
21
Multiscale Similarity Matching
for Subimage Queries of
Arbitrary Size

Kai-Sang Leung and Raymond Ng*
Department of Computer Science, The University of British Columbia
2366 Main Mall, Vancouver BC, Canada V6T lZ4

Abstract
Many image database management systems support whole-image queries.
However, in some situations, users may only remember certain portions of
the images. In this paper, we develop Padding and Reduction Algorithms to
support subimage queries of arbitrary size based on local color information.
The idea is to estimate the best-case lower bound to the distance between the
query and the image. To improve the efficiency and effectiveness of content­
based retrieval, a multiscale representation is proposed. Since image contents
are usually pre-extracted and stored, the number of levels used in such a
representation needs to be determined. We address this issue analytically by
estimating the CPU and I/O costs, and experimentally by comparing the
performance and accuracy of the outcomes of various filtering schemes. Our
findings suggest that a 3-level hierarchy is preferred.

We also study three strategies for searching multiple scales. Our studies
indicate that the hybrid strategy with horizontal filtering on the coarse level
and vertical filtering on remaining levels is the best choice. When used with
Padding and Reduction Algorithms in the preferred 3-level multiscale repre­
sentation, desired images can be retrieved efficiently and effectively.

Keywords
Similarity matching, subimage querying, multiscale representation, cost model,
search strategy

1 INTRODUCTION

Over the past few decades, database management systems have been recog­
nized as tools with practical value for handling large volumes of data. Exist-

·Person handling correspondence: Raymond Ng. Telephone: +1(604)822-2394. Fax:
+1(604)822-5485. E-mail: rng@cs.ubc.ca

Visual Database Systems 4 Y. Ioannidis & W. Klas (Eds.)
@ 19981FIP. Published by Chapman & Hall

244 Part Nine Session: Image Queries

ing systems were mainly designed to provide environments for efficient and
effective retrieval and storage of only alphanumeric data. In recent years, ad­
vances in technologies for scanning, networking, and CD-ROMs have lowered
the prices for disk storage. These advances, coupled with the acceptance of
common image compression and file formats, enable users to acquire, store,
manipulate and transmit large numbers of visual data in the form of images.
In addition, images are generated at an increasing rate by an ever-growing
number of sources. For example, an estimated 281 gigabytes of image data
will be produced daily by the instruments on two NASA's Earth Observing
Systems platforms (Castelli et al. 1997). As a result, the number of digital
image archives has increased tremendously. In the 1992 US National Science
Foundation workshop on visual information management systems (Jain 1993),
four 'Grand Challenge' application domains were identified; image databases
play important roles in these application domains. The demands for image
database management systems (IDBMS's) also increase in other application
areas like World-Wide Web publications, retail cataloging, art work retrievals,
advertisement creation, and imaging clip arts (Barber et al. 1994, Gudivada
and Raghavan 1995, Petkovic et al. 1996). Given this explosive growth in the
availability and demand for image data, we can no longer rely solely on tra­
ditional database retrieval technology based on manually associating textual
descriptions with image contents. The development of efficient and effective
content-based retrieval systems based on automated extracted contents (such
as color) is necessary.

To achieve this goal, several research projects have been carried out. Over
the past few years, multi-dimensional indexing structures (Guttman 1984,
Samet 1990, Lin et al. 1994) have been designed, multi-level filtering ap­
proaches (Sawhney and Hafner 1993, Ng and Tam 1997) have been proposed,
and information preserving transformations (Faloutsos et al. 1994, Thomasian
et al. 1997) have been suggested for providing efficient indexing. Expressive
query language systems (Flickner et al. 1995, Bach et al. 1996, Faulus and
Ng 1997) have also been developed to accommodate efficient querying from
image databases for applications with dense and sparse image spaces. Other
research projects for supporting efficient and effective query processing and
optimization have also been carried out.

With the popularity of similarity matching on color and spatial information,
many IDBMS's store the information in local color histograms. To process user
queries, some systems use fixed grid segmentation approaches. For further im­
provement on the efficiency and the effectiveness of content-based retrieval,
multiscale matching approaches (Jacobs et al. 1995, Chen et al. 1997) have
been proposed. However, detailed analytical and experimental results on the
determination of the suitable number of levels for these approaches are seldom
reported, and comparisons of different strategies for searching multiple scales
are rare. Moreover, in many application areas, users are interested in only
local image contents; therefore, subimage query processing is needed. Unfor-

Similarity matching for arbitrary size subimage que ries 245

tunately, not many IDBMS's can handle arbitrary-size subimage queries based
on color and spatial similarity. For the systems that can deal with subimage
queries of arbitrary size, multiscale matching is rarely used. Therefore, in this
paper, we study the following three questions:

1. How can we process subimage queries of arbitrary size?
Many existing IDBMS's (e.g., the system developed by Jacobs et al.

(1995)) support only whole-image queries (which specify the contents of
the whole images to be retrieved), but not subimage queries. Due to the
poor human memory capability for retaining a fine granularity of spatial
information of color, users typically cannot recall very many details of
images they have seen before. To pose a whole-image query, users need to
come up with the color information on the remaining portion of the images
which they may not know or care about. Hence, methods for processing
arbitrary-size subimage queries are needed. To answer subimage queries of
this kind, we develop two algorithms, called Padding and Reduction. The
idea is to estimate the best-case lower bound to the histogram distance
between the subimage query and the image.

2. How many levels of the multiscale representation do we need?
To provide better selectivity for image retrievals based on color and spa­

tial information, many IDBMS's (e.g., QBIC (Flickner et al. 1995)) segment
an image into blocks of a certain size. However, the efficiency and the effec­
tiveness of image retrievals depend on the quality of the segmentation and
the relevance of the segmentation to the user's needs. For some queries, the
scale at which the images are segmented may be too fine; for other queries,
such a scale may be too coarse. The difficulty of picking one best scale in
which the image should be segmented can be addressed by the use of mul­
tiscale representation. Since image contents are usually pre-extracted and
stored, we need to determine a suitable number of levels for the multiscale
representation. Analytically, we use a cost model to estimate CPU and
I/O costs. Experimentally, we measure the performance and the accuracy
of the outcomes of strategies for searching the representation. Our findings
suggest that a 3-level hierarchy is preferred.

