
3 
Building Metaphors for Supporting 
User Interaction with Multimedia 
Databases 

M. F. Costabile, D. Malerba 
Dipartimento di Informatica, Universita degli Studi di Bari 
Via Orabona 4, 1-70126 Bari, Italy 
{costabile, malerba}@di.uniba.it 

M. Hemmje, A. Paradiso 
Integration Information Systems Institute, GMD 
Dolivostrasse 4, D-64293 Darmstadt, Germany 
{hemmje, paradiso}@darmstadt.gmd.de 

Abstract 
In this paper we discuss how metaphors for supporting user interaction with 
multimedia databases can be automatically generated. The work presented is a 
further step in the development of Virgilio, a Virtual Reality (VR) based system 
that has been designed to be a general purpose exploration tool for highly 
structured data. Virgilio visualizes the results of a query to a database by 
generating VR scenes, that exploit appropriate metaphors in order to take 
advantage of common knowledge about real world objects, thus reducing the 
cognitive load in the process of information assimilation. We analyze two 
specific components of the Virgilio architecture, the Query Management Tool 
and the Metaphor Definition Tool, and we identify a completely automatic 
procedure to define the metaphor that will be exploited in the construction of the 
VR scene. The implementation of this procedure exploits the backtracking search 
strategy of Prolog interpreters to solve a typical constraint satisfaction problem. 

Keywords 
Multimedia Database, User Interaction, Metaphor, Constraint Satisfaction 

Visual Database Systems 4 Y. Ioannidis & W. K1as (Eds.) 
© 1998 IFIP. Published by Chapman & Hall 



48 Pan Two Session: Models and Metaphors 

1 INTRODUCfION 

In many of nowadays web-based environments for electronic marketing and 
commerce, that present large multimedia product and service catalogues, it 
becomes more and more difficult to provide naive end users, such as private 
consumers or commercial business partners, with intuitive user interfaces to 
access the large multimedia collections describing the presented products and 
services. The same holds for marketing managers and other employees 
responsible for managing and maintaining the large and constantly changing set 
of multimedia information chunks and fragments contained in these collections. 
As a consequence, many efforts are devoted to improve the quality of the 
interaction between users and databases. Virtual Reality (VR) techniques are a 
promising interaction paradigm particularly suited to novice and/or occasional 
users. The users are facilitated in the database navigation since the system 
proposes them an environment that reproduces a real situation and gives the 
possibility of interacting by manipulating objects that have a direct 
correspondence with known objects. 

VR techniques combine the advantages of 3D visualizations with the power of 
metaphorical representations. Presenting the result of a database query through a 
VR scene allows users to explore data more easily since they interact with 
familiar objects. The structural and dynamic properties of the objects in the 
virtual world, i.e. the way objects can be composed and can act themselves, are 
predictable since they belong to the users' general background. No particular 
training should be required to interact with and explore the dataset, thus reducing 
the learning overhead of naive users when accessing information. 

Virgilio is a VR based system that has been designed to be a general purpose 
exploration tool for highly structured data. It is capable of visualizing large sets 
of objects of considerable intra-object and inter-object complexity through 
effective VR techniques. Virgilio is based on several metaphors in order to take 
advantage of common knowledge about real world objects, thus reducing the 
cognitive load in the process of information assimilation. The overall system has 
been presented in (Massari et al., 1997), where lot of emphasis was posed on the 
generation of the 3D scenes, once the metaphor exploited in the visualization was 
chosen in a semi-automatic way, i.e. with the intervention of the system 
administrator. In this paper we discuss how metaphors for supporting user 
interaction with multimedia databases can be automatically generated in Virgilio. 
Therefore, we are more concerned with specific components of the Virgilio 
architecture, the Query Management Tool and the Metaphor Definition Tool, 
whose aim is to identify with a completely automatic procedure the most 
appropriate metaphor to be exploited in the construction of the VR scene. 

Our work represents a further step in the Virgilio project, since we have 
automated the choice of a proper VR visualization of the results of the user's 
query. In other words, the definition of the mapping (or metaphor) between the 



Metaphors/or user interaction with multimedia databases 49 

query result and objects of a virtual world, that was a task of the System 
Administrator in the previous release of Virgilio is now performed automatically 
by the system. 

The content of the paper is the following. Section 2 introduces the concepts of 
logical, physical, and VR information spaces. Section 3 discusses metaphor in 
user interfaces and illustrates its use in the Virgilio system. The architecture of 
Virgilio is presented in Section 4. Section 5 describes the process that generates 
from a query to the database all information necessary to the construction of the 
VR scene. Section 6 gives the conclusions. 

2 INFORMATION SPACES: FROM LOOICAL TO VR 

In order to allow users easy access to a database, the information stored in the 
database needs to be visualized in an information space. This visualization can 
either be carried out by the user in the user's mind, in which case it is essentially 
the user's conceptualization of the database; or the visualization could be 
accomplished by the system, in which case the visualization is generated on the 
display screen. The latter is what it is actually defined information visualization, 
i.e. "a process of transforming information into a visual form enabling the user to 
observe information" (Gershon et al., 1997). The essence of this process is to 
visually present information that is non inherently visual, such as text. Recent 
research has proved that successful visualization can reduce the time to get 
information, and to make sense out of it; it also enhance creative thinking. 

