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Abstract 
Many image database management systems support whole-image queries. 
However, in some situations, users may only remember certain portions of 
the images. In this paper, we develop Padding and Reduction Algorithms to 
support subimage queries of arbitrary size based on local color information. 
The idea is to estimate the best-case lower bound to the distance between the 
query and the image. To improve the efficiency and effectiveness of content­
based retrieval, a multiscale representation is proposed. Since image contents 
are usually pre-extracted and stored, the number of levels used in such a 
representation needs to be determined. We address this issue analytically by 
estimating the CPU and I/O costs, and experimentally by comparing the 
performance and accuracy of the outcomes of various filtering schemes. Our 
findings suggest that a 3-level hierarchy is preferred. 

We also study three strategies for searching multiple scales. Our studies 
indicate that the hybrid strategy with horizontal filtering on the coarse level 
and vertical filtering on remaining levels is the best choice. When used with 
Padding and Reduction Algorithms in the preferred 3-level multiscale repre­
sentation, desired images can be retrieved efficiently and effectively. 

Keywords 
Similarity matching, subimage querying, multiscale representation, cost model, 
search strategy 

1 INTRODUCTION 

Over the past few decades, database management systems have been recog­
nized as tools with practical value for handling large volumes of data. Exist-
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ing systems were mainly designed to provide environments for efficient and 
effective retrieval and storage of only alphanumeric data. In recent years, ad­
vances in technologies for scanning, networking, and CD-ROMs have lowered 
the prices for disk storage. These advances, coupled with the acceptance of 
common image compression and file formats, enable users to acquire, store, 
manipulate and transmit large numbers of visual data in the form of images. 
In addition, images are generated at an increasing rate by an ever-growing 
number of sources. For example, an estimated 281 gigabytes of image data 
will be produced daily by the instruments on two NASA's Earth Observing 
Systems platforms (Castelli et al. 1997). As a result, the number of digital 
image archives has increased tremendously. In the 1992 US National Science 
Foundation workshop on visual information management systems (Jain 1993), 
four 'Grand Challenge' application domains were identified; image databases 
play important roles in these application domains. The demands for image 
database management systems (IDBMS's) also increase in other application 
areas like World-Wide Web publications, retail cataloging, art work retrievals, 
advertisement creation, and imaging clip arts (Barber et al. 1994, Gudivada 
and Raghavan 1995, Petkovic et al. 1996). Given this explosive growth in the 
availability and demand for image data, we can no longer rely solely on tra­
ditional database retrieval technology based on manually associating textual 
descriptions with image contents. The development of efficient and effective 
content-based retrieval systems based on automated extracted contents (such 
as color) is necessary. 

To achieve this goal, several research projects have been carried out. Over 
the past few years, multi-dimensional indexing structures (Guttman 1984, 
Samet 1990, Lin et al. 1994) have been designed, multi-level filtering ap­
proaches (Sawhney and Hafner 1993, Ng and Tam 1997) have been proposed, 
and information preserving transformations (Faloutsos et al. 1994, Thomasian 
et al. 1997) have been suggested for providing efficient indexing. Expressive 
query language systems (Flickner et al. 1995, Bach et al. 1996, Faulus and 
Ng 1997) have also been developed to accommodate efficient querying from 
image databases for applications with dense and sparse image spaces. Other 
research projects for supporting efficient and effective query processing and 
optimization have also been carried out. 

With the popularity of similarity matching on color and spatial information, 
many IDBMS's store the information in local color histograms. To process user 
queries, some systems use fixed grid segmentation approaches. For further im­
provement on the efficiency and the effectiveness of content-based retrieval, 
multiscale matching approaches (Jacobs et al. 1995, Chen et al. 1997) have 
been proposed. However, detailed analytical and experimental results on the 
determination of the suitable number of levels for these approaches are seldom 
reported, and comparisons of different strategies for searching multiple scales 
are rare. Moreover, in many application areas, users are interested in only 
local image contents; therefore, subimage query processing is needed. Unfor-
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tunately, not many IDBMS's can handle arbitrary-size subimage queries based 
on color and spatial similarity. For the systems that can deal with subimage 
queries of arbitrary size, multiscale matching is rarely used. Therefore, in this 
paper, we study the following three questions: 

1. How can we process subimage queries of arbitrary size? 
Many existing IDBMS's (e.g., the system developed by Jacobs et al. 

(1995)) support only whole-image queries (which specify the contents of 
the whole images to be retrieved), but not subimage queries. Due to the 
poor human memory capability for retaining a fine granularity of spatial 
information of color, users typically cannot recall very many details of 
images they have seen before. To pose a whole-image query, users need to 
come up with the color information on the remaining portion of the images 
which they may not know or care about. Hence, methods for processing 
arbitrary-size subimage queries are needed. To answer subimage queries of 
this kind, we develop two algorithms, called Padding and Reduction. The 
idea is to estimate the best-case lower bound to the histogram distance 
between the subimage query and the image. 