3. What is a good strategy for searching multiple scales ?
Some matching strategies have been proposed for searching multiple

scales. One of these strategies is branch~and-bound (Chen et al. 1997).
Due to its effectiveness for handling whole-image queries, the strategy can
be adapted to handle subimage queries. However, at each iteration, jump­
ing back and forth in the data file to get the necessary data (histograms)
for computation seems unavoidable. Such jumping may impose a high I/O
cost. As a result, it can be inefficient for large databases. In this paper, we
study three strategies that try to avoid this kind of jumping. To find an effi­
cient and effective multiscale searching strategy among the three strategies,
analytical and experimental evaluations are conducted. The results indicate

246 Part Nine Session: Image Queries

that the hybrid strategy with horizontal filtering on the coarse level and
vertical filtering on the remaining levels is the best when operated with
Padding and Reduction Algorithms. In addition to avoiding the frequent
jumping incurred in branch-and-bound, the strategy also maintains a good
balance between efficiency and effectiveness.

In the next section, we present Padding and Reduction Algorithms. Concepts,
implementations, and experimental results are discussed. Section 3 describes
the multiscale representation and a strategy for searching such a represen­
tation (Pure Vertical search). We also show the analytical and experimental
results related to the second question mentioned above. In Section 4, two
more search strategies, namely Pure Horizontal and Horizontal-and-Vertical,
are discussed. We compare both analytical and experimental results of the
three search strategies so as to determine the best strategy for searching the
multiple scales. Finally, conclusions and suggestions for future work are pre­
sented in Section 5.

2 PADDING AND REDUCTION ALGORITHMS

For the IDBMS's that support whole-image queries, color is usually extracted
automatically and stored in feature vectors (e.g., n-dimensional color his­
tograms). Once these vectors are created for the images in the database, the
similarity between the whole-image query and the image can be computed
based on a variety of distance measures. Example of these measures are sta­
tistical distribution features (Stricker and Dimai 1996), histogram intersec­
tion (Swain and Ballard 1991), and (weighted) Euclidean distance (Flickner
et al. 1995). Similarity matching methods based on statistical distribution fea­
tures were proposed on the assumption that query objects are usually located
in the center of images. Unfortunately, this assumption may not hold in some
applications. For example, the user may only be interested in images where
the sun is rising in the upper right portion of the image. Histogram intersec­
tion is robust for computing similarity between the whole-image query and
the image. However, the feasibility of using such a measure in subimage query
matching is unclear. As such, in our discussion, we focus on the Euclidean
measure. Results given in this section can be generalized to other measures
such as weighted Euclidean.

To answer the subimage query of arbitrary size, some systems (e.g., QBIC)
segment an image into several blocks, each of which has an associated color
histogram. One problem of this arrangement is that subimage queries may be
of arbitrary size that need not be an integral multiple of the chosen block size.
Other systems use template-based matching algorithms. A key problem with
those algorithms is that a huge amount of computations is needed, because of
the large number of positions to be compared. Therefore, other algorithms for
efficient and effective processing of arbitrary-size subimage queries are needed.

Similarity matching for arbitrary size subimage queries 247

To exploit the existing advantages of the Euclidean measure for computing
similarity between the whole-image query and the image, we can use such a
measure in computing similarity between the subimage query and the image.
However, given a subimage query Q of arbitrary size, it may not necessarily be
of the same size as the precomputed image block 1. Without loss of generality,
we let the subimage query Q be made up of v pixels and the image block I
be made up of w pixels (where w 2: v). Due to the quadratic nature of the
Euclidean measure, comparing the histograms representing these Q and I may
seem unfair. Excessive pixels in one histogram may dramatically influence the
resulting histogram distance. Alternatively, we may normalize the histograms
for Q and I. Unfortunately, the use of normalized histograms with the above
Euclidean measure may not be helpful due to various side-effects (such as
scaling and zooming), especially in application areas where the user is con­
fident in the query size. For example, the user may be interested in finding
images with 'the Union Jack in upper left portion' (such as the Australian
flag). Using the normalized histograms may have an effect of scaling up this
query into the query of finding images with 'the Union Jack on the entire
region'. As a result, the flag of UK is returned instead of the Australian flag.

To avoid the problem caused by the size differential between Q and I, we
propose two approaches - Padding and Reduction - for processing subimage
queries of arbitrary size. Given a subimage query Q and an image block I of
a size larger than Q, the idea is to estimate the best possible color histograms
by either (i) enlarging Q into a new query Q' that is of the same size as I, or
(ii) reducing I to a new image block I' that is of the same size as Q (Figure 1).
More precisely, the two proposed approaches estimate the histogram distance
between the subimage query Q and the image block I.

Orilinal Query ImapBkx:k ..-.Query ImapBkx:k

D 0 [[dO ' , , , -, ,

~------:
Repraenlod

by Q Q'=P+Q
hillOgnllll

(a) Padding Approach

0ri1iDal Reduced
Query ImapBIoc:k Query Imap Bkx:k

D 0
Repraentod

by Q Q /'
hillOgnllll

(b) Reduction Approach

Figure 1 Padding and Reduction Approaches.

248 Part Nine Session: Image Queries

2.1 Padding Algorithm

For the Padding Approach, we enlarge the subimage query Q by padding w - v
'desired' pixels to it so that the resulting padded query Q' is of the same size as
the image block I. In order to minimize the estimated histogram distance J5;i ,
the 'desired' pixels are chosen from the image block.

