of(A,F, 't) exists iff there exists a natural k such that 
for each BEF-'t(A) there exists a state t of B such that A,k:;tA,kfor all SES. 

The statement 3 of the Theorem 1 for a finite F may be checked 
effectively. The class F in Theorem 2 may be either finite or infinite. Any finite 
class F has this property but the converse is not always true. From this it follows 
that multiple checking experiments exist for any finite F. 

In [11] several existence conditions are found for several types of 
representations of various (A,F, 't). 

3.2 Representation structure 
For the design of checking experiments, as it has been stated above, 

special sequences (distinguishing, locating etc.) playa significant role. Let us 
introduce a notion of state identifiers to generalize such sequences. A fragment R 
with a fixed state t is an identifier of state s of A if R5A and if each homomorphism 
of R to A maps t to s. The fragment R is a state identifier of A, if it is an identifier 
of some state s. Let R5A and 1 be a state identifier of A. The identifier 1 is said to 
be verified in R, if R5B, BE F implies that 1 is a state identifier of B. 

Let J be a set of the state identifiers verified in R. Consider an 
equivalence relation on J: (1/'/2)EO if 1/,/2 are identifiers of the same state for all B 
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eF, RSB. The pair (J,a) generates on the state set of R a reflexive and symmetric 
relation: (tl,t2)e/3 iff there exist 11'/2eJ for some states tl,t2, respectively, 11,125R, 
and (11'/2)e a. The smallest congruence relation P;;2~ is called a closure of ~. The 
closure p generates the fragment [R]=Rlp which is called a closure of R by (J,a). 

Theorem 3 [1 I] 
If [R]=Afor (J,a), then R is a representation of (A,F, 't). 

An input-output word w=(xI,y)",(xvYt ), we<llA is called an initial (final) 
identifier of A if the fragment R( w) with the state 0 (k, respectively) is a state 
identifier of A. 

It follows from this definition that if p is a distinguishing (homing) word 
for A, then R(p,A(s,p)) is an initial identifier of s (a final identifier of fJ(s,p), 
respectively) of the automaton A. Taking into account this definition we may say 
that the results of Hennie and his successors are the corollaries to Theorem 3. 

Consider the cases when the condition of Theorem 3 is both, sufficient 
and necessary. Let F=F., 't be an isomorphism relation, and A be a DDA-k. 

Theorem 4 [II] 
A word we<llA is a checking experiment for DDA-k, where k.$l1, iff 
[R(w)]=A, where J is the set all initial state identifiers verified in R(w). 

Consider the case when A is DDA-k, k=l. Let <IlAI be the set of all input­
output words WE <IlA of length 1, and J be the set of all initial state identifiers of 
length 1 verified in R. Define a non oriented graph G(R)=(V,E), where V is equal 
to the state set of [R], and (VI' V2)eE if VI;tV2, A(VI,x);tA(V2,x) for some xeX. A 
mapping qJ: V onto (1,2, ... ,nj is called a colouring of G(R), if (VI' V)eE implies qJ 

(V);tqJ(V). The graph G(R) is said to be uniquely colourable iff all colourings of 
G(R) are isomorphic. 

V.A. Kozlovsky has proved the following important results. 

Theorem 5 [11] 
A fragment R is a representation of (A,F,.,=) iff the following conditions 

hold: 
1. RSA, 
2. <IlAI=<Il/, 
3. G(R) is uniquely colourable. 

On the basis of the Theorem 5 he has proved 

Theorem 6 [J 1,16] 
The problem «is a word w a checking experiment of (A,F.,=)?» is NP­
complete. 
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We note that the checking of conditions 1,2 of Theorem 5 may be 
performed by a polynomial algorithm. In [17] V.A. Kozlovsky has proved that this 
problem is NP-complete for a special class of machines, so-called group DDA-1. 

3.3 Important subclasses of F •• 
The results discussed above indicate the fundamental difficulties in 

constructing tests for (A,F .. =). The difficulties stimulate investigation of 
subclasses of F. for which the test derivation can be done more efficiently. A 
number of such classes are known [2, 11, 13, 16, 24]. We consider here the two 
classes: a locally generated class [11, 16] and a class generated by a fault-function 
[5,6, to, 11, 13,31]. 

Given an automaton A, we define a class F(A) generated by local 
transformations of A. The neighbourhood of state seS in A is the set 0is) of states 
t such that li(s,x)=t or li(t,x)=s for some xeX. If li(s,x)=z for some s,zeS and xeX, 
then replacing z by some teOiv) we obtain an automaton B which we call as the 
one directly generated by A. An automaton BeF(A) iff there exists a sequence of 
automata Bo=A, BI, ... ,B.=B such that B j is directly generated by B j •l, i=1, .. ,k-1. 
Clearly, F(A)g •. 