2. How many levels of the multiscale representation do we need? 
To provide better selectivity for image retrievals based on color and spa­

tial information, many IDBMS's (e.g., QBIC (Flickner et al. 1995)) segment 
an image into blocks of a certain size. However, the efficiency and the effec­
tiveness of image retrievals depend on the quality of the segmentation and 
the relevance of the segmentation to the user's needs. For some queries, the 
scale at which the images are segmented may be too fine; for other queries, 
such a scale may be too coarse. The difficulty of picking one best scale in 
which the image should be segmented can be addressed by the use of mul­
tiscale representation. Since image contents are usually pre-extracted and 
stored, we need to determine a suitable number of levels for the multiscale 
representation. Analytically, we use a cost model to estimate CPU and 
I/O costs. Experimentally, we measure the performance and the accuracy 
of the outcomes of strategies for searching the representation. Our findings 
suggest that a 3-level hierarchy is preferred. 

3. What is a good strategy for searching multiple scales ? 
Some matching strategies have been proposed for searching multiple 

scales. One of these strategies is branch~and-bound (Chen et al. 1997). 
Due to its effectiveness for handling whole-image queries, the strategy can 
be adapted to handle subimage queries. However, at each iteration, jump­
ing back and forth in the data file to get the necessary data (histograms) 
for computation seems unavoidable. Such jumping may impose a high I/O 
cost. As a result, it can be inefficient for large databases. In this paper, we 
study three strategies that try to avoid this kind of jumping. To find an effi­
cient and effective multiscale searching strategy among the three strategies, 
analytical and experimental evaluations are conducted. The results indicate 
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that the hybrid strategy with horizontal filtering on the coarse level and 
vertical filtering on the remaining levels is the best when operated with 
Padding and Reduction Algorithms. In addition to avoiding the frequent 
jumping incurred in branch-and-bound, the strategy also maintains a good 
balance between efficiency and effectiveness. 

In the next section, we present Padding and Reduction Algorithms. Concepts, 
implementations, and experimental results are discussed. Section 3 describes 
the multiscale representation and a strategy for searching such a represen­
tation (Pure Vertical search). We also show the analytical and experimental 
results related to the second question mentioned above. In Section 4, two 
more search strategies, namely Pure Horizontal and Horizontal-and-Vertical, 
are discussed. We compare both analytical and experimental results of the 
three search strategies so as to determine the best strategy for searching the 
multiple scales. Finally, conclusions and suggestions for future work are pre­
sented in Section 5. 

2 PADDING AND REDUCTION ALGORITHMS 

For the IDBMS's that support whole-image queries, color is usually extracted 
automatically and stored in feature vectors (e.g., n-dimensional color his­
tograms). Once these vectors are created for the images in the database, the 
similarity between the whole-image query and the image can be computed 
based on a variety of distance measures. Example of these measures are sta­
tistical distribution features (Stricker and Dimai 1996), histogram intersec­
tion (Swain and Ballard 1991), and (weighted) Euclidean distance (Flickner 
et al. 1995). Similarity matching methods based on statistical distribution fea­
tures were proposed on the assumption that query objects are usually located 
in the center of images. Unfortunately, this assumption may not hold in some 
applications. For example, the user may only be interested in images where 
the sun is rising in the upper right portion of the image. Histogram intersec­
tion is robust for computing similarity between the whole-image query and 
the image. However, the feasibility of using such a measure in subimage query 
matching is unclear. As such, in our discussion, we focus on the Euclidean 
measure. Results given in this section can be generalized to other measures 
such as weighted Euclidean. 

To answer the subimage query of arbitrary size, some systems (e.g., QBIC) 
segment an image into several blocks, each of which has an associated color 
histogram. One problem of this arrangement is that subimage queries may be 
of arbitrary size that need not be an integral multiple of the chosen block size. 
Other systems use template-based matching algorithms. A key problem with 
those algorithms is that a huge amount of computations is needed, because of 
the large number of positions to be compared. Therefore, other algorithms for 
efficient and effective processing of arbitrary-size subimage queries are needed. 
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To exploit the existing advantages of the Euclidean measure for computing 
similarity between the whole-image query and the image, we can use such a 
measure in computing similarity between the subimage query and the image. 
However, given a subimage query Q of arbitrary size, it may not necessarily be 
of the same size as the precomputed image block 1. Without loss of generality, 
we let the subimage query Q be made up of v pixels and the image block I 
be made up of w pixels (where w 2: v). Due to the quadratic nature of the 
Euclidean measure, comparing the histograms representing these Q and I may 
seem unfair. Excessive pixels in one histogram may dramatically influence the 
resulting histogram distance. Alternatively, we may normalize the histograms 
for Q and I. Unfortunately, the use of normalized histograms with the above 
Euclidean measure may not be helpful due to various side-effects (such as 
scaling and zooming), especially in application areas where the user is con­
fident in the query size. For example, the user may be interested in finding 
images with 'the Union Jack in upper left portion' (such as the Australian 
flag). Using the normalized histograms may have an effect of scaling up this 
query into the query of finding images with 'the Union Jack on the entire 
region'. As a result, the flag of UK is returned instead of the Australian flag. 

To avoid the problem caused by the size differential between Q and I, we 
propose two approaches - Padding and Reduction - for processing subimage 
queries of arbitrary size. Given a subimage query Q and an image block I of 
a size larger than Q, the idea is to estimate the best possible color histograms 
by either (i) enlarging Q into a new query Q' that is of the same size as I, or 
(ii) reducing I to a new image block I' that is of the same size as Q (Figure 1). 
More precisely, the two proposed approaches estimate the histogram distance 
between the subimage query Q and the image block I. 
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(b) Reduction Approach 

Figure 1 Padding and Reduction Approaches. 
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2.1 Padding Algorithm 

For the Padding Approach, we enlarge the subimage query Q by padding w - v 
'desired' pixels to it so that the resulting padded query Q' is of the same size as 
the image block I. In order to minimize the estimated histogram distance J5;i , 
the 'desired' pixels are chosen from the image block. 