Definition 1 Let I, P, Q and Q' (= P + Q) represent the n-dimensional color
histograms of the image block, the padded area, the original subimage query,
and the resulting padded query respectively. We let w, w - v, v and w be the
corresponding number of pixels represented in the histograms I, P, Q and Q'.
The goal of the Padding Approach is to find an appropriate assignment to the
optimization variable P so that J5;i is minimized and the vector inequality
P ~ I is met:

n n

Given L Qj = v and L Ij = w ~ v,
j=l j=l

we want to find the optimal vector P to
n

objective function min(P-a)T(P-a) == min ~(Pj_aj)2
p p L...J (1)

j=l

inequality constraint subject to 0 :5 Pj :5 Ij for 1 :5 j :5 n
n

summation constraint and LPj =w-v
j=l

domain constraint and I, P, a(= I - Q) integer vectors

-The estimated best-case lower bound D H (P + Q - I)T(P + Q - I)
(P - o:)T(p - 0:). •

To solve this minimization problem, several methods can be applied. A
brute-force method is to exhaustively generate all feasible vectors for P.
These generated vectors are then tested for minimality, and the one that
gives the minimal Euclidean distance is returned. Solving Problem (1) with
this generate-and-test method is unpalatable in the sense that the execution
time is expected to be very high.

Alternatively, based on the observation that Problem (1) is an instance of
quadratic programming (QP) problems, we can use existing software packages
that are built for handling QP. Unfortunately, these software packages may
not be helpful, because many of them compute the optimal vectors in the
domains of real number (i. e. lacking integer programming functionality). This
domain problem coupled with the roundoff error may lead to the unreliability
of some answers. Therefore, efficient and effective algorithms for computing
the estimated best-case lower bound to the histogram distance are needed.

Similarity matching for arbitrary size subimage queries 249

Note that the objective function in Problem (1) is in the form of the sum
of squares of the difference terms (d-terms):

In order to minimize the sum, we need to minimize the d-terms. In which order
should the d-terms be minimized? Due to the quadratic nature of the squares
of the d-terms, we notice, on a close examination of the representation, that
deducting 1 off a large d-term is more effective in minimizing the sum than
deducting 1 off a small d-term:

H integers a > b ~ 1, then (a - 1)2 + b2 < a2 + (b - 1)2

It is also clear that for two d-terms having the same value c, subtracting an
integer d from each of these d-terms is more effective in minimizing the sum
than subtracting 2d from only one of these two equal-valued d-terms:

H integers c > 2d and d ~ 1, then (c - d)2 + (c - d)2 < (c - 2d)2 + Cl

Hence, for the Padding Approach, we start with Pj = 0 for all jj each d-term
(Pj - O:j) becomes -O:j. These d-terms are then rearranged in non-ascending
order of O:j (in other words, non-descending order of -O:j) and result in:

After the rearrangement, we try to lower the value of the first d-term (P(I) -

0:(1» by adding the amount 0:(1) - 0:(2) to P(I) so that the first d-term has
the same value as the second d-term (P(2) - 0:(2». We then try to reduce
the values of these two d-terms by increasing the values of P(I) and P(2) in
round-robin fashion so as to make them have the same value as the third d­
term (P(3) -0:(3». We keep devaluing the first k d-terms so that they have the
same value as the (k+l)th d-term through increases of the values of P(Ijk)'

This process is repeated until the summation constraint Lj=1 Pj = W - v is
satisfied. At any cycle (say, Cycle k), the value of P(Ijk) is constrained
by the inequality P(j) ~ I(j), and will not be increased beyond its allowable
maximum I(j).

Algorithm 2 (The Padding Algorithm)
1 Vj, O:j t- I j - Qj

2 Vj, Pj t- 0
3 ({P(j) - O:(j)'s} t- sort the (Pj - O:j) terms in non-ascending order of O:j
4 k t-l
5 while k < n and L;=1 P(j) < W - v do

250 Part Nine Session: Image Queries

6 loop for at most O(k) - O(k+l) cycles
7 for each P(1~:;t9) do
8 if p(t~ < l(t) then p(t) r p(t) + 1
9 if Ej=l P(j) = w - v then return (P, E(Pj - OJ)2)
10 krk+l
11 if Ej=l P(j) < w - v
12 then loop
13 for each P(ltn) do
14 if P(tJ < l(t) then p(t) r p(t) + 1
15 if Ej=l P(j) = w - v then return (P, E(Pj - OJ)2) •

Example 3 Given 3-dimensional integer vectors I = (12,3, 10)T and Q =
(2, 7, 1)T j then, 0 = 1-Q = (10, -4,9)T. We want to find an appropriate
assignment to integer vector (PI, P2 , P3)T so that the objective function
(PI - 10)2 + (P2 + 4)2 + (P3 - 9)2 is minimized and the constraints (0, 0, 0 f
~ (PI, P2, P3 f ~ (12,3, 10)T and E~=l Pj = 25 -10 = 15 are satisfied.

We start with Pj = 0 for all j and rearrange all the d-terms. After the
rearrangement, we try to lower the value of the first d-term (P(1) -10 = -10)
by adding 1 to P(l) so that the first two d-terms have same value (= -9).
Then, we try to reduce the values of these two d-terms by increasing the
values of P(l) and P(2) in round-robin fashion so as to bring them closer to
the value ofthe third d-term (= 4)j we stop when the constraint E;=l Pj = 15
is satisfied.

P(l) - 0(1) P(2) - 0(2) P(3) - 0(3) EPj

= PI - 01 = P3 -03 = P2 -02

Cycle 0 0-10=-10 0-9 =-9 0- (-4) = 4 0

Cycle 1 1-10 =-9 1

Cycle 2 2 -10 =-8 1- 9 =-8 3
Cycle 3 3-10=-7 2 -9 =-7 5

Cycle 8 8 -10 =-2 7 - 9 =-2 15

The Padding Algorithm returns (P,JS;i) = ((8,0,7)T, 24). •

2.2 Reduction Algorithm

Figure 1 shows the similarities and difficulties of the Padding Approach and
the Reduction Approach. As notice from the figure, for the Reduction Ap-

Similarity matching for arbitrary size subimage queries 251

proach, we reduce the precomputed image block I by choosing v 'desired'
pixels from it so that the resulting reduced image block I' is of the same size
as the subimage query Q. In other words, the w - v 'not so desired' pixels
are removed.