Database objects, in general, are abstracted from real-life objects in the real 
world. Therefore, we can distinguish the logical information space and the 
physical information space (Chang and Costabile, 1997). In the logical space, the 
abstract database objects are represented. In the physical space, the abstract 
database objects are materialized and represented as physical objects that reflect 
real-life objects, such as diagrams, icons and sketches. For example, each object 
is materialized as an icon, and the physical information space consists of a 
collection of icons. These icons can be arranged spatially, so that the spatial 
locations approximately reflect the relations among database objects. 

To create visualizations, the information in the logical space must be mapped 
into a physical space thatwill represent relationships contained in the information 
faithfully and efficiently. In this way, users will exploit their innate abilities to 
understand spatial relationships, also shifting most cognitive processing load to 
the perceptual system. 

In the physical information space, the objects reflect real-world objects, but 
the world is still an abstract world. One further step is to present information in a 
VR information space. VR allows the users to be placed in a 3D environment 
they can directly manipulate. What the users see on the screen will be the same as 
what can be experienced in the real world. 3D features can be used to present the 



50 Part Two Session: Models and Metaphors 

results in a VR setting. For example, if the database refers to the books of a 
library, we can represent a Virtual Library in which the physical locations of 
books are indicated by blinking icons in a 3D presentation of the book stacks of 
the library. What the user sees on the screen will be the same (after 
simplifications) as what can be experienced in the real world. 

It is worth noting that we are talking about "nonimmersive" VR (Robertson et 
al., 1993), that is the user is placed in a 3D environment he/she can directly 
manipulate without wearing head-mounted stereo displays or special gloves, but 
acting only with mouse, keyboard, and monitor of a conventional workstation. 

The real world, from which the database objects are abstracted, is the 
environment that the database objects must relate to. The real world is often 
abstracted in the information space. Only in the VR information space will the 
real world be represented in a direct way. Indeed, finding a good spatial 
representation of the information at hand is one of the most difficult tasks in 
visualization of abstract information. The key problem in information 
visualization is to invent visual metaphors for non physical data (Gershon et al., 
1997). Next section discusses the power of metaphorical representation and their 
use in database interaction. 

3 METAPHOR IN USER INTERFACES 

The literal meaning of metaphor (from the Greek word 'metaphorein') is to 
transfer or to carry across. One of the most important aspects of metaphor is that 
it gives the possibility of going from familiar concepts to unknown ones. The 
definition of metaphor given by Lakoff and Johnson (1980) says "metaphor is a 
rhetoric figure, whose essence is understanding and experiencing one kind of 
thing in terms of another". Thanks to the metaphor we can move from familiar 
concepts to unknown ones, thus incorporating new knowledge in old. Often, for 
introducing a new concept we present it in relation to a well known one, thus 
simplifying the learning process. For example, the model of the atom is usually 
presented with reference to the structure of the solar system. 

Metaphors consist of two sets of component concepts, a target component and 
a source component (Martin, 1990). The target consists of the concepts we are 
actually referring to (also said the original idea). The source refers to the concepts 
in terms of which the intended target concepts are being viewed (the borrowed 
idea). Conventional metaphors are represented as sets of associations, or 
relations, between source and target concepts. Source and target concepts usually 
belong to different domains, and the familiarity with the source domain is 
exploited to understand the target concepts. The metaphor specifies how the 
source concepts correspond to the various target concepts. It establishes a 
mapping between target and source domains. 



Metaphors/or user interaction with multimedia databases 51 

Metaphor is acknowledged as a fundamental tool in creative interface design, 
since it provides the user with a friendlier environment to work with (Mountford, 
1990; Erikson, 1990). It is well known that an ideal metaphor does not exist, but 
it is extremely important to choose the metaphor which is appropriate depending 
on the particular situation. Some insights on metaphorical design are given in 
(Marcus, 1994; Madsen, 1994). In database interfaces, metaphors have been 
exploited for representing the intensional part of the database, that is the data 
schema; in such cases, the metaphor mediates between the data model and the 
user (Haber et al., 1994; Catarci et al., 1995). Most end users are actually 
concerned with the extensional part of the database, therefore it is appropriate to 
offer them a scenario where the information contained in the database is 
metaphorically represented in a VR environment, i.e. in a virtual world, so that 
the user is no longer aware of a presence of a structured database, but he/she is 
interacting as in the real world. 

Virgilio is a system that supports the definition of a metaphor as a mapping 
between data in the result of a query to a database and objects in a virtual world. 
Several metaphors are actually available in the system, so that different mappings 
between a same data set, representing the target domain, and different virtual 
worlds, each representing a source domain, can be generated in order to present 
to users the most effective environment for their preferences and expectations. 
One of the most used virtual worlds in Virgilio is a "building" with several floors, 
and an entrance with an elevator to reach different floors. On each floor, there is 
a corridor with several rooms, and in each room there are pieces of furniture, as it 
happens in the real world. Different virtual worlds are available in Virgilio: one is 
a book store, where there are several areas, each one with several shelves on 
which books are shown; another is a ship, with the different elements that are 
typical in real ships. Yet, other virtual worlds can be input into the system. The 
main contribution of this paper is the automatic construction of the mappings 
between the dataset and the available virtual worlds, as described in Section 5. 