Definition 1 Let I, P, Q and Q' (= P + Q) represent the n-dimensional color 
histograms of the image block, the padded area, the original subimage query, 
and the resulting padded query respectively. We let w, w - v, v and w be the 
corresponding number of pixels represented in the histograms I, P, Q and Q'. 
The goal of the Padding Approach is to find an appropriate assignment to the 
optimization variable P so that J5;i is minimized and the vector inequality 
P ~ I is met: 

n n 

Given L Qj = v and L Ij = w ~ v, 
j=l j=l 

we want to find the optimal vector P to 
n 

objective function min(P-a)T(P-a) == min ~(Pj_aj)2 
p p L...J (1) 

j=l 

inequality constraint subject to 0 :5 Pj :5 Ij for 1 :5 j :5 n 
n 

summation constraint and LPj =w-v 
j=l 

domain constraint and I, P, a( = I - Q) integer vectors 

-The estimated best-case lower bound D H (P + Q - I)T(P + Q - I) 
(P - o:)T(p - 0:). • 

To solve this minimization problem, several methods can be applied. A 
brute-force method is to exhaustively generate all feasible vectors for P. 
These generated vectors are then tested for minimality, and the one that 
gives the minimal Euclidean distance is returned. Solving Problem (1) with 
this generate-and-test method is unpalatable in the sense that the execution 
time is expected to be very high. 

Alternatively, based on the observation that Problem (1) is an instance of 
quadratic programming (QP) problems, we can use existing software packages 
that are built for handling QP. Unfortunately, these software packages may 
not be helpful, because many of them compute the optimal vectors in the 
domains of real number (i. e. lacking integer programming functionality). This 
domain problem coupled with the roundoff error may lead to the unreliability 
of some answers. Therefore, efficient and effective algorithms for computing 
the estimated best-case lower bound to the histogram distance are needed. 
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Note that the objective function in Problem (1) is in the form of the sum 
of squares of the difference terms (d-terms): 

In order to minimize the sum, we need to minimize the d-terms. In which order 
should the d-terms be minimized? Due to the quadratic nature of the squares 
of the d-terms, we notice, on a close examination of the representation, that 
deducting 1 off a large d-term is more effective in minimizing the sum than 
deducting 1 off a small d-term: 

H integers a > b ~ 1, then (a - 1)2 + b2 < a2 + (b - 1)2 

It is also clear that for two d-terms having the same value c, subtracting an 
integer d from each of these d-terms is more effective in minimizing the sum 
than subtracting 2d from only one of these two equal-valued d-terms: 

H integers c > 2d and d ~ 1, then (c - d)2 + (c - d)2 < (c - 2d)2 + Cl 

Hence, for the Padding Approach, we start with Pj = 0 for all jj each d-term 
(Pj - O:j) becomes -O:j. These d-terms are then rearranged in non-ascending 
order of O:j (in other words, non-descending order of -O:j) and result in: 

After the rearrangement, we try to lower the value of the first d-term (P(I) -

0:(1» by adding the amount 0:(1) - 0:(2) to P(I) so that the first d-term has 
the same value as the second d-term (P(2) - 0:(2». We then try to reduce 
the values of these two d-terms by increasing the values of P(I) and P(2) in 
round-robin fashion so as to make them have the same value as the third d­
term (P(3) -0:(3». We keep devaluing the first k d-terms so that they have the 
same value as the (k+l)th d-term through increases of the values of P(I$j$k)' 

This process is repeated until the summation constraint Lj=1 Pj = W - v is 
satisfied. At any cycle (say, Cycle k), the value of P(I$j$k) is constrained 
by the inequality P(j) ~ I(j), and will not be increased beyond its allowable 
maximum I(j). 

Algorithm 2 (The Padding Algorithm) 
1 Vj, O:j t- I j - Qj 

2 Vj, Pj t- 0 
3 ({P(j) - O:(j)'s} t- sort the (Pj - O:j) terms in non-ascending order of O:j 
4 k t-l 
5 while k < n and L;=1 P(j) < W - v do 
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6 loop for at most O(k) - O(k+l) cycles 
7 for each P(1~:;t9) do 
8 if p(t~ < l(t) then p(t) r p(t) + 1 
9 if Ej=l P(j) = w - v then return (P, E(Pj - OJ )2) 
10 krk+l 
11 if Ej=l P(j) < w - v 
12 then loop 
13 for each P(l$t$n) do 
14 if P(tJ < l(t) then p(t) r p(t) + 1 
15 if Ej=l P(j) = w - v then return (P, E(Pj - OJ)2) • 

Example 3 Given 3-dimensional integer vectors I = ( 12,3, 10 )T and Q = 
( 2, 7, 1 )T j then, 0 = 1-Q = ( 10, -4,9 )T. We want to find an appropriate 
assignment to integer vector ( PI, P2 , P3 )T so that the objective function 
(PI - 10)2 + (P2 + 4)2 + (P3 - 9)2 is minimized and the constraints ( 0, 0, 0 f 
~ ( PI, P2, P3 f ~ ( 12,3, 10 )T and E~=l Pj = 25 -10 = 15 are satisfied. 