Definition 4 Let I, I' and Q represent the n-dimensional color histograms
of the original precomputed image block, the resulting reduced image block,
and the subimage query respectively. We let w, v and v be the corresponding
number of pixels represented in the histograms I, I' and Q. The goal of the
Reduction Approach is to find an appropriate assignment to the optimization
variable I' so that IS; is minimized and the vector inequality I' ~ I is met:

n n

Given L Qj = v and L Ij = W ~ v,
j=l j=l

we want to find the optimal vector I' to
n

objective function min (Q - I'f(Q - 1') == min "(Ii _ Qj)2]']' L..J (2)
j=l

inequality constraint subject to 0 ~ Ii ~ Ij for 1 ~ j ~ n
n

summation constraint and LIi =v
j=l

domain constraint and I, I' , Q integer vectors

The estimated best-case lower bound IS; = (Q - I')T(Q - I'). •
As we can see, Problem (2) is similar to Problem (1). The Algorithm 2 has

been adapted for the Reduction Approach by replacing (i) P with I', (ii) a
with Q, and (iii) the summation constraint with :L;=1 I(i) = v. The resulting
algorithm is the Reduction Algorithm.

2.3 Evaluation

Having developed the Padding Algorithm and the Reduction Algorithm, we
would like to ask the question: In terms of effectiveness, which one produces
a better lower bound ? To answer this question, we let:

• F P = {fP I fP = (P+Q-I)T(P+Q-I) where P satisfies the constraints:
(i) 0 ~ Pi ~ Ii for 1 ~ j ~ n and (ii) :L;=1 Pi = w - v }, and

• FR = { fR I fR = (Q - I')T(Q - I') where I' satisfies the constraints:
(i) 0 ~ I; ~ Ii for 1 ~ j ~ n and (ii) :L;=lI; = v },

252 Part Nine Session: Image Queries

where E;=1 Qj = v and E;=IIj = w ~ v. The analytical results show that
in the domain of integers, there is a I-to-l correspondence between FP and
FR. ill other words, for any feasible solution fP to Problem (1), there is a
corresponding solution fR to Problem (2) such that fP = fR. Similarly, for
any feasible solution fR to Problem (2), there is a corresponding solution fP
to Problem (1) such that fP = fR. The D;i values returned by the Padding
Algorithm and the Reduction Algorithm are the minimal fP and the mini­
mal fR respectively. Therefore, in terms of effectiveness, the two Algorithms
give the same best-case lower bound to the histogram distance.

Lemma 5 H a subimage query Q is contained in an image block I, then both
the Padding Algorithm and the Reduction Algorithm return the estimated
histogram distance D;i = O. •

The next question is: In terms of efficiency, which one produces the lower
bound faster ? The experimental results show that the performance of the
two Algorithms differ significantly depending on the size differential between
the subimage query and the image block (Figure 2). Given an image block I
consisting of w pixels and a subimage query Q consisting of v pixels (where
v ~ w):

Imogo -....-v'" 121x128 1'11010

//-/--------

-
°0 2000 «100 8000 1000 10000 12000 14000 18000

_oIPtx"In~Quory

Figure 2 Computation time for Padding and Reduction Algorithms .

• For small size differential (e.g., w < 2v): The Reduction Algorithm picks v
pixels to form I', whereas the Padding Algorithm pads w - v < v pixels to
Q to form Q' •

• For large size differential (e.g., w > 2v): The Padding Algorithm pads w-v

Similarity matching for arbitrary size subimage queries 253

pixels to form Q/, whereas the Reduction Algorithm picks v < w - v pixels
from I to form I' .

• For medium size differential (e.g., w ~ 2v): The Padding Algorithm pads
w - v pixels to form Q/, and the Reduction Algorithm picks v ~ w - v pixels
to form I'.

Therefore, in terms of efficiency, the Padding Algorithm outperforms the Re­
duction Algorithm when size differential between Q and I is small, and vice
versa when the differential is large.

As we can see, the complexity for the Padding Algorithm is O(w - v}, and
the complexity for the Reduction Algorithm is O(v}. Since the two Algorithms
give the same best-case lower bound, we can choose the faster Algorithm for
the given Q and I. Hence, the average complexity for Padding and Reduction
Algorithms is O(min(w - v,v».

3 MULTISCALE REPRESENTATION

As discussed above, some IDBMS's divide an image into blocks of a certain
size. For some queries, the scale at which the images are blocked may be too
fine. Applying similarity comparisons to all those fine blocks may be a waste
of effort. However, for some other queries, the scale may be too coarse. The
desired images in the database may not be discriminated sufficiently. Given
that subimage queries can be of arbitrary size, picking one best scale for all
queries is hard, if not impossible.

One solution is to have multiple scales/resolutions for matching. The idea
is that depending on the scale or need of the given query, a more appropriate
scale can be used. The wavelet decomposition method developed by Jacobs
et al. is a good example of a multiscale scheme, in which the coefficients of
the decompositions are distilled through processes of truncation and quanti­
zation. During query processing, the algorithm simply compares the number
of distilled coefficients that are common to both the query and the image.
However, the method is applicable only to whole-image queries; it is not clear
how subimage queries can be supported.

Chen et al. (1997) proposed a branch-and-bound algorithm for searching
multiple scales. While we shall discuss their approach in greater detail later,
it suffices to say that in Chen et al. 's study and in most of the related studies
in the literature, there is little discussion on how to determine the number of
levels in the multiscale representation. Analytical or experimental evaluation
of this issue is almost non-existent.

254 Part Nine Session: Image Queries

3.1 Multiscale Similarity Matching

Here, we study a 4-level multiscale representation in which the entire image is
divided into four blocks, and each block is recursively divided into four, and
so on (Figure 3):

(a) Level H (b) Level I (c) Level J (d) Level K

Figure 3 The 4-level multiscale representation.