Theorem 7[16} 
A word w=(xl,y). .. (x .. yJ, wetllA is a checking experiment of (A,F .. =), 

where A is a DDA-1, iff tIl/={(xI'YI)' ... '(x.,y.)}, and (x",Y.) occurs in w at 
least twice. 

Corollary 8 [16} 
1. There is a polynomial algorithm solving the decision problem «is a 
word w a checking experiment of(A,F(A),=)>>; 
2. The length d(w) of the shortest checking experiment w of (A,F(A),=) 
satisfies the inequality mn+1Sd(w)Smn+(m-l)n(n-l)l2, where both the 
lower and upper bounds are reachable. 

In the book [11], a special case of the local transformations, so-called 
input faults on A, is considered. For these faults and a so called inversible A, an 
algorithm for constructing checking sequences of length at most (2n-1)m is 
proposed. 

Consider now the class generated by a fault-function [10]. Let S, X, Y be 
some alphabets of states, input, and output, respectively. Consider the pair of 
functions (j,g), where f(p)kS and g(p)~Y for each input word p. For an empty 
word e we define f(e)=s~, g(e)=e. Let F be a class of automata in these 
alphabets. The pair (j,g) is said to be an evaluating function for F, if li(sup)ef(p) 
and J.(li(sup),x)eg(px) for each xeX, input word p and each automaton AeF with 
the initial state so. Each pair (j,g) generates a maximal class F for which the pair is 
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an evaluating function. Assuming that an automaton A in F serves as a 
specification (it is a correct automaton), all the others are considered as faulty 
automata, and the pair (f,g) is called a fault function for A and F. In [13] a fault 
function with g(p )=A( sup) was considered. It is obvious, that such a fault function 
determines the class F(A), iff( e )=so and .f(px)=O i IX sup)). 

Fault functions are a powerful tool for defining automata classes. In 
[10,13,32] the methods for constructing multiple checking tests were proposed. 
These methods improve the Vasilevskii results [30] and may yield simpler tests. S. 
Yu. Boroday [5,6] has considered a subclass of the class F of automata with single 
transition faults, (automata whose transition and output functions differ from those 
of A only for one pair (s,x) or for one state s). As shown in [5,6], in these classes 
test derivation is simplified. 

3.4 Finite-definable classes of automata 
Consider now the testing problems when a class F can be infinite but it is 

defined by a finite means. In this section, we study two ways of defining an 
infinite class, by a set Mg(xY [9,12] and by nondeterministic automata 
[2,21,22,24] . 

Let F(X, Y) be the class of all initialized reduced automata over inputs X 
and outputs Y. Given a subset Mg(xY, consider a class F(M) of all automata from 
F(X,Y) in which every (x,Y)EM can be produced by at most one state. Such M 
exists in practice (for example, protocol machines with a status message [19,31]). 
It is easy to see that the class F(M) may be either finite or infinite. Let Mx be the set 
of all (x,Y)EM, YEY, and mx be the cardinality of M •. 

Theorem 9 [12J 
The following statements are equivalent: 
1. The class F(M) is finite, 
2. mx=r for some XEX, 
3. there exists some XEX such that for each AEF(M), x is a distinguishing 

word. 

The statement 2 can be checked by a polynomial algorithm. Let G(M)!; 
F(M) be a subclass of all automata in which every cycle of the transition graph has 
a state producing some (x,Y)EM. 

Theorem 10 [12J 
A multiple checking experiment o/(A,F(M),=) exists iff AEG(M). 

The condition of Theorem 10 can be verified by a polynomial algorithm. 
The polynomial condition of checking sequence existence can be found in [12] as 
well. 
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Let R be a fragment of AEF(M). A closure [RiM of R by M is a (possible 
partial) automaton constructed from R by identifying all states of R producing the 
same (x,y)EM and its next states according to x. 

Theorem 11 [9 i 
1. Let n<r or mz<r for all XEX. A fragment R is a representation of 
(A,F(M),=) iff the closure [RiM is equivalent to A. 
2. Let n=r and mz =r for some XE X. The fragment R is a representation of 
(A, F( M), =) iff the following conditions hold: 

a) R5A, 
b) 4J/=4J/, 
c) [RiM is uniquely colourable. 