4 VIRGILIO ARCHITECTURE IN BRIEF 

The architecture of the overall Virgilio system, as described in (Massari et al., 
1997), is shown in Figure 1. The main components are: a) three modules, called 
Query Management Tool, Metaphor Definition Tool, Virtual World Object 
Editor; b) a global repository of information that includes three meta databases 
containing information necessary to generate the visualizations, namely the 
Query Repository, the Metaphor Repository and the Virtual World (VW) Objects 
Repository; c) the Scene Constructor Server. The other items displayed in Figure 
1, that is a DBMS with the database storing the data the users want to access to, a 
Web Browser, and an unspecified web network connection are considered 
external to Virgilio. The database is assumed to be a generic one with a structure 



52 Part Two Session: Models and Metaphors 

composed of different kinds of objects. many semantic relationships. and possibly 
containing multimedia data. 

Virgilio has been designed to be a general purpose exploration em'ironment 
for highly structured data. It is capable of "isualizing large sets of objects of 
considerable intra-object and inter-o~iect complexity through effectiye VR 
techniques. The data resulting from a query execution are presented in a 3D 
virtual environment by exploiting appropriate metaphors that refers to the ,"arious 
virtual worlds available in Virgilio. 

Information on the yirtual worlds and all objects they include is stored in the 
Virtual World Object Repository. and it is pro,"ided to the system through the 
Virtual World Object Editor. 

The Query Repository stores representations of both the performed query and 
the data set that is the result of a query (called answer set in the rest of the paper). 
that are needed for the process of metaphor definition and the construction of the 
VR scene. By metaphor definition we mean the definition of the mapping between 
objects in the database and objects in a yirtual world. that are chosen among those 
available in the system. This is done by the Metaphor Definition Tool. and 
information about such a mapping is stored in the Metaphor Repository. The VR 
scene is generated by the Scene Constructor Ser.·er on the basis of the information 
stored in the various repositories. 

;---------.----------.-.-.-----.-~--------------, 

Virgilio 
Meta 
DB 

DBMS 

Query l\ lanagment 
Tool 

Scene 
CCll.5trUctor Sen:e-l 

VW Objects 
Editor 

System 
Administrator 

End 
User 

'--________________ . ___ ._ .. _.~ ..... _________ ...J 

Figure 1. Architecture of Virgilio System. 

As shown in Figure I. there are two different types of users interacting with 
Virgilio: the end user and the system administrator. End users interact with 
Virgilio by retrieving 3D scenes and browsing embedded information by means of 
a VRML Browser. A typical interaction between Virgilio and the end user is: 



Metaphors for user interaction with multimedia databases 53 

the user starts browsing a VR scene; when the user decides to navigate another 
scene of a virtual world, a message is sent back to Virgilio which, in response, 
will generate a new scene that will be displayed on the screen, and so on. 

In the architecture proposed in (Massari et al., 1997), the system administrator 
was a fundamental intermediary between end user and system, since he/she 
performed three important tasks: 
1. defining queries according to users' needs; 
2. specifying a set of proper VR visualizations of such queries by defining a 

mapping (or metaphor) among data in the query results and objects of a 
virtual world; 

3. defining new virtual world objects, specifying both their visual aspects and 
the containment relationships with other objects. 
If we want Virgilio to become a complete VR based system for both querying 

a generic database and browsing the query results, we should automate the above 
ftrst two tasks, so that no human intermediary should be necessary in the dialogue 
between the end user and the system. Task 3 is the only one that goes beyond the 
capabilities of a end user; defining a new virtual world by specifying all its 
objects with their attribute is a complicate task that needs to be done off-line by a 
team of design specialists. The new VR objects are input to the system through 
the Virtual world object editor, and stored into the VR object repository, so that 
they will be accessible by both the metaphor definition tool and the Scene 
Constructor Server. 

In the next section we describe how we have automated task 2, so that once a 
query has been formulated by some visual query interface, translated in an 
appropriate language used by the DBMS and the query results are retrieved in the 
database, such results are suitably processed in order to automatically define the 
appropriate metaphor for their visualization in the VR scene. 

5 FROM QUERY TO RESULT VISUALIZATION 

We now describe the whole process that generates, from a query to a database, a 
VR scene that allows the user to browse the query results. The main steps of this 
process are the generation of a so-called structure tree and its Prolog 
representation (see below), the construction of a mapping from the structure tree 
into a virtual world, and the visual representation of such a mapping. The original 
query is actually input to VIRGILIO through a visual query interface, whose 
analysis goes beyond the scope of this paper (see (Catarci et al., 1997) for 
examples of visual query interfaces). Such an interface translates a visual query 
into an SQL query which can be managed by a standard relational DBMS. 



54 Part Two Session: Models and Metaphors 

5.1 Generation of the structure tree 

In the Virgilio operating framework, the DB model is richer than a simple 
relational one. Indeed, Virgilio operates with those models which can support the 
notion of nested relation (Atzeni and De Antonellis, 1993). Informally speaking, 
a nested relation is a set of tuples such that the values of attributes are allowed to 
be nested relations themselves. Nested relations organize information in a 
hierarchical structure, which may also be detected in the query results. In this 
context, we can state that Virgilio is a VR system for the visualization and 
exploration of nested relations according to the browsing paradigm. 