We start with Pj = 0 for all j and rearrange all the d-terms. After the 
rearrangement, we try to lower the value of the first d-term (P(1) -10 = -10) 
by adding 1 to P(l) so that the first two d-terms have same value (= -9). 
Then, we try to reduce the values of these two d-terms by increasing the 
values of P(l) and P(2) in round-robin fashion so as to bring them closer to 
the value ofthe third d-term (= 4)j we stop when the constraint E;=l Pj = 15 
is satisfied. 

P(l) - 0(1) P(2) - 0(2) P(3) - 0(3) EPj 

= PI - 01 = P3 -03 = P2 -02 

Cycle 0 0-10=-10 0-9 =-9 0- (-4) = 4 0 

Cycle 1 1-10 =-9 1 

Cycle 2 2 -10 =-8 1- 9 =-8 3 
Cycle 3 3-10=-7 2 -9 =-7 5 

Cycle 8 8 -10 =-2 7 - 9 =-2 15 

The Padding Algorithm returns (P,JS;i) = ( (8,0,7 )T, 24). • 

2.2 Reduction Algorithm 

Figure 1 shows the similarities and difficulties of the Padding Approach and 
the Reduction Approach. As notice from the figure, for the Reduction Ap-
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proach, we reduce the precomputed image block I by choosing v 'desired' 
pixels from it so that the resulting reduced image block I' is of the same size 
as the subimage query Q. In other words, the w - v 'not so desired' pixels 
are removed. 

Definition 4 Let I, I' and Q represent the n-dimensional color histograms 
of the original precomputed image block, the resulting reduced image block, 
and the subimage query respectively. We let w, v and v be the corresponding 
number of pixels represented in the histograms I, I' and Q. The goal of the 
Reduction Approach is to find an appropriate assignment to the optimization 
variable I' so that IS; is minimized and the vector inequality I' ~ I is met: 

n n 

Given L Qj = v and L Ij = W ~ v, 
j=l j=l 

we want to find the optimal vector I' to 
n 

objective function min (Q - I'f(Q - 1') == min "(Ii _ Qj)2 ]' ]' L..J (2) 
j=l 

inequality constraint subject to 0 ~ Ii ~ Ij for 1 ~ j ~ n 
n 

summation constraint and LIi =v 
j=l 

domain constraint and I, I' , Q integer vectors 

The estimated best-case lower bound IS; = (Q - I')T(Q - I'). • 
As we can see, Problem (2) is similar to Problem (1). The Algorithm 2 has 

been adapted for the Reduction Approach by replacing (i) P with I', (ii) a 
with Q, and (iii) the summation constraint with :L;=1 I(i) = v. The resulting 
algorithm is the Reduction Algorithm. 

2.3 Evaluation 

Having developed the Padding Algorithm and the Reduction Algorithm, we 
would like to ask the question: In terms of effectiveness, which one produces 
a better lower bound ? To answer this question, we let: 

• F P = {fP I fP = (P+Q-I)T(P+Q-I) where P satisfies the constraints: 
(i) 0 ~ Pi ~ Ii for 1 ~ j ~ n and (ii) :L;=1 Pi = w - v }, and 

• FR = { fR I fR = (Q - I')T(Q - I') where I' satisfies the constraints: 
(i) 0 ~ I; ~ Ii for 1 ~ j ~ n and (ii) :L;=lI; = v }, 
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where E;=1 Qj = v and E;=IIj = w ~ v. The analytical results show that 
in the domain of integers, there is a I-to-l correspondence between FP and 
FR. ill other words, for any feasible solution fP to Problem (1), there is a 
corresponding solution fR to Problem (2) such that fP = fR. Similarly, for 
any feasible solution fR to Problem (2), there is a corresponding solution fP 
to Problem (1) such that fP = fR. The D;i values returned by the Padding 
Algorithm and the Reduction Algorithm are the minimal fP and the mini­
mal fR respectively. Therefore, in terms of effectiveness, the two Algorithms 
give the same best-case lower bound to the histogram distance. 

Lemma 5 H a subimage query Q is contained in an image block I, then both 
the Padding Algorithm and the Reduction Algorithm return the estimated 
histogram distance D;i = O. • 

The next question is: In terms of efficiency, which one produces the lower 
bound faster ? The experimental results show that the performance of the 
two Algorithms differ significantly depending on the size differential between 
the subimage query and the image block (Figure 2). Given an image block I 
consisting of w pixels and a subimage query Q consisting of v pixels (where 
v ~ w): 

Imogo -....-v'" 121x128 1'11010 

//-/--------

-
°0 2000 «100 8000 1000 10000 12000 14000 18000 

_oIPtx"In~Quory 

Figure 2 Computation time for Padding and Reduction Algorithms . 

• For small size differential (e.g., w < 2v): The Reduction Algorithm picks v 
pixels to form I', whereas the Padding Algorithm pads w - v < v pixels to 
Q to form Q' • 

• For large size differential (e.g., w > 2v): The Padding Algorithm pads w-v 
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pixels to form Q/, whereas the Reduction Algorithm picks v < w - v pixels 
from I to form I' . 

• For medium size differential (e.g., w ~ 2v): The Padding Algorithm pads 
w - v pixels to form Q/, and the Reduction Algorithm picks v ~ w - v pixels 
to form I'. 

Therefore, in terms of efficiency, the Padding Algorithm outperforms the Re­
duction Algorithm when size differential between Q and I is small, and vice 
versa when the differential is large. 