Another way of defining automata classes uses a nondeterministic 
automaton. Let N=(V,X,Y,h,v,) be an initialized nondeterministic observable 
automaton with h: Vx(XxY)~V. Given state v and input-output word w, v'=h(v,w) 
denotes a state reached when the automaton produces w. In the general case, the 
function h is partial, i.e. h(v, w) may be undefined for some w. Let LN be a set of all 
words w for which h(v(1w) is defined. An automaton N defines a class F(N) of 
automata A from F(X,Y) such that As,j;;,LN' The automaton AEF(N) is called an 
implementation of N. A state v of N is deterministic if for each p a unique output 
word q exists such that h(v,(p,q)) is defined. All deterministic states form a kernel 
ofA. 

Theorem 12 [22 i 
The class is finite iff the automaton N has a cycle outside of its kernel. 

In [21] B.Lukyanov has found a sufficient condition for checking the test 
existence for (A,F(N),=), where AEF(X,Y), and proposed a method for deriving a 
test. S. Yu. Boroday [6] has found a necessary and sufficient condition for 
checking the test existence and has given an algorithm. Moreover, he has given a 
method for checking whether the automaton is contained in F(N) or in F(N), 
where N/, N2 are nondeterministic automata. 

4 CONCLUSION 
The key issues in automata testing are the structure of experiments and 

the analysis of the experiments. The first problem consists in determining what 
kind of information about the specification machine must be present in checking 
experiments. The second problem consists in finding all automata generating a 
given experiment. Both problems are closely related and are very hard. This paper 
deals with the first problem. A framework has been introduced for this problem 
exploration on the base of the state identifiers. Note that in [11] some more types 
of identifiers are studied (input and output identifiers, for example). The results 
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presented in the paper (and in [11]) show us that the representations and the 
identifiers of non-observable components of automata are powerful means for this 
problem solution. 

5 ACKNOWLEDGEMENTS 
This research was partly supported by the Russian Found for 

Fundamental Research (grant 98-01-00113). The author wishes to thank Alex 
Petrenko (CRIM, Canada) for his stimulating help at all the stages of the 
preparation of this paper. 

6 REFERENCES 
[1] A. V. Aho, J.E. Hopcroft, 1. D. Ullman, The Design and Analysis of Computer 

Algorithms. Reading, MA: Addison-Wesley, 1974. 
[2] G. v. Bochmann and A. Petrenko, Protocol Testing: Review of Methods and 

Relevance for Software Testing, Proc. of the 1994 Int. Symp. on Software 
Testing and Analysis (ISSTA), Seattle, Wash., T. Ostrand Ed., pp. 109-124, 
1994. 

[3] A. M. Bogomolov, A. S. Barashko, I. S. Grunsky, Experiments on Automata. 
Kiev: Naukova Dumka, 1973 (in Russian). 

[4] A. M. Bogomolov, I. S. Grunsky, D. V. Speransky, Checking and 
Transformation of Discrete Automata. Kiev: Naukova Dumka, 1976 (in 
Russi~n). 

[5] S. Yu. Boroday, Checking of Single Faults of Finite State Machine Defined by 
a Fault Function, Kibernetica, no.6, pp 65-74, 1995. 

[6] S. Yu. Boroday, Experiments on Effectively Defined Classes of Automata, 
Ph.D. Thesis. Saratov University, 1997. 

[7] A. Gill, Introduction to the Theory of Finite-State Machines. New York: Mc 
Graw-Hill, 1962. 

[8] S. M. Goberstein, Check Words for the States of Finite Automaton, 
Kibernetika, no I, pp. 46-49, 1974. 

[9] I. S. Grunsky, Structure of Fragments Uniquely Representing Automata, 
Intellectual Sy~tems (Moscow), v.2, pp. 249-258, 1997 (in Russian) 

[10] I. S. Grunsky, Checking of Automata Faults Defined with an Explicitly Given 
Fault Function, Proc. of Institute of Applied Math. and Mechanics, Ukrainian 
Acad. Of Sci. (Donetsk), voU, pp. 38-43, 1997. 

[11] I. S. Grunsky, V. A. Kozlovsky, G. G. Ponomarenko, Finite Automata 
Representation by Means of Behaviour Fragments. Kiev: Naukova Dumka, 
1990 (in Russian). 

[12] I. S. Grunsky, I. I. Maximenko, On Experiments on Automata without an 
Upper Bound on the Number of their States, Dopovidi of Nat. Acad. Of Sci. 
(Kiev, Ukraine), no.6, pp. 31-35,1996. 