Obviously, when Virgilio operates on extended relational DB the result of a 
query is a nested relation. However, when visual queries are transformed into 
standard SQL queries, the query result is a flat relation, which is not appropriate 
to be browsed. In this case it is possible to apply the nest operator that produces 
nested relations from flatter ones (Atzeni and De Antonellis, 1993). For instance, 
let us consider the following SQL query concerning a database of songs where 
also information about singers, published CD's, and music types is available 
together with some relationships among these entities. 

Query 1: 
SELECT musicType.name, musicType.notes, band.name, band.photo, album.title, 

album.cover, song.title 
FROM musicType, band, album, song, tipicSings, contained, published 
WHERE album.code=contained.albumCode AND tipicSings.bandCode=band.code 

AND album.code=published.albumCode AND band.code=published.bandCode 
AND song.code=contained.songCode 
AND tipicSings.musicName= musicType.name 

ORDER BY musicType.name, band.name, album.title; 

The result of the query would be a flat relation that can be transformed into a 
corresponding nested relation: 

musicType (name: string, notes: text, band (name: string, photo: picture, album 
(title: string, cover: picture, song (title: string»» 

The structure of a nested relation is represented by a structure tree (Massari et 
at., 1997). A structure tree can be described by recursively composing the two 
data representation constructs "secof' and "record". Informally, a "secof' is an 
unordered set of elements of the same type; a "record" is a list of elements which 
can be of different types. One or more elements of a record can be a "secof'. 
Thus a structure tree is composed of nodes and edges, every node being a 
"secof' or a "record" construct. Formally, a structure tree can be recursively 
defined as follows: 
1. D, where D is an atomic domain of values; 
2. set-of (T), where T is a structure tree; 



Metaphors for user interaction with multimedia databases 55 

3. record Al:TI' ... , A,,:Tn end, where the Aj's are distinct symbols, and the Tj's 
are structure trees. 

An example of structure tree concerning the nested relation reported above is 
given in Figure 2. 

~ Set_of 

CD Record 

(!) Key Attribute 

o Attribute 

C) Type of data 

Figure 2. The structure tree for the query 1. 

STRING () 

The root node is a record with only one field, whose value is the nested 
relation MUSIC TYPES resulting from the query. This root node actually 
indicates the database involved in the query, and might occasionally have some 
atomic values (called accessories in VIRGILIO) describing the database itself. 
The relation MUSIC TYPES is a set of records with two atomic values, a string 
(NAME) and a text (NOTES), and a nested relation (BANDS). The first of the 
attributes of the relation MUSIC TYPES is considered as a key. Similarly, the 



56 Part Two Session: Models and Metaphors 

relation BANDS is a set of records with two atomic values, a string (NAME) and 
an image (PHOTO), and a nested relation (ALBUMS). The interpretation of the 
rest of the tree is straightforward. 

The architecture of the Query Management Tool that is a component of the 
Virgilio System (see Figure 1) is detailed in Figure 3. Beside the Visual Query 
Interface the main modules are the Structure Tree Generator and the Prolog 
Query Generator. The former takes in input an SQL expression, computes the 
answer set by querying the operational database, transform the answer set into a 
nested relation by analyzing the structure of the SQL query, and generates the 
corresponding structure tree. This task is performed by using two tools 
appropriate for the transformation of structured input, namely Flex and Bison, 
which are the evolution of the well-known Lex and Yacc, respectively (Levine et 
ai., 1990). Flex is used to implement a scanner of SQL queries, while Bison is 
applied to build the corresponding parser. 

I 

I Structure 

I p~~ I 
I 

Tree 

I R~J 
I 

Token 
I 

..... -I 
I 

I 
SQL I Prolog I 

Visual Quay I I Query I 

I I 

Quay I SC8DJl~ I I Intaf_ I 
I ~ Structure L __ 

Tree Prolog 
Structure Tree Generator Quay 

Nested 
Generator 

Relation 

lr:as~ 

Figure 3. Architecture of the Query Management Tool. 

Whenever a sequence of input tokens matches one of the rules in the grammar 
of SQL queries, an action is taken. Actions concern the selection of relations and 
attributes involved in the query, the identification of joining attributes, and the 
nesting based on the clause ORDER BY. The structure tree representing the 
nested relation is stored in the Query Repository and is passed to the Prolog 
Query Generator that transforms the structure tree into a Prolog query useful for 
the mapping process. This module takes in input the nested relation as well, since 
the query Prolog should include information on the cardinalities of relations 
composing the nested relation. Finally the Prolog query is stored in the Query 
Repository . 