As we can see, the complexity for the Padding Algorithm is O(w - v}, and 
the complexity for the Reduction Algorithm is O(v}. Since the two Algorithms 
give the same best-case lower bound, we can choose the faster Algorithm for 
the given Q and I. Hence, the average complexity for Padding and Reduction 
Algorithms is O(min(w - v,v». 

3 MULTISCALE REPRESENTATION 

As discussed above, some IDBMS's divide an image into blocks of a certain 
size. For some queries, the scale at which the images are blocked may be too 
fine. Applying similarity comparisons to all those fine blocks may be a waste 
of effort. However, for some other queries, the scale may be too coarse. The 
desired images in the database may not be discriminated sufficiently. Given 
that subimage queries can be of arbitrary size, picking one best scale for all 
queries is hard, if not impossible. 

One solution is to have multiple scales/resolutions for matching. The idea 
is that depending on the scale or need of the given query, a more appropriate 
scale can be used. The wavelet decomposition method developed by Jacobs 
et al. is a good example of a multiscale scheme, in which the coefficients of 
the decompositions are distilled through processes of truncation and quanti­
zation. During query processing, the algorithm simply compares the number 
of distilled coefficients that are common to both the query and the image. 
However, the method is applicable only to whole-image queries; it is not clear 
how subimage queries can be supported. 

Chen et al. (1997) proposed a branch-and-bound algorithm for searching 
multiple scales. While we shall discuss their approach in greater detail later, 
it suffices to say that in Chen et al. 's study and in most of the related studies 
in the literature, there is little discussion on how to determine the number of 
levels in the multiscale representation. Analytical or experimental evaluation 
of this issue is almost non-existent. 
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3.1 Multiscale Similarity Matching 

Here, we study a 4-level multiscale representation in which the entire image is 
divided into four blocks, and each block is recursively divided into four, and 
so on (Figure 3): 

(a) Level H (b) Level I (c) Level J (d) Level K 

Figure 3 The 4-level multiscale representation. 

1. At Level H, the entire image is represented by a single color histogram. 
2. At Level I, the image is divided into four non-overlapping blocks, and each 

block is represented by a color histogram covering i of the entire image. 
3. At Level J, each block at Level I is further divided into four blocks, each of 

which is represented by a color histogram covering l6 of the entire image. 
4. At Level K, each block at Level J is again divided into four, each of which 

is represented by a color histogram covering 6~ of the entire image. 

With this multiscale representation, given any subimage query Q of arbitrary 
size, there exists an image block I whose size is not smaller than Q. So, Padding 
and Reduction Algorithms can be applied in similarity matching. Depending 
on the location of image block I, similarity matching can incorporate both 
color similarity and spatial similarity. For instance, the distance between Q 
and I can be a weighted sum of the form: {3 x histogram distance + (1- (3) x 
positional distance,where the histogram distance is computed by either the 
Padding Algorithm or the Reduction Algorithm. The weighting factor {3 can 
be chosen by the user. 

Due to the 'minimization' nature of the estimated histogram distance, the 
distance function has been formulated in a such way that given Q and I, the 
distance at the coarser scale can serve as a lower bound to the distance at the 
finer scale. With this property, efficient multiscale search strategies with the 
use of vertical filtering can be explored. Here, we study one of these strategies, 
namely PV (Pure Vertical); we shall consider other search strategies in the 
next section. With PV, all database images are checked one after another. At 
any point in time, we keep the current u smallest distances (images at their 
finest scales), where u is the number of images requested by the user. For 
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each image, we keep proceeding to finer scales until (i) the distance value at 
a particular scale is already so large that the image cannot be qualified as a 
good match, or (ii) the finest scale is reached and the image is either discarded 
or selected as a member of the answer set, depending on the distance value. 

With the four levels of image blocks in the representation, many multi-level 
filtering schemes are possible. For example, the choices include a four-level 
HIJK scheme, a two-level HI scheme, a two-level IK scheme (skipping Level J), 
and some other schemes. Depending on the efficiency and effectiveness of 
various schemes and the size of subimage query, appropriate filtering schemes 
can be chosen. 

3.2 Analytical Evaluation 

In order to determine the suitable number of levels required for the multiscale 
representation, we have conducted an analytical evaluation by setting up a 
cost model. Our model captures: 

• CPU cost, which depends mainly on the time required to apply Padding and 
Reduction Algorithms and the number of times in which the Algorithms 
are applied . 

• I/O cost, which depends mainly on the time required to sequentially and 
randomly access the pages containing the data (the histograms). This ac­
cess time can be affected by page size and buffer size. 

Some optimization techniques can be applied to reduce the CPU and I/O 
costs. As an example, it is observed that for a vast majority of subimage 
queries, if the image blocks pub and Iaup are best matches (which give the 
smallest distance values) at their corresponding levels (e.g., Levels I and J), 
then I aub is one of the subblock enclosed in I-UP. SO, given a subimage query 
of size smaller than 116 of the entire image (i. e. smaller than the precomputed 
image block at Level J), the most promising image block I I can be found after 
checking histograms of the four blocks at Level I. Then, rather than consid­
ering histograms representing all 16 blocks at Level J, we simply consider the 
four representing the region covered by II. By so doing, both CPU and I/O 
costs are reduced. 