1. At Level H, the entire image is represented by a single color histogram.
2. At Level I, the image is divided into four non-overlapping blocks, and each

block is represented by a color histogram covering i of the entire image.
3. At Level J, each block at Level I is further divided into four blocks, each of

which is represented by a color histogram covering l6 of the entire image.
4. At Level K, each block at Level J is again divided into four, each of which

is represented by a color histogram covering 6~ of the entire image.

With this multiscale representation, given any subimage query Q of arbitrary
size, there exists an image block I whose size is not smaller than Q. So, Padding
and Reduction Algorithms can be applied in similarity matching. Depending
on the location of image block I, similarity matching can incorporate both
color similarity and spatial similarity. For instance, the distance between Q
and I can be a weighted sum of the form: {3 x histogram distance + (1- (3) x
positional distance,where the histogram distance is computed by either the
Padding Algorithm or the Reduction Algorithm. The weighting factor {3 can
be chosen by the user.

Due to the 'minimization' nature of the estimated histogram distance, the
distance function has been formulated in a such way that given Q and I, the
distance at the coarser scale can serve as a lower bound to the distance at the
finer scale. With this property, efficient multiscale search strategies with the
use of vertical filtering can be explored. Here, we study one of these strategies,
namely PV (Pure Vertical); we shall consider other search strategies in the
next section. With PV, all database images are checked one after another. At
any point in time, we keep the current u smallest distances (images at their
finest scales), where u is the number of images requested by the user. For

Similarity matching for arbitrary size subimage queries 255

each image, we keep proceeding to finer scales until (i) the distance value at
a particular scale is already so large that the image cannot be qualified as a
good match, or (ii) the finest scale is reached and the image is either discarded
or selected as a member of the answer set, depending on the distance value.

With the four levels of image blocks in the representation, many multi-level
filtering schemes are possible. For example, the choices include a four-level
HIJK scheme, a two-level HI scheme, a two-level IK scheme (skipping Level J),
and some other schemes. Depending on the efficiency and effectiveness of
various schemes and the size of subimage query, appropriate filtering schemes
can be chosen.

3.2 Analytical Evaluation

In order to determine the suitable number of levels required for the multiscale
representation, we have conducted an analytical evaluation by setting up a
cost model. Our model captures:

• CPU cost, which depends mainly on the time required to apply Padding and
Reduction Algorithms and the number of times in which the Algorithms
are applied .

• I/O cost, which depends mainly on the time required to sequentially and
randomly access the pages containing the data (the histograms). This ac­
cess time can be affected by page size and buffer size.

Some optimization techniques can be applied to reduce the CPU and I/O
costs. As an example, it is observed that for a vast majority of subimage
queries, if the image blocks pub and Iaup are best matches (which give the
smallest distance values) at their corresponding levels (e.g., Levels I and J),
then I aub is one of the subblock enclosed in I-UP. SO, given a subimage query
of size smaller than 116 of the entire image (i. e. smaller than the precomputed
image block at Level J), the most promising image block I I can be found after
checking histograms of the four blocks at Level I. Then, rather than consid­
ering histograms representing all 16 blocks at Level J, we simply consider the
four representing the region covered by II. By so doing, both CPU and I/O
costs are reduced.

For lack of space, we only show the CPU and I/O cost formulas for a
three-level HIJ filtering scheme in this section; please refer to Leung's (1997)
work for the cost formulas of all other filtering schemes. To estimate the CPU
cost, we let Tc be the computational time required to apply Padding and
Reduction Algorithms. Then, given a query of size smaller than that of the
precomputed image block at Level J, the CPU cost for the HIJ scheme using
the PV strategy is (M + 4~I + 4~J)Tc, where ~I and ~J are the number of
images checked at Levels I and J respectively (number of database images

256 Part Nine Session: Image Queries

= M ~ ~I ~ ~J ~ U = number of requested images). The two parameters ~'s
are determined dynamically during the runtime.

To estimate the I/O cost, we let the space required by each dimension
of a color histogram be 4 bytes; a total of 4n bytes are needed for one n­
dimensional histograms. Hence, the total number of pages occupied by one
histogram is r: pages where P is the page size. Then, the I/O cost is the sum
of total seek times and total data transfer times. Using a minimal buffering
(a buffer size of one page) with an appropriate file organization for the PV
strategy*, the I/O cost for the HIJ scheme (using a page size of 1 kilobyte and
a 64-dimensional histograms) is TA + (M -1 + ~)TM + (M + ~I + ~J)TD,
where TA (average seek) is charged only for getting to the Level-H histogram
of the first image, and TD (data transfer) is charged for loading the page
containing the histogram, and TM (minimum seek) is charged for jumping
between records. .

In the analyses, we vary parameters like the dimension of the color his­
togram and the number of database images. The observations are listed be­
low:

• As the dimension of the histogram grows, the time required for CPU op­
eration and I/O operation increases. Hence, the combined CPU and I/O
cost increases.

• As the number of database images becomes larger, the combined CPU and
I/O cost increases.

• Filtering schemes which start with filter J or K often take more CPU and
I/O time.

• Filtering schemes which skip intermediate levels often incur greater CPU
and I/O costs.

• The above trends can still be observed when using various level of buffering.

Therefore, filtering schemes that start with the Level H (or start with Level I),
and those that do not skip any intermediate levels are favored.

3.3 Experimental Evaluation

In addition to the analytical evaluation, we have also conducted an experi­
mental evaluation. In the experiments, we use suhimage queries of different
sizes (some even smaller than 6~ of the entire image), and measure both
the efficiency and effectiveness of the filtering schemes. The efficiency of a
scheme can be assessed by its execution time; the effectiveness of a scheme

• Since the database images are checked one after another, an appropriate way to organize
the histograms for the PV strategy is to arrange them on an image-by-image basis (i.e.
Levels H-I-J-K histograms of Image 1 followed by Levels H-I-J-K histograms of Image 2,
and so on).