Metaphors/or user interaction with multimedia databases 57 

5.2 Requirements for the mapping 

Once the structure tree of a query has been generated, it is necessary to map the 
structure tree into some virtual world taken from a set of predefined virtual 
worlds stored into the VR Object Repository. The mapping process has to meet a 
number of requirements, namely 
• Consistency with the structure-tree: The metaphor should allow for browsing 

data according to the hierarchical relations expressed in the structure tree. 
Indeed, the organization of the results by a structure tree is based on the 
structure of the SQL query, that is, on the way in which the user has 
formulated his/her request. When the correspondence between the structure 
of the SQL query and the "structure" of the virtual world is strict, the user 
will browse more easily, since he/she already knows the directions to choose. 

• Completeness of the metaphor: All data in the result relation of a query 
should be reachable from the starting point of exploration. 

• Realism of the virtual world: The scenes presented to the user should be 
fairly realistic. For instance, showing a big wall with hundreds of posters is 
not the best way to aggregate data concerning lyric singers. 

• Effectiveness of the metaphor: Properties of objects in the virtual world 
should match properties of data they represents. For instance, a CD in a 
virtual scene represents some songs and by clicking on it should be possible 
to hear a song, while pages of a book are more appropriate to represent the 
text of songs. 

5.3 Categorization of virtual world objects 

Whether the result of a query could be represented by a virtual world strongly 
depends on the variedness of the virtual world. Objects of the virtual world can 
be categorized into three different classes: 
1. Aggregators, which do not necessarily represent a piece of data by 

themselves, but aggregate a set of virtual world objects (virtual objects for 
short) of different type. For instance, a table can aggregate a book and a 
picture frame, the former used to represent text of songs while the latter 
showing the portrait of a singer. A folder is also an aggregator since it can be 
used to aggregate a variable number of documents of different type. 

2. Classifiers, which assemble sets of aggregators of the same type. For 
instance, a chest-of-drawers is a classifier since it contains several drawers. 
Of course, a classifier may be more appropriate than another for representing 
a particular set of data. An important factor is the number of aggregators it 
contains. A real chest-of-drawers contains from two to six drawers, while a 
book has from eighty to one thousand pages. Therefore, for each classifier it 



58 Part Two Session: Models and Metaphors 

is necessary to define a minimum and a maximum number of aggregators to 
be assembled. 

3. Accessories, which represent a specific type of data. A poster is an example 
of accessory useful to represent image data, while a label is an example of 
accessory used to represent a string. 

It is interesting to observe that some aggregators may have two different 
visual representations: external and internal. The former is called aggregator 
symbol, and is typically shown when the user is browsing a classifier, while the 
latter is the natural representation of the aggregate, and is shown once the user 
has chosen an aggregator from a classifier. For instance, a room is an aggregator 
nonnally accessed from a corridor (classifier). Its internal representation is 
obvious and depends from the aggregated data, while its external representation 
might be a door with a name label on it. Thus, when the user is in the corridor, 
he/she sees only several doors, but when he/she enters a certain room he can see 
every object inside. 

5.4 Metaphor definition as a constraint satisfaction problem 

Our approach toward the automatic definition of a metaphor is based on the fact 
that knowledge on the virtual worlds can be easily represented in a logical 
fonnalism. In particular the universe of discourse concerns virtual objects 
(aggregators, classifiers, accessories), the aggregator symbols, the types of data, 
and the integer numbers. Each element of the universe of discourse is identified 
by a distinct constant. For instance, if we consider the virtual world "building" 
we can define the following constants: 
• AGGREGATORS: elevator, room, floor, drawer, folder, page; 
• CLASSIFIERS: button-table, chest-of-drawers, album, corridor, folder­

collection; 
• ACCESSORIES: floor-name, sideboard, poster, board, picture, photo, door-

label, drawer-picture, drawer-label, index-item; 
• AGGREGATOR SYMBOLS: door, drawer-front, index, button; 
• TYPES OF DATA: string, text, picture, image. 
Interrelationships between objects of the universe of discourse are expressed by 
ground facts. Some of the predicates concern the relations reported in a structure 
tree. They are: 
• contains(Aggregator, Classifier), stating that Classifier can be contained in 

Aggregator; 
• coliects(Classifier, Aggregator), stating that Classifier can collect a set of 

Aggregators; 
• owns(Aggregator, Accessory) or owns(AggregatorSymbol, Accessory), stating 

that Aggregator (Symbol) can contain an Accessory; 



Metaphors for user interaction with multimedia databases 59 

• is-of(Accessory, TypeOjData), defining the type of data associable to 
Accessory. 

Moreover, the predicate hasicon(Aggregator, AggregatorSymbol) defines the 
Aggregator Symbol associated to an Aggregator, while predicates 
hasmin(Classijier, Integer) and hasmax(Classifier, Integer) are used to express 
realistic constraints on the number of objects aggregated by a classifier. This 
prevents the generation of fictitious scenes, e.g. buildings with thousands of 
floors or books with one page. If it is necessary to represent hundreds of tuples, a 
more appropriate virtual world will be selected by the system. 

An example of possible interrelationships between objects of the virtual world 
"building" is reported in Figure 4. 