For lack of space, we only show the CPU and I/O cost formulas for a 
three-level HIJ filtering scheme in this section; please refer to Leung's (1997) 
work for the cost formulas of all other filtering schemes. To estimate the CPU 
cost, we let Tc be the computational time required to apply Padding and 
Reduction Algorithms. Then, given a query of size smaller than that of the 
precomputed image block at Level J, the CPU cost for the HIJ scheme using 
the PV strategy is (M + 4~I + 4~J)Tc, where ~I and ~J are the number of 
images checked at Levels I and J respectively (number of database images 
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= M ~ ~I ~ ~J ~ U = number of requested images). The two parameters ~'s 
are determined dynamically during the runtime. 

To estimate the I/O cost, we let the space required by each dimension 
of a color histogram be 4 bytes; a total of 4n bytes are needed for one n­
dimensional histograms. Hence, the total number of pages occupied by one 
histogram is r: pages where P is the page size. Then, the I/O cost is the sum 
of total seek times and total data transfer times. Using a minimal buffering 
(a buffer size of one page) with an appropriate file organization for the PV 
strategy*, the I/O cost for the HIJ scheme (using a page size of 1 kilobyte and 
a 64-dimensional histograms) is TA + (M -1 + ~)TM + (M + ~I + ~J)TD, 
where TA (average seek) is charged only for getting to the Level-H histogram 
of the first image, and TD (data transfer) is charged for loading the page 
containing the histogram, and TM (minimum seek) is charged for jumping 
between records. . 

In the analyses, we vary parameters like the dimension of the color his­
togram and the number of database images. The observations are listed be­
low: 

• As the dimension of the histogram grows, the time required for CPU op­
eration and I/O operation increases. Hence, the combined CPU and I/O 
cost increases. 

• As the number of database images becomes larger, the combined CPU and 
I/O cost increases. 

• Filtering schemes which start with filter J or K often take more CPU and 
I/O time. 

• Filtering schemes which skip intermediate levels often incur greater CPU 
and I/O costs. 

• The above trends can still be observed when using various level of buffering. 

Therefore, filtering schemes that start with the Level H (or start with Level I), 
and those that do not skip any intermediate levels are favored. 

3.3 Experimental Evaluation 

In addition to the analytical evaluation, we have also conducted an experi­
mental evaluation. In the experiments, we use suhimage queries of different 
sizes (some even smaller than 6~ of the entire image), and measure both 
the efficiency and effectiveness of the filtering schemes. The efficiency of a 
scheme can be assessed by its execution time; the effectiveness of a scheme 

• Since the database images are checked one after another, an appropriate way to organize 
the histograms for the PV strategy is to arrange them on an image-by-image basis (i.e. 
Levels H-I-J-K histograms of Image 1 followed by Levels H-I-J-K histograms of Image 2, 
and so on). 
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can be assessed by its dissimilarity score. The dissimilarity score is computed 
by comparing the number of retrieved images actually falling into 'prefect­
match', 'best-match', 'good-match', 'fair-match', and 'poor-match' categories 
to the number of retrieved images ideally falling into these categories. The 
lower the dissimilarity score, the better is the accuracy. The experimental 
results suggest that when operated with Padding and Reduction Algorithms: 

• The one-level H scheme is best for 'large' subimage queries·. 
• The two-level HI scheme is best for 'medium' subimage queries. 
• The three-level HIJ scheme is best for both 'small' and 'tiny' subimage 

queries. 

Therefore, desired images can be retrieved efficiently and effectively using only 
the top three levels (Levels H, I, and J) of the multiscale representation. 

3.4 Discussion: Dealing with Queries on Boundaries 

Given the above search strategy, one may ask the question: How to handle 
subimage queries which lie on block boundaries ? For example, the user may 
specify a subimage query which lies in the center region of an image block, 
with each of the four subblocks containing t of the query. The problem here 
is that the query is not entirely contained in any sub block. 

A heuristic to improve such a situation is to use the overlapping 9-tile 
partition (Figure 4). Due to the overlapping nature of such a partition, more 
choices are allowed for better containment. For the above example, we can pick 
tile #9. To change from the original non-overlapping 4-tile partition to this 
9-tile partition, the search time only increases linearly. However, the storage 
space required for the histograms grows exponentially. 

rr2 [lJ: EEJ . . 1 . 3 

3 4 6 . . EE 
Figure 4 A overlapping 9-tile partition. 

To avoid the exponential growth in storage, a simpler heuristic can be used. 
First, we apply multiscale similarity matching as outlined in Section 3.1 and 
the next section. Then, on the basis of Lemma 5 that the estimated distance 

• A 'large' subimage query is the one that covers more than t of the entire image. Query 
that is not 'large' but covers more than fB of the entire image is called 'medium'. A 'small' 
subimage query is the one that is not 'medium' but covers more than -\ ofthe entire image; 
a 'tiny' subimage query is the one that does not belong to any of the ttree categories above. 
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at the coarsest level between a subimage query Q and its perfectly matched 
image rpm (e.g., Q is a subpart of rpm) is 0, we create a special candidate set to 
contain images with estimated distance of O. This special set is then merged 
with the answer set returned by the similarity matching; the resulting set of 
images are ranked thereafter. This idea can be generalized for handling cases 
where the image has an estimated distance less than some small predetermined 
threshold f. 