13 

[13] I. S. Grunsky, A. Petrenko, Design of Checking Experiments on Automata 
Describing Protocols, Automatika I vychislitelnaya tehnika (Riga), no.4, pp. 7-
14, 1988 (in Russian), Automatic Control and Computer Sciences, Allerton 
Press, Inc., USA, (in English). 

[14] F. C. Hennie, Fault Detecting Experiments for Sequential Circuits, Proc. IEEE 
5-th Ann. Symp. On Switch. Circuits Theory and Logical Design, 1964, pp. 
95-110. 

[15] Z. Kohavi, Switching and Finite Automata Theory. Mc Graw-HiIl, 1970. 
[16] V. A. Kozlovsky, On the Recognition of an Automaton Relative to a Locally 

Generated Class, Soviet Math. Dokl, vol. 23, no.3, pp. 625-628, 1981. 
[17] V. A. Kozlovsky, On Representation of the Group Automata, Kibernetika i 

Sistemny Analiz, no.2, pp. 21-28, 1996. 
[18] V. B. Kudryvtsev, S. V. Aleshin, A. S. Podkolzin, Introduction to Automata 

Theory, Moscow: Nauka, 1985 (in Russian). 
[19] D. Lee, and D. Su, Modelling and Testing of Protocol Systems, Proc. IFIP 

TC6 10th Int. Workshop on Testing of Commun. Syst., Chapman & Hall, 
Myungchui Kim and Sungwon Kang Eds., pp. 339-364, 1997. 

[20] D. Lee, M. Yannakakis, Principles and Methods of Testing Finite State 
Machines - A Survey, Proc. of the IEEE, vol. 84, no.8, pp. 1090-1123, Aug. 
1996. 

[21] B. D. Lukyanov, On Distinguishing and Checking Experiments on 
Nondeterministic Automata, Kibernetica, no.5, pp.69-76, 1995. 

[22] B. D. Lukyanov, Deterministic Implementations of Nondeterministic 
Automata, Kibernetika, no.4, pp.34-50, 1996. 

[23] E. F. Moore, Gedanken-Experiments on Sequential Machines, Automata 
Studies, Prinston, NY: Prinston Univ. Press, 1956. 

[24] A. Petrenko, G. v. Bochmann, M. Yao, On Fault Coverage of Tests for Finite 
State Specifications, Computer Networks and ISDN Systems, vol. 29, pp. 81-
106,1996. 

[25] I. K. Rystsov, A Proof of Accessible Bound of Adaptive Diagnostic 
Experiment Bound for Finite Automata, Kibernetika, no.3, pp. 20-22, 1976. 

[26] I. K. Rystsov, On Asymptotic Bound of Diagnostic Word Length for Finite 
Automata, Kibernetika, no.2, pp. 31-35,1980. 

[27] I. K. Rystsov, An Investigation of Solutions Complexity for Finite Automata 
Theory Problems. Kandidat Degree dissertation, Kiev: Institute of Cybernetics 
Ukr. Acad. of Sci., 1980, 121p. 

[28] M. N. Sokolovskii, Diagnostic Experiment with Automata, Kibernetika, no.6, 
pp.44-49, 1971. 

[29] B. A. Trakhtenbrot, Y. M. Barzdin, Finite Automata, Behaviour and 
Synthesis. Amsterdam: North-Holland, 1973. 

[30] M. P. Vasilevskii, Failure Diagnosis of Automata, Kibernetika, no.4, pp. 98-
108,1973. 

[31] M. Yannakakis, D. Lee, Testing Finite State Machines: Fault Detection, J. of 
Comput. and Syst. Sci., vol. 50, pp. 209-227, 1995. 



14 

[32] A. Petrenko, and N. Yevtushenko, Test Suite Generation for a FSM with a 
Given Type of Implementation Errors, IFIP Transactions Protocol 
Specification, Testing, and Verification XII (the Proceedings of IFIP TC6 12th 
International Symposium on Protocol Specification, Testing, and Verification) 
1992, pp. 229-243. 

7 BIOGRAPHY 

Igor S. Grunsky received the Diploma degree in Radiophisics and 
Electronics from the University of Kiev, the USSR, in 1963 and Ph.D. (Candidate) 
degree in discrete mathematics and computer science from the Computing Centre 
of the Soviet Academy of Sciences, Moscow, in 1976. Since 1965, he has been 
with the Institute of Applied Mathematics and Mechanics of the Ukrainian 
Academy of Sciences. He is currently the Head of Applied Discrete Mathematics 
Laboratory of this institute. His research interests include discrete mathematics, 
automata theory, testing problems, checking and diagnostics of hardware, software 
and protocols. 