Given a background knowledge on some virtual worlds, the problem of 
mapping the structure tree into some virtual world can be cast as a problem of 
constraint satisfaction. As shown by Mackworth (1977), one way to view a 
constraint satisfaction problem is as the problem of providing a constructive proof 
of the validity of a formula (without function symbols) of the form F~G, where 
F is the world description expressed as a conjunction of ground literals listing all 
facts in the world, while G is the goal, that is an existential formula with a 
conjunction of literals (the constraints). The constructive proof of formula's 
validity automatically yields a substitution for the existential variables. 

contains( elevator, 
button-table). 

contains(room, 
chest-of-drawers ). 

contains(room, album). 
contains (floor , corridor). 
contains(drawer, 

folder-collection). 

collects (button -table,floor). 
collects( corridor ,room). 
collects( chest-of-
drawers ,drawer). 
collects(folder-collection, 

folder). 
collects( album,page). 

hasmin(button-table,2). 
hasmin( corridor, 1). 
hasmin(chest-of­
drawers,O). 
hasmin(folders,l ). 

hasmin(album,l). 
hasmax(button-table,20 ). 
hasmax(corridor,30). 
hasmax(chest-of-drawers, 

20). 
hasmax(folder-collection, 

10). 
hasmax( album ,30). 

owns(floor,floor-name). 
owns(floor,sideboard). 
owns(room, poster). 
owns(folder,photo ). 
owns(room,door-label). 
owns( drawer ,drawer -label). 
owns(drawer, 

drawer-picture). 
owns(door,door-Iabel). 
owns(drawer-front, 

drawer-picture ). 
owns(drawer-front, 

drawer-label). 

isof(floor-name,string). 
isof( drawer-label,string). 
isof( door-label ,string). 
isof(button-label,string). 
isof(sideboard,text). 
isof(board,text). 
isof(picture,picture ). 
isof(drawer-
picture ,picture ). 
isof(photo,picture ). 
isof(poster,image ). 

hasicon(room, door). 
hasicon( drawer, 

drawer-front). 
hasicon(page, index). 
hasicon(floor, button). 
hasicon( elevator ,nil). 
hasicon(folder,nil) 

Figure 4. An example of background knowledge on the virtual world "building". 



60 Part Two Session: Models and Metaphors 

In our specific application, F is the description of a virtual world (e.g., 
"building"), while G is the description of the structure tree, which is represented 
as a conjunction of nonground literals whose variables are existentially 
quantified. Such literals describe the structure of the query, and define the actual 
number of elements aggregated by a classifier. The same predicate symbols 
above are used to describe a structure tree. For instance, the logical formulation 
of the structure tree in Figure 2 is reported in Figure 5, where the integer numbers 
are cardinalities of the relations composing the nested relations determined by the 
query. 

From a practical point of view, we can use Prolog interpreters to prove 
formula's validity (Shalkoff, 1990). The logic program is the set of ground facts 
of the background knowledge, while the Prolog query is the logical formulation 
of the structure tree. The answer computed by the Prolog interpreter defines the 
instantiations of the variables in the Prolog query with some virtual objects. In 
this way the mapping of the structure tree into some virtual world is completely 
defined, that is the metaphor is eventually generated. As an example, the answer 
computed for the query in Figure 5 will define the following instantiations 
reported in Figure 6. 

3 contains(RecordMusic, SetofMusicTypes) A hasicon(RecordMusic,RecordMusicIcon)A 
collects(SetOfMusicTypes, RecordMusicType) A 
hasicon(RecordMusicType, RecordMusicTypeIcon) A 
hasmin(SetOfMusicTypes, MinMusicTypes) A 7 >= MinMusicTypes A 
hasmax(SetOfMusicTypes, MaxMusicTypes) /\ MaxMusicTypes >= 7 A 
owns(RecordMusicType, AttributeNameType) A isof(AttributeNameType, string) A 
owns(RecordMusicType. AttributeNotes) A isof(AttributeNotes, text) A 
contains(RecordMusicType. SetOffiands) A collects(SetOffiands. RecordBand) A 
hasicon(RecordBand, RecordBandlcon) A hasmin(SetOffiands, MinBands) /\ 
2 >= MinBands A hasmax(SetOffiands, MaxBands) A MaxBands >= 30 A 
owns(RecordBand. AttributeName) A isof(AttributeName. string) A 
owns(RecordBand, AttributePhoto) A isof(AttributePhoto, image) A 
contains(RecordBand, SetOfAlbums) A collects(SetOfAlbums, RecordAlbum) A 
hasicon(RecordAlbum, RecordAlbumIcon) /\ hasmin(SetOfAlbums, MinAlbums) A 
1 >= MinAlbums A hasmax(SetOfAlbums. Max Albums) A MaxAlbums >= 8 A 
owns(RecordAlbum. AttributeTitle) A isof(AttributeTitle, string) A 
owns(RecordAlbum, AttributeCover) A isof(AttributeCover. picture) /\ 
contains(RecordAlbum, SetOfSongs) A collects(SetOfSongs. RecordSong) A 
hasicon(RecordSong, RecordSongIcon) A hasmin(SetOfSongs. MinSong) A 
l>=MinSong A hasmax(SetOfSongs. MaxSong) A MaxSong >=10 /\ 
owns(RecordSong, AttributeNameSong) A isof(AttributeNameSong. string) 

Figure 5. Logical formulation of the structure tree in Figure 2. 