4 SEARCH STRATEGIES 

As mentioned earlier, in the branch-and-bound algorithm proposed by Chen 
et al., all the images in the database are first checked at the coarsest scale. 
Then, the algorithm proceeds to finer scales in non-descending order of dis­
tance value. In general, the branch-and-bound search works in such a way 
that it always keeps track of the distance values of all images contending for 
further consideration. Images with smallest values are 'extended' to a finer 
scale. Then, these most recently 'extended' images are considered along with 
the remaining ones. Again, images with smallest values are 'extended'. The 
process repeats until the target images are found. 

Due to the effectiveness of the above brand-and-bound strategy for handling 
whole-image queries, this strategy can be adapted to handle subimage queries. 
However, at each iteration of the search, the color histograms used in the 
computation of distance values may be at a different level/scale and may be 
for images different from those in the previous iteration. As a result, it can be 
inefficient for large databases. In particular, the number of images the strategy 
must keep track of can be large. Jumping back and forth in the data file to 
get the necessary histograms for computation may frequently be required. For 
large databases, such jumping makes it hard to optimize file organization and 
buffer management, and may impose a high I/O cost. 

In this paper, we consider three strategies that try to avoid the kind of jump­
ing mentioned above. The first strategy, called PV (Pure Vertical), checks 
the images one after another 'vertically' (across levels), instead of jumping 
back and forth. At any point in time, the strategy keeps the current u small­
est distances (images at their finest scale), where u is the number of images 
requested by the user. When the next image is tested, if the distance value of 
this image at the coarsest scale is already larger than the current u smallest, 
then this image can be eliminated. Otherwise, a finer scale is used, until the 
image is eliminated or is added to become one of the current u smallest. 

To investigate the efficiency and the effectiveness of the PV strategy, ana­
lytical and experimental evaluations are carried out. A cost model is set up 
during the analyses for estimating both CPU and I/O costs of various filtering 
schemes using the PV strategy. In the experiments, subimage queries of ar­
bitrary size are used. Execution time (evaluating efficiency) and dissimilarity 
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Level\Image# 2 3 4 5 6 7 
H • • • • • • • 

.I- .I- .I- .I- .I- .I- .I- .l-
• • • • • 0 0 
.I- .I- .I- .I- .I- .I- .I- .I-

J • • • 0 • 0 0 
(a) PV Strategy 

Level \Image# 1 2 3 4 5 6 7 
H .--+ .--+ .--+ .--+ .--+ .--+ .--+ 

.--+ .--+ .--+ .--+ .--+ 0--+ 0--+ • Visited 
o Unvisited 

J .--+ .--+ 0--+ 0--+ .--+ 0--+ 0--+ 
(b) PH Strategy 

Level\Image# 2 3 4 5 6 7 
H .--+ .--+ .--+ .--+ .--+ .--+ .--+ 

• • • • • 0 0 
.I- .I- .I- .I- .I- .I- .I- .I-

J • • • 0 • 0 0 
(C) HV Strategy 

Figure 5 Three proposed search strategies. 

score (evaluating effectiveness) are measured for each filtering scheme. Our 
aim is to maintain a balance between efficiency and effectiveness. 

Note that the PV strategy tends to require many comparisons at the finest 
scale, particularly at the beginning of the search. Thus, we consider the second 
strategy, called PH (Pure Horizontal), which avoids the kind of numerous 
comparisons at the finest scale by first checking all images at the coarsest 
scale. The best I' matches (for some value 1'» u), are carried over to the next 
iteration, while all the remaining ones are eliminated. In the next iteration, 
the next finer scale is used. The process is repeated until the finest scale 
has been used, and the top u images are returned. Here, images are checked 
'horizontally' (across database) level by level to avoid the kind of frequent 
jumping as in the branch-and-bound. 

Results of analytical and experimental evaluations show that the PH strat­
egy gives better performance than the PV strategy. Unlike the PV strategy, 
the number of images to be carried over from the current level to the next 
level is controlled by the predefined parameters J.t's. However, we need to care­
fully choose the values of J.t's. If this set of numbers (J.t's) is not determined 
carefully (say, the numbers are too small), then for some queries, an image I 
that gives a good match at a finer scale could have been eliminated before 
reaching this finer scale. This may happen when there are sufficiently many 
images which are not as good as I at the finer scale but which are better 
than I at the coarser scale. Consequently, while delivering efficiency, the PH 
strategy may suffer from a loss of effectiveness. 

The third strategy, called HV (Horizontal-and-Vertical), is a hybrid of 
PV and PH. At the coarsest scale, the PH strategy is applied to eliminate poor 
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matches. The best J.t matches are then carried over to the next stage, in which 
the PV strategy is used. In other words, horizontal filtering is applied only to 
the coarsest level, and vertical filtering is then applied to the remaining levels. 

4.1 Analytical Evaluation 

As can be viewed from Figure 6, the I/O cost for the brand-and-bound strat­
egy (denoted by B&B) are potentially high. This explains why we need to 
consider three search strategies - namely, PV, PH, and HV - which reduce 
the I/O costs by avoiding the kind of frequent jumping incurred in the branch­
and-bound strategy. To find the best strategy among these three, analyses and 
experiments have been carried out. Analytically, we set up the cost model to 
evaluate the filtering schemes and estimate their CPU, I/O, and combined 
CPU and I/O costs. Cost formulas for each filtering scheme and for each of 
the three search strategies can be found in Leung's (1997) work. 