Similarity matching for arbitrary size subimage queries 257

can be assessed by its dissimilarity score. The dissimilarity score is computed
by comparing the number of retrieved images actually falling into 'prefect­
match', 'best-match', 'good-match', 'fair-match', and 'poor-match' categories
to the number of retrieved images ideally falling into these categories. The
lower the dissimilarity score, the better is the accuracy. The experimental
results suggest that when operated with Padding and Reduction Algorithms:

• The one-level H scheme is best for 'large' subimage queries·.
• The two-level HI scheme is best for 'medium' subimage queries.
• The three-level HIJ scheme is best for both 'small' and 'tiny' subimage

queries.

Therefore, desired images can be retrieved efficiently and effectively using only
the top three levels (Levels H, I, and J) of the multiscale representation.

3.4 Discussion: Dealing with Queries on Boundaries

Given the above search strategy, one may ask the question: How to handle
subimage queries which lie on block boundaries ? For example, the user may
specify a subimage query which lies in the center region of an image block,
with each of the four subblocks containing t of the query. The problem here
is that the query is not entirely contained in any sub block.

A heuristic to improve such a situation is to use the overlapping 9-tile
partition (Figure 4). Due to the overlapping nature of such a partition, more
choices are allowed for better containment. For the above example, we can pick
tile #9. To change from the original non-overlapping 4-tile partition to this
9-tile partition, the search time only increases linearly. However, the storage
space required for the histograms grows exponentially.

rr2 [lJ: EEJ . . 1 . 3

3 4 6 . . EE
Figure 4 A overlapping 9-tile partition.

To avoid the exponential growth in storage, a simpler heuristic can be used.
First, we apply multiscale similarity matching as outlined in Section 3.1 and
the next section. Then, on the basis of Lemma 5 that the estimated distance

• A 'large' subimage query is the one that covers more than t of the entire image. Query
that is not 'large' but covers more than fB of the entire image is called 'medium'. A 'small'
subimage query is the one that is not 'medium' but covers more than -\ ofthe entire image;
a 'tiny' subimage query is the one that does not belong to any of the ttree categories above.

258 Part Nine Session: Image Queries

at the coarsest level between a subimage query Q and its perfectly matched
image rpm (e.g., Q is a subpart of rpm) is 0, we create a special candidate set to
contain images with estimated distance of O. This special set is then merged
with the answer set returned by the similarity matching; the resulting set of
images are ranked thereafter. This idea can be generalized for handling cases
where the image has an estimated distance less than some small predetermined
threshold f.

4 SEARCH STRATEGIES

As mentioned earlier, in the branch-and-bound algorithm proposed by Chen
et al., all the images in the database are first checked at the coarsest scale.
Then, the algorithm proceeds to finer scales in non-descending order of dis­
tance value. In general, the branch-and-bound search works in such a way
that it always keeps track of the distance values of all images contending for
further consideration. Images with smallest values are 'extended' to a finer
scale. Then, these most recently 'extended' images are considered along with
the remaining ones. Again, images with smallest values are 'extended'. The
process repeats until the target images are found.

Due to the effectiveness of the above brand-and-bound strategy for handling
whole-image queries, this strategy can be adapted to handle subimage queries.
However, at each iteration of the search, the color histograms used in the
computation of distance values may be at a different level/scale and may be
for images different from those in the previous iteration. As a result, it can be
inefficient for large databases. In particular, the number of images the strategy
must keep track of can be large. Jumping back and forth in the data file to
get the necessary histograms for computation may frequently be required. For
large databases, such jumping makes it hard to optimize file organization and
buffer management, and may impose a high I/O cost.

In this paper, we consider three strategies that try to avoid the kind of jump­
ing mentioned above. The first strategy, called PV (Pure Vertical), checks
the images one after another 'vertically' (across levels), instead of jumping
back and forth. At any point in time, the strategy keeps the current u small­
est distances (images at their finest scale), where u is the number of images
requested by the user. When the next image is tested, if the distance value of
this image at the coarsest scale is already larger than the current u smallest,
then this image can be eliminated. Otherwise, a finer scale is used, until the
image is eliminated or is added to become one of the current u smallest.

To investigate the efficiency and the effectiveness of the PV strategy, ana­
lytical and experimental evaluations are carried out. A cost model is set up
during the analyses for estimating both CPU and I/O costs of various filtering
schemes using the PV strategy. In the experiments, subimage queries of ar­
bitrary size are used. Execution time (evaluating efficiency) and dissimilarity

Similarity matching for arbitrary size subimage queries 259

Level\Image# 2 3 4 5 6 7
H • • • • • • •

.I- .I- .I- .I- .I- .I- .I- .l-
• • • • • 0 0
.I- .I- .I- .I- .I- .I- .I- .I-

J • • • 0 • 0 0
(a) PV Strategy

Level \Image# 1 2 3 4 5 6 7
H .--+ .--+ .--+ .--+ .--+ .--+ .--+

.--+ .--+ .--+ .--+ .--+ 0--+ 0--+ • Visited
o Unvisited

J .--+ .--+ 0--+ 0--+ .--+ 0--+ 0--+
(b) PH Strategy

Level\Image# 2 3 4 5 6 7
H .--+ .--+ .--+ .--+ .--+ .--+ .--+

• • • • • 0 0
.I- .I- .I- .I- .I- .I- .I- .I-

J • • • 0 • 0 0
(C) HV Strategy

Figure 5 Three proposed search strategies.

score (evaluating effectiveness) are measured for each filtering scheme. Our
aim is to maintain a balance between efficiency and effectiveness.

Note that the PV strategy tends to require many comparisons at the finest
scale, particularly at the beginning of the search. Thus, we consider the second
strategy, called PH (Pure Horizontal), which avoids the kind of numerous
comparisons at the finest scale by first checking all images at the coarsest
scale. The best I' matches (for some value 1'» u), are carried over to the next
iteration, while all the remaining ones are eliminated. In the next iteration,
the next finer scale is used. The process is repeated until the finest scale
has been used, and the top u images are returned. Here, images are checked
'horizontally' (across database) level by level to avoid the kind of frequent
jumping as in the branch-and-bound.