Metaphors for user interaction with multimedia databases 

RecordMusic f- elevator 
RecordMusiclconf-nil 
SetOfMusicTypesf-button-table 
MinMusicTypesf-2 
MaxMusicTypesf-20 
RecordMusicTypef-floor 
RecordMusicTypelconf-button 
AttributeNarneTypef-floor-narne 
AtlributeNotesf-sideboard 
SetOfBandsf-COrridor 
MinBandsf-l 
MaxBandsf-30 
RecordBandf-room 
RecordBandlconf-door 
AtlributeNarnef-door-label 

AttributePhotof-poster 
SetOfAlbwnsf-chest -of-drawers 
MinAlbwnsf-O 
MaxAlbumsf-20 
RecordAlbumf-drawer 
RecordAlbumIconf-drawer-front 
AttributeTitlef-drawer-label 
AtlributeCoverf-drawer-picture 
SetOfSongsf-folder-collection 
MinSongsf-1 
MaxSongsf-lO 
RecordSongf-folder 
RecordSonglconf-nil 

AttributeNameSongf-folder-name 

61 

Figure 6. Instatiations of the variables of the query in Figure 5 that define the 
mapping between structure tree and virtual world. 

It is interesting to observe that there might be several answers for the same 
Prolog query, that is several metaphors to represent the results of the same SQL 
query. When this happens, it is important to have a criterion for choosing one of 
the possible metaphors. The choice might be based on the most recent virtual 
world used to answer a query of the same user. The underlying assumption is that 
the user is more familiar with the most recently visualized virtual world. On the 
contrary, we have defined no criterion for choosing among metaphors concerning 
the same virtual world, since any reasonable choice should be based on a user 
model not currently available in Virgilio. 

5.5 The metaphor definition tool 

In Virgilio, the mapping process described above is performed by the Metaphor 
Definition Tool (MDT). The MDT takes in input both the background knowledge 
on the virtual worlds and the Prolog query, and produces a metaphor graph that 
associates each node of the structure tree with some virtual object. The Virtual 
World Object Repository is the database where background knowledge on the 
virtual worlds is stored, while the Query Repository stores the structure trees and 
their corresponding Prolog queries. The metaphor graph is stored in the Metaphor 
Repository, so that it can be retrieved by the Scene Constructor Server that builds 
the sequence of scenes of the chosen virtual world that visualizes the query 
results. The scenes are constructed by using VRML, but the work performed by 
the Scene Constructor Server is out of the scope of this paper. 

Two examples of scenes built using a prototype of Virgilio are depicted in 
Figures 7 and 8 (Paradiso, 1997). They concern query 1 whose result has been 



62 Part Two Session: Models and Metaphors 

mapped into tlle metaphor "building". The user may browse me query result by 
walking into tlle building from its entrance to tlle different floors and rooms. 

Figure 7. One of tlle scenes visualizing the result of query 1. The scene shows a 
floor of tlle "building". 

Figure 8. Anotller scene visualizing the result of query 1. It shows me inside of 
one of tlle rooms whose doors are visible in the scene in Figure 7. 



MetaphorsJor user interaction with multimedia databases 63 

The scene in Figure 7 shows a floor of the "building"; the floor represents a 
type of music. The corridor provides access to different rooms, each one 
associated to a band. The names of the bands arc written on the door labels. In 
Figure 8 we see another scene shown the inside of one of the rooms whose doors 
are visible in the scene in Figure 7. The users can see different objects 
representing he information related to the band. In this examples the band is 
actually the famous singer "Sting" whose picture is shown in a poster on the wall, 
together with his name. The drawers contain albums of such a singer. 

6 CONCLUSIONS 

In this paper we have presented a novel approach to automatically generate 
metaphors to be exploited in the interaction between users and databases. The 
metaphor definition problem has been treated as a constraint satisfaction problem, 
that is viewed as the problem of providing a constructive proof of the validity of a 
formula. 

The work discussed in this paper is a further step in the development of 
Virgilio, a Virtual Reality (VR) based system that visualize objects in a database 
through effective VR techniques. We have illustrated the process that generates 
from a query to the database all information necessary to the construction of the 
VR scene that visualizes the query results, also allowing the users to conveniently 
browse such results. 

As future work, we are planning to incorporate a user model into the system, 
so that it can provide further knowledge to be exploited in the choice of the 
metaphor. Moreover we are planning some more accurate testing of the current 
prototype with end users, from which we can should get significant feedback in 
our design. 

ACKNOWLEDGMENTS 

The authors appreciate Annabella Loconsole and Marcello L'Abbate for their 
helpful collaboration on the implementation of parts of Virgilio during their stage 
at the Department of Computer Science of the University of Bari and at in the 
GMD-IPSI Institute of Darmstadt. 

REFERENCES 

Atzeni, P. and de Antonellis, V. (1993) Relational Database Theory. Benjamin! 
Cummings, Redwood City, CA. 

Catarci, T., Costabile, M.F. and Matera, M. (1995) Visual Metaphors for 
interacting with Databases. ACM SIGCHl Bulletin, 27(2), 15-17. 



64 Part Two Session: Models and Metaphors 

Catarci, T., Costabile, M.F., Levialdi, S. and Batini, C. (1997) Visual Query 
Systems for Databases: A Survey. Journal of Visual Languages and 
Computing, 8, 215-260. 