110 eosts"" Four _ Strategies 

~~------------------------------HUK 

UK 

12 

----8&8 
.. ······PV cd" - - - - - - - - -HI 

······1 --'--HV 

1.5 2.5 3 3.5 4 4.5 5 
Tme (In ma) x 10" 

Figure 6 The I/O costs for 4 search strategies. 

After we estimated the CPU and I/O costs for each combination of filtering 
scheme and search strategy, results are analyzed. We found that: 

• All three strategies share a common trend: Filtering schemes starting with 
Level H (or Level I) and those not skipping intermediate levels are consid­
ered to be favorable. 

• While delivering high degree of accuracy, the PV strategy suffers from a 
loss of performance/speed (Figure 7). 

• The combined CPU and I/O costs for both PH and HV strategies are 
almost the same (Figure 7). Further experiments are needed to determine 
the best search strategy. 
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Figure 7 The combined CPU and I/O costs for 3 search strategies. 

4.2 Experimental Evaluation 

261 

To find an efficient and effective one among the three multiscale searching 
strategies, we performed several experiments using color histograms of vari­
ous dimensions (e.g., 8-, 64-, and 512-dimensional color histograms). These 
histograms are created for a database consisting of a thousand real images 
collected from various sources and covering wide application domains. Com­
paring the runtimes and the accuracies of the best configuration (the best 
filtering scheme for each kind of 'large', 'medium', 'small', and 'tiny' subim­
age queries) for each strategy, we found that: 

• The HV strategy is more efficient than the PV strategy, because the use 
of vertical filtering in the latter is applied to the whole set of database 
images. In the HV strategy, the detailed search with the use of vertical 
filtering is applied not to the set of all the images, but only to its most 
promising subset. 

• The HV strategy is more effective than the PH strategy, because the latter 
uses horizontal filtering at all levels. If the number of images to be carried 
over from the current level to the next level is not determined carefully, 
the PH strategy may suffer from a loss of effectiveness. In the HV strategy, 
horizontal filtering is applied not to all the levels, but only to the coarsest 
level. So, we only need to carefully assign a value to one (instead of a 
maximum of three) predefined parameter I' that controls the number of 
images to be carried over. As such, the chance of having the desired images 
being eliminated before reaching the finer scale is reduced. 
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Therefore, our experimental results confirm that the HV strategy not only 
avoids the kind of frequent jumping as observed in the branch-and-bound 
strategy, it also keeps a good balance between efficiency and effectiveness, 
when compared with the other two strategies. Running the HV strategy on a 
Sun UltraSPARC-I workstation, the best 10 desired images can be retrieved 
from a collection of thousand images in about 3.5 seconds on average. 

5 CONCLUSIONS 

In this paper, we have addressed the following key issues: 

1. To FIND A METHOD FOR PROCESSING SUBIMAGE QUERIES OF ARBITRARY 

SIZE: To answer arbitrary-size subimage queries, we developed two al­
gorithms, the Padding Algorithm and the Reduction Algorithm. Knowing 
the image block I may not necessarily be of the same size as the query Q, 
we use these two algorithms to estimate the best possible color histograms 
for Q and 1. Here, we either (i) enlarged Q into a new query Q' that is of the 
same size as I or (ii) reduced I to a new image block I' that is of the same 
size as Q. For a given Q and I, both algorithms give the same best-case 
lower bound to the histogram distance. However, their efficiency may differ 
significantly depending on the size differential between Q and 1. 

2. To DETERMINE THE SUITABLE NUMBER OF LEVELS FOR MULTISCALE REP­

RESENTATION: Given subimage queries of arbitrary size, multiscale repre­
sentation may improve the efficiency and the effectiveness of content-based 
retrieval. Since image contents are usually pre-extracted and stored, we 
need to determine the suitable number of levels for the multiscale rep­
resentation. Analytically, we estimated the required CPU and I/O costs; 
experimentally, we compared the performance and the accuracy of the out­
comes of strategies for searching the multiscale representation. Our findings 
suggest that a 3-level hierarchy (up to 4 x 4 segmentation) is preferred. 

3. To FIND AN EFFICIENT AND EFFECTIVE MULTISCALE SEARCH STRATEGY: 

In this paper, we studied three search strategies, namely Pure Vertical, Pure 
Horizontal, and Horizontal-and-Vertical. To find the best strategy among 
these three, analytical and experimental evaluations were conducted. Our 
results indicate that the Horizontal-and-Vertical strategy is the best when 
using Padding and Reduction Algorithms, because the strategy not only 
avoids high I/O costs incurred by the frequent jumping in the data file, but 
also keeps a good balance between performance and accuracy. 

Although the results of this paper are very promising, there are some aspects 
to consider for further improvement. One aspect is to investigate methods to 
extend our Padding and Reduction Algorithms for handling user confidence 
or uncertainty on color and spatial information. With the extension, users 
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will be able to express the degree of uncertainty on image contents within 
the subimage. 

Throughout the paper, we focus on the case where the user remembers 
only a single portion of the image. However, it is possible that the user may 
remember more than one portion of the images he has seen before. Hence, 
methods for handling subimage queries with multiple 'known' portions are 
needed. A brute-force approach is to apply Padding and Reduction Algorithms 
to each portion independently. An intersection is then applied to the candidate 
sets of images retrieved by the Algorithms, and the resulting images are ranked 
thereafter. However, the execution time for this approach may be high; more 
efficient approaches are necessary. 
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