Results of analytical and experimental evaluations show that the PH strat­
egy gives better performance than the PV strategy. Unlike the PV strategy,
the number of images to be carried over from the current level to the next
level is controlled by the predefined parameters J.t's. However, we need to care­
fully choose the values of J.t's. If this set of numbers (J.t's) is not determined
carefully (say, the numbers are too small), then for some queries, an image I
that gives a good match at a finer scale could have been eliminated before
reaching this finer scale. This may happen when there are sufficiently many
images which are not as good as I at the finer scale but which are better
than I at the coarser scale. Consequently, while delivering efficiency, the PH
strategy may suffer from a loss of effectiveness.

The third strategy, called HV (Horizontal-and-Vertical), is a hybrid of
PV and PH. At the coarsest scale, the PH strategy is applied to eliminate poor

260 Part Nine Session: Image Queries

matches. The best J.t matches are then carried over to the next stage, in which
the PV strategy is used. In other words, horizontal filtering is applied only to
the coarsest level, and vertical filtering is then applied to the remaining levels.

4.1 Analytical Evaluation

As can be viewed from Figure 6, the I/O cost for the brand-and-bound strat­
egy (denoted by B&B) are potentially high. This explains why we need to
consider three search strategies - namely, PV, PH, and HV - which reduce
the I/O costs by avoiding the kind of frequent jumping incurred in the branch­
and-bound strategy. To find the best strategy among these three, analyses and
experiments have been carried out. Analytically, we set up the cost model to
evaluate the filtering schemes and estimate their CPU, I/O, and combined
CPU and I/O costs. Cost formulas for each filtering scheme and for each of
the three search strategies can be found in Leung's (1997) work.

110 eosts"" Four _ Strategies

~~------------------------------HUK

UK

12

----8&8
.. ······PV cd" - - - - - - - - -HI

······1 --'--HV

1.5 2.5 3 3.5 4 4.5 5
Tme (In ma) x 10"

Figure 6 The I/O costs for 4 search strategies.

After we estimated the CPU and I/O costs for each combination of filtering
scheme and search strategy, results are analyzed. We found that:

• All three strategies share a common trend: Filtering schemes starting with
Level H (or Level I) and those not skipping intermediate levels are consid­
ered to be favorable.

• While delivering high degree of accuracy, the PV strategy suffers from a
loss of performance/speed (Figure 7).

• The combined CPU and I/O costs for both PH and HV strategies are
almost the same (Figure 7). Further experiments are needed to determine
the best search strategy.

Similarity matching for arbitrary size subimage queries

CPU + 110 Costs TIvao _ SIJategIos
16~--...---..,.-----.---.---..-----,

............. ··············l1LIK

14 _._._.:;:~.:.:.-.:;::;: ·············UK

12

.............. l1LJ

··U

4

~········Ht ·········PV
2 ~ .. :.: . .-~.::.::~::.. , -·_·_·-HV r-:;:. ······H

~~-~-~~-~3~--4~--7---J
11me(lnms)

Figure 7 The combined CPU and I/O costs for 3 search strategies.

4.2 Experimental Evaluation

261

To find an efficient and effective one among the three multiscale searching
strategies, we performed several experiments using color histograms of vari­
ous dimensions (e.g., 8-, 64-, and 512-dimensional color histograms). These
histograms are created for a database consisting of a thousand real images
collected from various sources and covering wide application domains. Com­
paring the runtimes and the accuracies of the best configuration (the best
filtering scheme for each kind of 'large', 'medium', 'small', and 'tiny' subim­
age queries) for each strategy, we found that:

• The HV strategy is more efficient than the PV strategy, because the use
of vertical filtering in the latter is applied to the whole set of database
images. In the HV strategy, the detailed search with the use of vertical
filtering is applied not to the set of all the images, but only to its most
promising subset.

• The HV strategy is more effective than the PH strategy, because the latter
uses horizontal filtering at all levels. If the number of images to be carried
over from the current level to the next level is not determined carefully,
the PH strategy may suffer from a loss of effectiveness. In the HV strategy,
horizontal filtering is applied not to all the levels, but only to the coarsest
level. So, we only need to carefully assign a value to one (instead of a
maximum of three) predefined parameter I' that controls the number of
images to be carried over. As such, the chance of having the desired images
being eliminated before reaching the finer scale is reduced.

262 Part Nine Session: Image Queries

Therefore, our experimental results confirm that the HV strategy not only
avoids the kind of frequent jumping as observed in the branch-and-bound
strategy, it also keeps a good balance between efficiency and effectiveness,
when compared with the other two strategies. Running the HV strategy on a
Sun UltraSPARC-I workstation, the best 10 desired images can be retrieved
from a collection of thousand images in about 3.5 seconds on average.

5 CONCLUSIONS

In this paper, we have addressed the following key issues:

1. To FIND A METHOD FOR PROCESSING SUBIMAGE QUERIES OF ARBITRARY

SIZE: To answer arbitrary-size subimage queries, we developed two al­
gorithms, the Padding Algorithm and the Reduction Algorithm. Knowing
the image block I may not necessarily be of the same size as the query Q,
we use these two algorithms to estimate the best possible color histograms
for Q and 1. Here, we either (i) enlarged Q into a new query Q' that is of the
same size as I or (ii) reduced I to a new image block I' that is of the same
size as Q. For a given Q and I, both algorithms give the same best-case
lower bound to the histogram distance. However, their efficiency may differ
significantly depending on the size differential between Q and 1.

2. To DETERMINE THE SUITABLE NUMBER OF LEVELS FOR MULTISCALE REP­

RESENTATION: Given subimage queries of arbitrary size, multiscale repre­
sentation may improve the efficiency and the effectiveness of content-based
retrieval. Since image contents are usually pre-extracted and stored, we
need to determine the suitable number of levels for the multiscale rep­
resentation. Analytically, we estimated the required CPU and I/O costs;
experimentally, we compared the performance and the accuracy of the out­
comes of strategies for searching the multiscale representation. Our findings
suggest that a 3-level hierarchy (up to 4 x 4 segmentation) is preferred.