Chang, S.K. and Costabile, M.F. (1997) Visual Interface to Multimedia 
Databases, in The Handbook of Multimedia Information Management (eds. 
W.I. Grosky, R. Jain, and R. Mehrotra), Prentice Hall, Upper Saddle River, 
NJ,167-187. 

Erickson, T.D. (1990) Working with Interface Metaphors, in The Art of Human­
Computer Interface Design (ed. B. Laurel), Addison Wesley, Reading, MA, 
65-73. 

Gershon, N., Card, S. and Eich, S.G. (1997) Information Visuali7.ation, in Chi 97 
Tutorial Notes, Atlanta, USA, 22-27 March 1997. 

Haber, E. M., Ioannidis, Y. E. and Livny, M. (1994) Foundation of Visual 
Metaphors for Schema Display, Journal of Intelligent Information Systems, 3, 
1-38. 

Lakoff, G. and Johnson, M. (1980) Metaphors We Live By. The University of 
Chicago Press, Chicago. 

Levine, J., Mason, T. and Brown, D. (1992) Lex & Yacc, 2nd edition. O'Reilly 
and Associates, Sebastopol, CA. 

Mackworth, A.K. (1977) Consistency in networks of relations, Artificial 
Intelligence, 8, 99-118. 

Madsen, K. H. (1994) A Guide to Metaphorical Design, Communications of the 
ACM, 37, 57-62. 

Marcus, A. (1994) Managing Metaphors for Advanced User Interface, 
Proceedings of International Workshop AV1'94, ACM Press, New York, 12-
18. 

Martin, J.H. (1990) A Computational Model of Metaphor Interpretation. 
Academic Press, San Diego. 

Massari, A., Saladini, L., Hemmje, M. and Sisinni, F. (1997) Virgilio: A Non­
Immersive VR System To Browse Multimedia Databases, Proceedings of the 
IEEE International Conference on Multimedia Computing and Systems, IEEE 
Computer Society Press, Los Alamitos; CA, 573-580. 

Mountford, S.J. (1990) Tools and Techniques for Creative Design, in The Art of 
Human-Computer Interface Design (ed. B. Laurel), Addison Wesley, 
Reading, MA, 17-30. 

Paradiso, A. and Hemmje, M. (1997) A Generic Refinement of the Virgilio 
System's Design and a Prototypical Architecture. GMD Technical Report, Nr. 
1093, September 1997. 

Robertson, G.G., Card, S. K. and Mackinlay, J.D. (1993) Nonimmersive Virtual 
Reality, IEEE Computer, 26(2), 81-83. 

Scholkoff, R.J. (1990) Artificial Intelligence: An engineering Approach, Mc 
Graw Hill, New York. 



Metaphorsfor user interaction with multimedia databases 65 

BIOGRAPHY 

Maria F. Costabile received the Lurea degree in Mathematics at the Universita' 
della Calabria. Since 1989 she is associate professor at the Department of 
Computer Science of the University of Bari, Italy. From 1978 to 1988 she worked 
at the Dipartimento di Matematica, Universita' della Calabria. She has been 
visiting scientist in several foreign universities. Her current interests include 
theory of visual languages, visual interfaces, visual languages for querying 
databases, human-computer interaction, usability of interactive systems, user 
models. She has published several papers on the above topics, and edited four 
books. She served in committees of international conferences, and as program co­
chair of AVI'96 and A VI'98. She is member of ACM, IEEE, AICA, IAPR. She is 
chairing the Italian Chapter of ACM SIGCHI. 

Matthias Hemmje is a member of the OASYS information systems research 
division at GMD-IPSI in Darmstadt, Germany. He is working in various projects 
related to object-relational Multimedia Database Management Systems. 
Currently, he is responsible for R&D of the ICE DataBlade Module (a database 
supported Information Catalogue Environment enabling navigation on 
multimedia documents), as well as a VRML-, an MPEG-, and an SGML­
DataBlade Module. He has been conducting the design and development and 
evaluation of LyberWorld and VIRGILIO prototypes, both 3D graphical 
information visualization systems. Besides Multimedia Information Systems, his 
research interests include computer human interaction and information 
visualization for information systems. 

Donato Malerba received the Laurea degree in Computer Science from the 
University of Bari, Italy, in July 1987. In 1991 he joined the University of Bari 
where he currently holds the rank of Assistant Professor in the Department of 
Informatics. In 1992, he has been a visiting scientist at the Department of 
Information and Computer Science, University of California at Irvine. His 
research interests are in machine learning, artificial intelligence and pattern 
recognition. Applications include document classification and understanding, 
knowledge discovery in databases, map interpretation and interfaces. He has 
published more than forty papers in international journals and refereed conference 
proceedings. 

Aldo Paradiso received the Laurea degree in Computer Science from the 
University of Bari, Italy. He has been employed at the GMD-IPSI Institute in 
Darmstadt, Germany, where he is currently working on his PhD thesis. During his 
stay at GMD he has worked on the Virgilio Project, also creating a prototype of 
the system. His research interests include information visualization, particularly 
using Virtual Reality approaches. At the present he is working on Human 
Modeling using VR approaches. 