3. To FIND AN EFFICIENT AND EFFECTIVE MULTISCALE SEARCH STRATEGY:

In this paper, we studied three search strategies, namely Pure Vertical, Pure
Horizontal, and Horizontal-and-Vertical. To find the best strategy among
these three, analytical and experimental evaluations were conducted. Our
results indicate that the Horizontal-and-Vertical strategy is the best when
using Padding and Reduction Algorithms, because the strategy not only
avoids high I/O costs incurred by the frequent jumping in the data file, but
also keeps a good balance between performance and accuracy.

Although the results of this paper are very promising, there are some aspects
to consider for further improvement. One aspect is to investigate methods to
extend our Padding and Reduction Algorithms for handling user confidence
or uncertainty on color and spatial information. With the extension, users

Similarity matching for arbitrary size subimage queries 263

will be able to express the degree of uncertainty on image contents within
the subimage.

Throughout the paper, we focus on the case where the user remembers
only a single portion of the image. However, it is possible that the user may
remember more than one portion of the images he has seen before. Hence,
methods for handling subimage queries with multiple 'known' portions are
needed. A brute-force approach is to apply Padding and Reduction Algorithms
to each portion independently. An intersection is then applied to the candidate
sets of images retrieved by the Algorithms, and the resulting images are ranked
thereafter. However, the execution time for this approach may be high; more
efficient approaches are necessary.

ACKNOWLEDGEMENTS

This research was partially sponsored by NSERC Grant OGP01380SS, and
IRIS-2 Grants HMI-S and IC-S.

REFERENCES

Bach, J.R. et al. (1996) The Virage Image Search Engine: An Open Framework
for Image Management. Proceedings of SPIE Conference on Storage and Re­
trieval for Still Image and Video Databases IV (Vol. 2670): 76--87. San Jose
CA, USA.

Barber, R. et al. (1994) Ultimedia Manager: Query By Image Content and its Ap­
plications. Digest of Papers of the Spring COMPCON '94: 424-429. San
Francisco CA, USA.

Castelli, V. et al. (1997) Searching Image Databases at Multiple Levels of Abstrac­
tion. Research Report RC 20702, IBM T. J. Watson Research Center, York­
town Heights NY, USA.

Chen, J.-Y. et al. (1997) Multiscale Branch and Bound Image Database Search.
Proceedings of SPIE Conference on Storage and Retrieval for Image and
Video Databases V (Vol. 3022): 133-144. San Jose CA, USA.

Faloutsos, C. et al. (1994) Efficient and Effective Querying by Image Content. Jour­
nal of Intelligent Information Systems 3(3-4): 231-262.

Faulus, D.S. and Ng, R.T. (1997) An Expressive Language and Interface for Image
Querying. Machine Vision and Applications 10(2): 74-85.

Flickner, M. et al. (1995) Query by Image and Video Content: The QBIC System.
IEEE Computer 28(9): 23-31.

Gudivada, V.N. and Raghavan, V.V. (1995) Content-based Image Retrieval Systems.
IEEE Computer 28(9): 18-22.

Guttman, A. (1984) R-trees: A Dynamic Index Structure for Spatial Searching.
Proceedings of ACM SIGMOD Conference on Management of Data: 47-57.
Boston MA, USA.

Jacobs, C.E. et al. (1995) Fast Multiresolution Image Querying. Proceedings of ACM
SIGGRAPH Conference on Computer Graphics & Interactive Techniques:

264 Part Nine Session: Image Queries

277-286. Los Angeles CA, USA.
Jain, R., editor (1993) NSF Workshop on Visual Information Management Systems.

SIGMOD Record 22(3): 57-75.
Leung, K.S. (1997) Efficient and Effective Subimage Similarity Matching for Large

Image Databases. Master's Thesis, The University of British Columbia, Van­
couver BC, Canada.

Lin, K.-I. et al. (1994) The TV-tree - An Index Structure for High-dimensional
Data. VLDB Journal3(4): 517-549.

Ng, R.T. and Tam, D. (1997) An Analysis of Multi-level Color Histograms. Pro­
ceedings of SP IE Conference on Storage and Retrieval for Image and Video
Databases V (Vol. 3022): 22-34. San Jose CA, USA.

Petkovic, D. et al. (1996) Recent Applications of IBM's Query By Image Content
(QBIC). Research Report RJ 10006, IBM Almaden Research Center, San
Jose CA, USA.

Samet, H. (1990) The Design and Analysis of Spatial Data Structures. Addison­
Wesley.

Sawhney, H.S. and Hafner, J.L. (1993) Efficient Color Histogram Indexing for
Quadratic Form Distance Functions. Research Report RJ 9572, IBM Al­
maden Research Center, San Jose CA, USA.

Stricker, M. and Dimai, A. (1996) Color Indexing with Weak Spatial Constraints.
Proceedings of SPIE Conference on Storage and Retrieval for Still Image and
Video Databases IV (Vol. 2670): 29--40. San Jose CA, USA.

Swain, M.J. and Ballard, D.H. (1991) Color Indexing. International Journal of Com­
puter Vision 7(1): 11-32.

Thomasian, A. et al. (1997) RCSVD: Recursive Clustering with Singular Value De­
composition for Dimension Reduction in Content-based Retrieval of Large
Image/Video Databases. Research Report RC 20704, IBM T. J. Watson Re­
search Center, Yorktown Heights NY, USA.

6 BIOGRAPHY

Kai-Sang Leung participates in the image database management system
project led by Raymond Ng, focusing on efficient and effective query process­
ing and optimization. Research work done in the participation is largely on
subimage query processing. Kai-Sang Leung is currently pursuing his Ph.D.
in computer science at DBC.
Raymond Ng, together with his colleagues at DBC, leads an 8-year project
in building a generic image database management system that can support
automatic feature extraction and analysis, and a variety of application do­
mains. The project is in its fourth year. Raymond Ng has published widely on
major database conferences (e.g., VLDB, SIGMOD) and journals (e.g., Jour­
nal of ACM, IEEE Computer, ACM TODS, ACM Multimedia). Raymond Ng
is an associate professor at DBC.

